A Ramsey-type bound for rectangles

Géza Tóth Courant Institute, New York University, New York, NY E-mail: toth@cims.nyu.edu

Abstract

It is proved that for any rectangle T and for any 2-coloring of the points of the 5-dimensional Euclidean space, one can always find a rectangle T' congruent to T, all of whose vertices are of the same color. We also show that for any k-coloring of the $k^2 + o(k^2)$ -dimensional space, there is a monochromatic rectangle congruent to any given rectangle.

1 Introduction

Throughout this paper by a rectangle we always mean the vertex set of a rectangle. By a coloring of the Euclidean space we mean a coloring of the points of the Euclidean space.

In a general paper about Euclidean Ramsey theory [4], Erdős, Graham, Montgomery, Rothschild, Spencer, and Straus proved that for any rectangle T and any 2-coloring of the 8-dimensional Euclidean space, one can always find a monochromatic rectangle T' congruent to T. Recently, Cantwell [2] proved that the same statement for squares is already true in the 4-dimensional space.

Here we show that for rectangles 5 dimensions are sufficient. We also investigate colorings with many colors and prove that in any k-coloring of the $k^2 + o(k^2)$ -dimensional space there is a monochromatic rectangle congruent to any given rectangle.

Theorem 1. For any rectangle T and for any 2-coloring of the 5-dimensional Euclidean space, one can find a monochromatic copy of T.

Theorem 2. For any rectangle T and for any k-coloring of the $k^2 + o(k^2)$ -dimensional Euclidean space, one can find a monochromatic copy of T.

2 Proof of Theorem 1.

Lemma 1 For any given rectangle T of sides $a \ge b$ and for any red-blue coloring of the 5-dimensional space, one can find either a rectangle T' congruent to T, all of whose vertices are red, or a 3-dimensional regular simplex of side a, all of whose four vertices are blue.

The proof is straightforward: Suppose, there is no rectangle congruent to T, all of whose vertices are red. The radius of the circumscribing circle around T is $(\sqrt{a^2 + b^2})/2 \le a/\sqrt{2}$.

There must be a blue point, A. If the sphere of radius a around A is entirely red, there is a red rectangle congruent to T on it, because $a/\sqrt{2} < a$. So, there is a blue point B at distance a from A.

The locus of the third vertex of an equilateral triangle whose two vertices are A and B, is a 4-dimensional sphere S of radius $a\sqrt{3}/2$ around the midpoint of AB. Since $a\sqrt{3}/2 > a/\sqrt{2}$, the whole sphere cannot be red, otherwise we could find a red rectangle congruent to T. Let C be a blue point on S. So, A, B and C form a regular triangle of side a.

Finally, the locus of the fourth vertex of a regular simplex whose three vertices are A, B and C, is a 3-dimensional sphere S' of radius $a\sqrt{2}/\sqrt{3}$ (the altitude of the simplex) around the center of the triangle ABC.

Since $a\sqrt{2}/\sqrt{3} > a/\sqrt{2}$, by the same argument we can find on S' the fourth blue vertex of the regular simplex of side a. \square

Proof of Theorem 1: Let $a \geq b$ be the sides of T. By Lemma 1, if there is no rectangle T' congruent to T, all of whose vertices are red, there is a regular simplex ABCD of side a, all of whose vertices are blue. Let S be a 3-dimensional subspace containing the simplex ABCD. Since we are in a 5-dimensional space, there is a 2-dimensional subspace P through A, orthogonal to S. Let A_1, A_2 be two points on P, such that AA_1A_2 is an equilateral triangle of side b. In this case all the three edges of the triangle AA_1A_2 are perpendicular to all six edges of the simplex ABCD. Translate the simplex ABCD so that A moves to A_1 . Let the images of B, C, and D be denoted by B_1 , C_1 , and D_1 , respectively. Similarly, by moving A to A_2 , we obtain the points B_2 , C_2 , and D_2 .

Now we have three regular simplices and any two vertices of a simplex with the corresponding two vertices of another simplex form a rectangle congruent to T.

A, B, C, and D are blue. So if two of A_1 , B_1 , C_1 , and D_1 or two

of A_2 , B_2 , C_2 , and D_2 are blue, there is a blue rectangle congruent to T. Otherwise, at most one of A_1 , B_1 , C_1 , and D_1 , say, A_1 can be blue, and at most one of B_2 , C_2 and D_2 , say, B_2 can be blue. In this case, C_1 , D_1 , C_2 , and D_2 form a red rectangle congruent to T. \square

3 Proof of Theorem 2.

Let $t \geq 2$ be an integer, and let

$$m = \left\lceil \frac{\binom{kt}{2}}{\binom{t}{2}} \right\rceil + 1.$$

Lemma 2. Let $X_1, X_2, ... X_{kt}$ be different points. If we have m k-colorings of $X_1, X_2, ... X_{kt}$, there are two points and two colorings such that both points in both of the colorings have the same color.

