Ramsey-type results for unions of comparability graphs
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Abstract

It is well known that the comparability graph of any partially ordered set of n
elements contains either a clique or an independent set of size at least v/n. In this note
we show that any graph of n vertices which is the union of two comparability graphs
on the same vertex set, contains either a clique or an independent set of size at least
n3. On the other hand, there exist such graphs for which the size of any clique or
independent set is at most n%4!'8. Similar results are obtained for graphs which are
unions of a fixed number k comparability graphs. We also show that the same bounds
hold for unions of perfect graphs.

1 Introduction

Let S = (V, <) be a partially ordered set on V' = {v1,vs,...,v,}. The comparability graph
of S, G = (V, E) is a graph such that (v;,v;) € E if and only if either v; < v; or v; < v;.

A graph G is called perfect, if for any spanned subgraph G’ C G, its chromatic number
is equal to the size of its largest clique (see also [B73], [L93]).

Dilworth’s Theorem. [D50] Let S be a partially ordered set containing no chain (totally
ordered subset) of size k + 1. Then P can be covered by k antichains (subsets of pairwise
incomparable elements).

Tt follows directly from Dilworth’s theorem that comparability graphs are perfect. Any
perfect graph of n vertices contains either a clique or an independent set of size at least
V/n. It is easy to see that this bound can not be improved even for comparability graphs.
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In this note we obtain similar results for unions of two or more comparability (resp.
perfect) graphs on the same vertex set.

Definition. Let fx(n) (resp. gr(n)) be the largest number such that any graph G of n
vertices, which is the union of k£ comparability graphs (resp. perfect graphs) on the same
vertex set, contains either a clique or an independent set of size at least fi(n) (resp. gg(n)).

Theorem 1. . tox &
nF < gg(n) < fe(n) <n™®F .

In particular, for k = 2,

Theorem 2. )

Unions of comparability graphs are often used in combinatorial geometry, for proving
Ramsey-type results ([LMPT94], [PT94], [KPT97], [KK97], [TV98], [PT99], [T99], see also
the Remarks).

Let w(@G), a(G), and x(G) denote the clique number, independence number, and the

chromatic number of a graph G, respectively. Obviously, n/a(G) < x(G), therefore the
1

inequality n¥+1 < fix(n) is a direct consequence of the following stronger result, which is

essentially tight.
Theorem 3. If G is the union of k perfect graphs, then

X(G) < wH(G).

On the other hand, for any k there is a graph G which is the union of k comparability
graphs, with
X(G) 2 (w(@)H .

2 Proof of Theorems 1 and 2

All comparability graphs are perfect [L93], therefore gi(n) < fr(n).

We prove the lower bound by induction on k. For £ = 1, the statement is a direct
consequence of the definition of perfect graphs [L93]. Suppose that we have already proved
the statement for £ — 1 and for all n. Let G;(V,E;) (1 < ¢ < k) be perfect graphs,
V = {v1,v9,...,v,}. Suppose for simplicity that m = nt/(+1) is an integer. Suppose that
the size of any clique in G(V, E), E = U}_, E;, is less than m. Since G1(V, E1) is perfect



and w(G1) < m, it can be colored by less than m colors, so it contains an independent set
of size at least n/m = m*, say, V! = {v1,v9,..., 0,1}

For i = 2,...,k, let G, be the subgraph of G; spanned by V'. The graphs G; are
perfect, hence G are also perfect. By the induction hypothesis and the assumption, there
is a set of size m, which is an independent set in each G}, i = 2,...,n. But then it is an
independent set in G(V, E), proving the lower bound.

Definition. Let G1(Vi, E1) and G2(Va, E3) be two (directed) graphs. The ordered product
G(V,E) = G1 x Gy is a (directed) graph with vertex set V' =V} x V5, and edge set

E(G) = {((551,.%'2), (ylayQ)) | I1,Y1 € Vla'T?ayQ € Va, and
either (z1,y1) € By or z1 =y and (z2,y2) € Eo}.
Let k be a fixed number. By known bounds for Ramsey numbers [AS92], we know that
there is a graph G such that |V(G)| = 2¥, and w(G), a(G) < 2k.
Proposition. Every graph G is the union of [log x(G)]| bipartite graphs.

Proof. Take a x(G)-coloring of G. Clearly, there exists a bipartite graph By C G on V,
such that the chromatic number of G \ B; is at most [x(G)/2]. Similarly, we can take a
bipartite graph By C G\ Bi, such that the chromatic number of G \ B; \ B; is at most
[x(G)/4]. After [log x(G)] analogous staps, the remaining graph is 1-colorable, that is,
we decomposed the edge set of G into [log x(G)] bipartite graphs.

Definition. Let G1(V1, Eq) and Go(Va, E2) be two (directed) graphs. The ordered product
G(V,E) = G1 x G2 is a (directed) graph with vertex set V' =V; x V3, and edge set

E(G) = {((z1,72), (¥1,92)) | 1,91 € V1,22,92 € V2, and
either (z1,y1) € E1 or z1 =y and (z2,y2) € Eo}.

Let k be a fixed number. By known bounds for Ramsey numbers [AS92], we know that
there is a graph G such that |V(G)| = 2¥, and w(G), a(G) < 2k.

