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Abstract

A geometric graph is a graph drawn in the plane so that the vertices are represented by
points in general position, the edges are represented by straight line segments connecting the
corresponding points. We show that a geometric graph of n vertices with no k + 1 pairwise
disjoint edges has at most 2°k%n edges.

1 Introduction

A geometric graph G is a graph drawn in the plane by (possibly crossing) straight line segments,
i.e., it is defined as a pair G = (V, E), where V is a set of points in general position in the plane
and E is a set of closed segments whose endpoints belong to V.

The following question was raised by Avital and Hanani [AH], Kupitz [K], Erdds and Perles.
Determine the smallest number e, (n) such that any geometric graph with n vertices and m > eg(n)
edges contains k + 1 pairwise disjoint edges.

It follows from a result of Kupitz [K] that ex(n) > kn for any k < n/2. Pach and T6r8csik [PT]
proved that ej(n) < k*n for any fixed k, which was the first upper bound linear in n. Both the upper
and lower bounds were improved by Téth and Valtr [TV] to 3(k — 1)n — 2k? < ex(n) < k3(n + 1)
(k <mn/2). In this note we further improve the upper bound.

Theorem 1. For any k < n/2,
ex(n) < 2°k2n.

Let G be a geometric graph. For any vertex v, let 2(v) and y(v) denote its z- and y-coordinate,
respectively. An edge e is said to lie below an edge €', if every vertical line intersecting both e and
e’ intersects e strictly below e'.

Define four binary relations <; (i = 1,...,4) on the edge set E as follows (see also [PT, PA,
TV]). Let e = v1v9,€' = vjvh be two disjoint edges of G, where z(v1) < z(v9) and z(v]) < z(v}).
Then (see Fig. 1.)
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e=<1€, if  z(vy) >z()), z(ve) > z(v)), and e lies below €,
e<ge, if  xz(v)<z(v]), z(v2) < z(vh), and e lies below €,
e=<sze, if  z(v)) <z(v]), z(v2) > z(vh), and e lies below ¢,
e<qe, if  z(vy) >z(v]), z(v2) < z(vh), and e lies below €.

Each of the relations <; is a partial ordering, and any pair of disjoint edges of G is comparable
by at least one of them. Theorem 1 is a direct consequence of the following stronger statement.

Theorem 2. Let k < n/2 and let G be a geometric graph with no k+ 1 edges forming a chain with
respect to any of the partial orders <1, <2, <3, <4. Then

e(@) < 2%*n.

For k = O(y/n) this result can not be improved apart from the value of the constant.

The relations <1, <9, <3, <4 were introduced by Pach and Térécsik [PT]. In fact, their result
was analogous to Theorem 2, with the weaker bound e < k*n.

2 Proof of Theorem 2.

For any graph G, let ¢(G) denote the number of edges of G. Let G be a geometric graph with vertex
set V = {v1,v9,...,v,} and with no k + 1 edges forming a chain in any of the partial orderings
<1,.-.,=4. If there are two vertices with the same z-coordinates, we can perturb them to have



different z-coordinates. It is easy to see that this way we did not create any additional chain.
Therefore, we can suppose without loss of generality that all vertices have different z-coordinates
and the vertices are numbered from left to right.

For any vertex v;, the left edges (resp. right edges) of v; are those edges v;v; of G, where i > j
(resp. @ < j). The left degree l; (resp. the right degree r;) of v; is the number of left edges (resp.
right edges) of v;.

Lemma. Let X = {z1,z2,...,zm} be a sequence of different real numbers. Then there are pairwise
disjoint monotone subsequences X1, Xo,...,X; C X such that for i = 1,2,....1, | X;| = [/m/2],
and | X1| + | Xo| 4+ + | X3| > m/2.

Proof. Take a monotone subsequence of size [\/m/2] of X and delete it from X. Continue as

long as there are at least m/2 elements of X left. It can be done by the Erdds-Szekeres Theorem
[ES35]. O

Return to the proof of Theorem 2. Do the following procedure on G, for ¢ = 1,2,...,n.

RIGHT DECOMPOSITION PROCEDURE[i]. Let v = v;, r = r; and let eq, eq,. .., e, be the right
edges of v in clockwise order (such that the clockwise angle enclosed by e; and e, is less than
180°). Let z(e;) denote the z-coordinate of the endpoint of e; different from v. By the Lemma,
the sequence z(e1), z(e2), . . ., z(e,) contains monotone subsequences, each of size [/r/2] such
that their total size is at least /2. It defines a partition of the corresponding edges into
subsequences. Call each subset of those edges which belong to the same subsequence, right-
block of edges at v;. Delete those edges which do not belong to any of the subsequences. For
any remaining edge e;, we say that the type of e; is right-increasing (resp. right-decreasing)
if z(ej) belongs to an increasing (resp. decreasing) subsequence. (See Fig. 2.)

right increasing subsequence left increasing subsequence
Figure 2.

Call the resulting graph G;. Clearly, e(G1) > e(G)/2. Since every edge of G; is either of
type right-increasing or right-decreasing, at least half of the edges are of the same type, say, right-
increasing. (The other case can be treated analogously, as explained in the remark at the end of



the paper.) Delete all right-decreasing edges from G, and call the resulting graph Gs. It follows
that e(G2) > e(G) /4.