Proof: For a fixed coloring of $X_1, X_2, \ldots X_{kt}$, two points are said to form a "good" pair if they get the same color. First we give a lower bound on the number of "good" pairs in the above coloring. Denote by a_i the number of points of the *i*th color. Obviously, $a_1 + a_2 + \ldots + a_k = kt$. So we have $\binom{a_1}{2} + \binom{a_2}{2} + \ldots + \binom{a_k}{2}$ "good" pairs. By Jensen's inequality,

$$\binom{a_1}{2} + \binom{a_2}{2} + \ldots + \binom{a_k}{2} \ge \binom{\frac{a_1 + a_2 + \ldots + a_k}{k}}{2} k = \binom{t}{2} k.$$

But there are $\binom{kt}{2}$ possible "good" pairs altogether, and a "good" pair can be colored with k different colors.

Thus, as long as

$$m\binom{t}{2}k > \binom{kt}{2}k$$

holds, among any m colorings of $X_1, X_2, \dots X_{kt}$ with k colors we can always find two sharing a common "good" pair which receives the same color in both colorings. \square

Proof of Theorem 2: For a fixed k, let t and m be as above. Consider a kt+m-2-dimensional space. Let S and P be two complementary orthogonal subspaces of dimension kt-1 and m-1, and let A_{11} denote their intersection. Let $M_1 = A_{1,1}A_{1,2} \dots A_{1,kt}$ be a regular simplex of side a in S, and let $A_{1,1}A_{2,1} \dots A_{m,1}$ be a regular simplex of side b in P. For any $1 < i \le m, 1 < m$

 $j \leq kt$, define the point $A_{i,j}$ as the image of $A_{1,j}$ under a translation taking $A_{1,1}$ into $A_{i,1}$. Denote the simplex $A_{i,1}A_{i,2}\ldots A_{i,kt}$ by M_i . Now we have m translated copies, $M_1, M_2, \ldots M_m$, of the simplex M_1 , including the original one, and any two vertices of any of them with the corresponding two vertices of another form a rectangle T' congruent to T.

Consider the colorings of the simplices $M_1, M_2, \ldots M_m$. They correspond to m colorings of the simplex M_1 so that the ith coloring corresponds to the coloring of M_i . By Lemma 2, there is a good pair that occurs at least twice with the same color. That is, in the pth and qth colorings, say, $A_{1,i}$ and $A_{1,j}$ have both the lth color. Then $A_{p,i}$, $A_{q,i}$, $A_{p,j}$, $A_{q,j}$ form a rectangle congruent to T, all of whose vertices are of the same color.

So, the dimension of the space in which we were able to find a monochromatic copy of T, is

$$d = m + kt - 2 < kt + \frac{\binom{kt}{2}}{\binom{t}{2}} = k^2 + \frac{k^2 - k}{t - 1} + kt.$$

Put $t = \left[\sqrt{k}\right]$. Then

$$d < k^2 + k \left[\sqrt{k} \right] + \frac{k^2 - k}{\left[\sqrt{k} \right] - 1} = k^2 + o(k^2).$$

REFERENCES

- 1. M. Bóna, G. Tóth, A Ramsey-type problem on right-angled triangles in space, *Discrete Math.* **150** (1996), 61-67.
- 2. K. Cantwell, Finite Euclidean Ramsey Theory, J. Combin. Theory Ser. A 73 (1996), 273-285.
- 3. Gy. Csizmadia, G. Tóth, Note on a Ramsey-Type problem in Geometry, J. Combin. Theory Ser. A 65 (1994), 302-306.
- 4. P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer and E. G. Straus, Euclidean Ramsey theorems I, *J. Combin. Theory Ser. A* 14 (1973), 341-363.

- P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer and E. G. Straus, Euclidean Ramsey theorems II, in: *Infinite and Finite Sets* (A. Hajnal et al, eds.), Amsterdam, North-Holland (1975), 529-558.
- P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer and E. G. Straus, Euclidean Ramsey theorems III, in: *Infinite and Finite Sets* (A. Hajnal et al, eds.), Amsterdam, North-Holland (1975), 559-584.
- R. L. Graham, Topics in Euclidean Ramsey Theory, in: The Mathematics of Ramsey Theory (J. Nešetřil, V. Rödl, eds.), Algorithms and Combinatorics 5, New York, Springer-Verlag (1990), 200-213.
- 8. R. L. Graham, B. L. Rothschild, J. H. Spencer, *Ramsey Theory*, Wiley, New York (1980).
- 9. R. L. Graham, Euclidean Ramsey Theorems on the n-sphere, *J. Graph Theory* 7 (1983) 105-114.