A Ramsey-type bound for rectangles

Géza Téth
Courant Institute, New York University, New York, NY
E-mail: tothQcims.nyu.edu

Abstract

It is proved that for any rectangle T" and for any 2-coloring of the
points of the 5-dimensional Euclidean space, one can always find a rect-
angle T" congruent to 7', all of whose vertices are of the same color. We
also show that for any k-coloring of the k% + o(k?)—dimensional space,
there is a monochromatic rectangle congruent to any given rectangle.

1 Introduction

Throughout this paper by a rectangle we always mean the vertex set of a
rectangle. By a coloring of the Euclidean space we mean a coloring of the
points of the Euclidean space.

In a general paper about Euclidean Ramsey theory [4], Erd8s, Graham,
Montgomery, Rothschild, Spencer, and Straus proved that for any rectangle
T and any 2-coloring of the 8-dimensional Euclidean space, one can al-
ways find a monochromatic rectangle T congruent to T'. Recently, Cantwell
[2] proved that the same statement for squares is already true in the 4-
dimensional space.

Here we show that for rectangles 5 dimensions are sufficient. We also
investigate colorings with many colors and prove that in any k-coloring of the
k% + o(k?)-dimensional space there is a monochromatic rectangle congruent
to any given rectangle.

Theorem 1. For any rectangle T' and for any 2-coloring of the 5-dimensional
Euclidean space, one can find a monochromatic copy of T'.

Theorem 2. For any rectangle T and for any k-coloring of the k? + o(k?)-
dimensional Euclidean space, one can find a monochromatic copy of T'.



2 Proof of Theorem 1.

Lemma 1 For any given rectangle T of sides a > b and for any red-blue
coloring of the 5-dimensional space, one can find either a rectangle T' con-
gruent to T, all of whose vertices are red, or a 3-dimensional reqular simplex
of side a, all of whose four vertices are blue.

The proof is straightforward: Suppose, there is no rectangle congruent
to T, all of whose vertices are red. The radius of the circumscribing circle
around T is (Va2 +b2)/2 < a/V/2.

There must be a blue point, A. If the sphere of radius a around A is
entirely red, there is a red rectangle congruent to T on it, because a/v/2 < a.
So, there is a blue point B at distance a from A.

The locus of the third vertex of an equilateral triangle whose two ver-
tices are A and B, is a 4-dimensional sphere S of radius av/3/2 around the
midpoint of AB. Since av/3/2 > a/v/2, the whole sphere cannot be red,
otherwise we could find a red rectangle congruent to 7. Let C' be a blue
point on S. So, A, B and C form a regular triangle of side a.

Finally, the locus of the fourth vertex of a regular simplex whose three
vertices are A, B and C, is a 3-dimensional sphere S’ of radius av/2/v/3 (the
altitude of the simplex) around the center of the triangle ABC.

Since av/2/v/3 > a/v/2, by the same argument we can find on S’ the
fourth blue vertex of the regular simplex of side a. O

Proof of Theorem 1: Let a > b be the sides of T. By Lemma 1, if there
is no rectangle T’ congruent to T, all of whose vertices are red, there is
a regular simplex ABCD of side a, all of whose vertices are blue. Let S
be a 3-dimensional subspace containing the simplex ABCD. Since we are
in a 5-dimensional space, there is a 2-dimensional subspace P through A,
orthogonal to §. Let A, A be two points on P, such that AA;As is an
equilateral triangle of side b. In this case all the three edges of the triangle
AAqAs are perpendicular to all six edges of the simplex ABCD. Translate
the simplex ABCD so that A moves to A;. Let the images of B, C, and D
be denoted by Bj, C1, and Dy, respectively. Similarly, by moving A to A,
we obtain the points Bs, C5, and Ds.

Now we have three regular simplices and any two vertices of a simplex
with the corresponding two vertices of another simplex form a rectangle
congruent to T

A, B, C, and D are blue. So if two of Ay, By, C1, and D; or two



of As, By, C2, and Dy are blue, there is a blue rectangle congruent to 7.
Otherwise, at most one of Ay, By, Ci, and D1, say, A1 can be blue, and at
most one of By, Cy and D3, say, By can be blue. In this case, C1, D1, Cs,
and Dy form a red rectangle congruent to 7. O

3 Proof of Theorem 2.

Let ¢ > 2 be an integer, and let

m:[%}ﬂ.

Lemma 2. Let X1, Xo,... Xy be different points. If we have m k-colorings
of X1,Xo,... Xy, there are two points and two colorings such that both
points in both of the colorings have the same color.

Proof: For a fixed coloring of Xy, Xo,... Xy, two points are said to
form a “good” pair if they get the same color. First we give a lower bound
on the number of “good” pairs in the above coloring. Denote by a; the
number of points of the ith color. Obviously, a; +as + ...+ ax = kt. So we
have (%) + (%4) + ... + (%) “good” pairs. By Jensen’s inequality,

(5 ) (-

But there are (kzt) possible “good” pairs altogether, and a “good” pair
can be colored with k different colors.

Thus, as long as
t kt
k k

holds, among any m colorings of X1, X3, ... Xy with k colors we can always
find two sharing a common “good” pair which receives the same color in
both colorings. O

Proof of Theorem 2: For a fixed k, let ¢ and m be as above. Consider a
kt+m—2-dimensional space. Let S and P be two complementary orthogonal
subspaces of dimension kt—1 and m—1, and let A1 denote their intersection.
Let My = A;1A12... A1 be a regular simplex of side a in S, and let
A11A21 ... Ap1 be a regular simplex of side bin P. Forany 1 <17 <m,1 <



J < kt, define the point A; ; as the image of A; ; under a translation taking
A1,1 into A; 1. Denote the simplex A4;14;2... A;x by M;. Now we have m
translated copies, My, Ma, ... My, of the simplex M, including the original
one, and any two vertices of any of them with the corresponding two vertices
of another form a rectangle T' congruent to 7.

Consider the colorings of the simplices M1, My, ... M,,,. They correspond
to m colorings of the simplex M; so that the ¢th coloring corresponds to the
coloring of M;. By Lemma 2, there is a good pair that occurs at least twice
with the same color. That is, in the pth and gth colorings, say, A;; and
A1 ; have both the Ith color. Then A,;, Ag:, Apj, Agj form a rectangle
congruent to T, all of whose vertices are of the same color.

So, the dimension of the space in which we were able to find a monochro-
matic copy of T', is

kt 2 _
d:m+kt—2<kt—|—(%—):k2+k bkt
(2) t—1
Put t = [\/I;] Then
2 _
d<k2+k[\/l_c]+u:k2+o(k2).
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