Let 11,15,...,1, be the left degrees of v1,vs,..., v, respectively, in Go. Since Gy C G, I} < I;.
Apply the LEFT DECOMPOSITION PROCEDURE on (a2, analogous to the RIGHT DECOMPOSITION
PROCEDURE. Let the resulting graph be G3, we have that e(G3) > e(G)/8. Suppose that at least
half of the edges of G3 are left-increasing. (The other case can be treated analogously, as explained
in the remark at the end of the paper.) Delete all left-decreasing edges from G3, and call the
resulting graph G4. It follows that e(G4) > e(G)/16.

For two edges of G4 with a common endpoint, e; = v;v;, e2 = v;u, we say that ep is a right-zag
of ey, if both e; and ey are right edges of v;, and ey follows immediately after e; in the same
right-block at v;. Analogously, for e; = v;v; and e = v;v, we say that e is a left-zag of eq, if both
e1; and e are left edges of v;, and e follows immediately after e; in the same left-block at v;.

A path ejes...e, of G4 is said to be a zig-zag path if one of the following three conditions
holds.

(i) m=1

(ii) For any 1 <7 <m — 1, ;41 is a right-zag of e; if i is odd and a left-zag if i is even.

iii) For any 1 <4 <m — 1, e;y1 is a right-zag of e; if ¢ is even and a left-zag if ¢ is odd.
+ g g g

Observe that each edge of G4 has at most one right-zag and one left-zag. Also, each edge is a
right-zag and a left-zag of at most one edge. Therefore, each edge of G4 is contained in at most
two maximal zig-zag paths.

Claim 1. Every zigzag path in G4 has at most 2k edges.

Proof. Suppose that ejey...eoxq1 is a zig-zag path and let 1 < ¢ < 2k — 2. First we show that
€; <1 €;4+2. Suppose that e; = v,vp, €;41 = VpV,, and e;42 = v.v4. We distinguish two cases.

Case 1. e;y1 is a right-zag of e; and e;49 is a left-zag of e;11. Then e;;; follows e; in a right
block of vy, s0 x(vy) < z(ve). Also, e;19 follows e;11 in a right block of v., so z(vp) < z(vg). Clearly,
e;+2 is below e;, so e; <1 €;49.

Case 2. e;11 is a left-zag of e; and e;;2 is a right-zag of e;;1. Then e;4; follows e; in a left
block of vy, so z(v,) < z(v.). Also, e;19 follows e;11 in a left block of v, so z(vp) < z(vg). Clearly,
€;12 is below e;, so e; <1 €;12.

Consequently, e; <1 e3 <1 e5 <1 ... <1 egx+1 SO there is a chain of length k£ + 1, a contradiction
(see Fig. 3.). This concludes the proof of Claim 1. O
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Figure 3.
Claim 2. There are at most \/2e(G)/n maximal zig-zag paths.

Proof. For each vertex v;, the number of maximal zig-zag paths starting at v; is at most the
number of blocks of edges at v;. Since each right block in G has size [/r;/2], the number of right
blocks at v; in G is at most /7;/2. Therefore, the number of right blocks at v; in G4 is also at

most \/r;/2. Similarly, the number of left blocks at v; in G is at most |/17/2, so the number of

left blocks at v; in Gy is at most 4/I;/2 < \/l;/2. Therefore, for the total number Z of maximal
zig-zag paths in G4 we have that

Z < i (\/772+ W) <Vn Enjm +1i = /2e(G)n.
i=1 1=1

O
Each edge of G4 is covered by at most two maximal zig-zag paths, hence using Claims 1 and 2
we get that
1
e(Gy) < §2k\/26(G)n.
Therefore,
e(G) 1. /-

which implies that
e(@Q) < 2%°K*n.

This concludes the proof of the upper bound. For the lower bound assume that k < y/n/2 and
consider the following geometric graph G(k,n). Take a slightly perturbed k x k piece of a unit
square grid and rotate it slightly anticlockwise direction. Place the remaining n — k? points very
far to the right and connect each vertex in the lattice with each of the remaining vertices. G(k,n)
has n vertices, k?n — k* > k?n/2 edges, and it is easy to see that there are no k + 1 edges that form



a chain with respect to any of the relations <;. If \/n/2 < k < ¢y/n then consider G(k’,n) with
k' = \/n/2 (suppose for simplicity that it is an integer). G(k',n) has n vertices, n?/4 > k?n/4c?
edges, and there are no k + 1 edges that form a chain with respect to any of our relations <;. O
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Figure 4.

Remarks. 1. It the proof of the upper bound, we assumed that the edges of G4 belong to right
increasing and left increasing blocks. It the other three cases the proof is analogous. The only
difference is that in the proof of Claim 1 we have to use <2, <3, or <4 in place of <;. See Fig. 5.
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Figure 5.

(1) The edges of G4 belong to right decreasing and left decreasing blocks. Then e; <9 e3 <o ..

. <2
€2k +1-
(2) The edges of G4 belong to right increasing and left decreasing blocks. Then e; <3 e3 <3 ... <3
€2k +1-
(3) The edges of G4 belong to right decreasing and left increasing blocks. Then e; <4 €3 <4 ... <4

€2k+1-



2. Theorem 2 guarantees that any geometric graph with n vertices and e > 2°k%n edges contains
k + 1 edges that form a chain. Following the proof of Theorem 2, it is easy to design a polynomial
algorithm that finds such a set of & + 1 edges.
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