By the Proposition, the edge set of G can be decomposed into k bipartite graphs. Since
bipartite graphs are comparability graphs, G is the union of & comparability graphs. Let

i times

. ——N—
G'=Gx--xG.
It is easy to see that G* is also a union of k& comparability graphs. |V (G*)| = 2%, and

w(G1), a(GY) < (2k)F = |V (G| *=.



Now we show the upper bound of Theorem 2. We define two graphs, H; and Ho.
V(H;y) = {vi,v,...vi3}, (vi,vj) € E(H;) if and only if

i—j=1,5, 8, or 12 (mod 13).

See Fig. 1. By Brooks’ theorem [B41] H; is four-colorable, therefore by the Proposition,
it is the union of two comparability graphs. Such a decomposition is given on Fig. 1.
It is easy to see that w(H;) = 2 and a(H;) = 4.
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For Hs, consider the set S of 12 chords of a cycle, shown on Fig. 2. There are no three
pairwise intersecting and no five pairwise disjoint chords in §. The vertices of Hy represent
the chords in S, and two vertices are connected if and only if the corresponding chords are
disjoint. Then |V (H2)| = 12, w(H2) = 4 and a(Hz) = 2. We show that Hj is the union
of two comparability graphs. Suppose the endpoints of the chords in S are denoted by
1,2,...,24, in clockwise direction (starting with an arbitrary endpoint), (a,b), (¢,d) € S,
a < b, ¢c < d. Then let (a,b) <1 (¢,d) if and only if a < ¢ < d < b, and let (a,b) <2 (c,d) if
and only if a < b < ¢ < d. Clearly, both <; and <9 are partial orderings, and two chords
are comparable by one of them if and only if they are disjoint. This implies a decomposition
of Hs into two comparability graphs.



Figure 2.

Let G = H; x Hy. G has 156 vertices, w(G) = «(G) = 8, G is the union of two
comparability graphs. Finally, let

i times
. ——t—
G'=Gx---x@G.
Then G is still the union of two comparability graphs, |V (G?)| = 156¢, and

w(GY), a(G?) = 8" = |V(Gi)|£gw8—6 < [V(GH|0-4118,

3 Proof of Theorem 3

Suppose that G is the union of k perfect graphs, G1,Go,..., G, all on the same vertex
set, and let m = w(G). Since each G; can be colored by m colors, the product of these
colorings is a proper coloring of G, with at most m* = w*(G) colors.

To establish the second statement of the theorem, take a triangle-free graph H with ¢
vertices and a(H) < v/tlogt. The existence of such a graph was proved by Erdds [ES74].

Claim. For a triangle-free graph G, x(G) < o(G) + 1.

Proof of Claim. Let A(G) be the maximum degree in G. For any graph, x(G) <
A(G) + 1, and since G is triangle-free, the neighborhood of any vertex is an independent
set, consequently, A(G) +1 < a(G) + 1.



By the Claim, yx(H) < v/tlogt + 1. Therefore, by the Proposition, we can decompose
H into [log(x(H))| < (1/2 + o(1))logt bipartite graphs. Since all bipartite graphs are
comparability graphs, H is the union of k = (1/2 + o(1)) log ¢ comparability graphs. Let

r times

7'_ TR
G"=H x x H .

G" has " vertices, w(G") = 2", a(G") < (Vtlogt)" and x(G") > " /a(G") > (V/t/logt)".
Since the product of comparability graphs is also a comparability graph, G” is the union
of k = (1/2 + o(1)) log t comparability graphs. Thus, we have,

X(G7) > (Vi[logt)" > (w(G")* ).

4 Remarks

Very recently Theorem 2 has been improved by Tibor Szabé, showing that fa(n) < n0-3878
[S00].

Probably the first Ramsey-type result in geometry that used unions of comparability
graphs is the result of Larman et. al.
Theorem [LMPT94] Among any n convez sets in the plane, there are either n'/5 pairwise
intersecting or n'/® pairwise disjoint.

This result is very likely not the best possible. The best known result from the other

direction is given by Karolyi et. al.

Theorem [KPT97] For any n large enough, there exists a collection of n convex sets in
the plane such that no n®*?°7 of them are pairwise intersecting or pairwise disjoint.

For some special classes of convex sets there are even stronger results.
Theorem [FK93|, [LMPT94] Any collection of n azis-parallel rectangles contains \/n/logn
pairwise intersecting or pairwise disjoint.
Theorem [KK97] Any collection of n chords of a circle contains (14 o(1))\/2n/logn
pairwise intersecting or pairwise disjoint.
Theorem [PT99] Among any n translates of a convez set in the plane there are either c\/n
pairwise intersecting or c\/n pairwise disjoint.

It is the consequence of the following more general result. We say that a convex planar
set K -fat, if the ratio of the radii of the smallest covering disc and the largest inscribed
circle R/r < K.



Theorem [P80] For any K > 0, any collection of n K-fat convez sets in the plane contains
ci+/n pairwise intersecting or pairwise disjoint.

A geometric graph is a graph drawn in the plane so that the vertices are represented by
points in general position, the edges are represented by straight line segments connecting
the corresponding points. Using comparability graphs, Pach and Toér6csik obtained the
following result.

Theorem [PT94] Any geometric graph of n vertices and more than k*n edges contains
k + 1 pairwise disjoint edges.

Using similar methods, this bound was improved in [TV98] and recently further im-
proved in [T99].

Theorem [T99] Any geometric graph of n vertices and more than 2°k®n edges contains
k + 1 pairwise disjoint edges.
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