
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

An Algorithm for Generating Model-Sensitive Search Plans for Pattern Matching
on EMF Models
Gergely Varró?1, Frederik Deckwerth??1, Martin Wieber1, Andy Schürr1

Real-Time Systems Lab,
Technische Universität Darmstadt,
D-64283 Merckstraße 25, Darmstadt, Germany
e-mail: gergely.varro, frederik.deckwerth, martin.wieber, andy.schuerr@es.tu-darmstadt.de

Received: date / Revised version: date

Abstract In this paper, we propose a new model-sensitive
search plan generation algorithm to speed up the process of
graph pattern matching. This dynamic programming based
algorithm, which is able to handle general n-ary constraints in
an integrated manner, collects statistical data from the under-
lying EMF model, and uses this information for optimization
purposes. Additionally, the search plan generation algorithm
itself and its runtime effects on the pattern matching engine
have been evaluated by complexity analysis techniques and
by quantitative performance measurements, respectively.

Key words graph pattern matching – search plan genera-
tion algorithm – model-sensitive search plan

1 Introduction

Efficient, scalable, and standard compliant tools and tech-
niques are still undoubtedly needed to promote the spread
of model-driven technologies in an industrial context. As nu-
merous scenarios in the model-based domain, such as check-
ing the application conditions in rule-based model transfor-
mation tools [11,15], bidirectional model synchronization, or
on-the-fly consistency validation, can be described as a gen-
eral pattern matching problem, its efficient implementation is
undisputedly an important task.

In this general pattern matching context, a pattern con-
sists of constraints, which place restrictions on variables, and
the number of variables involved in a constraint is referred to
as its arity. The pattern matching process determines a map-
ping of variables to the elements of the underlying model in

Send offprint requests to: Gergely Varró
? Supported by the Postdoctoral Research Fellowship of the

Alexander von Humboldt Foundation, and associated with the Cen-
ter for Advanced Security Research Darmstadt, and the DFG funded
CRC 1053 MAKI.
?? Supported by CASED (www.cased.de)

Correspondence to: gergely.varro@es.tu-darmstadt.de

such a way that the assigned model elements must fulfill all
constraints. Structural constraints can be checked using the
services of the modeling layer (e.g., type checks, navigation
along links), while non-structural constraints are handled by
other means (e.g., integer or textual comparison).

As non-structural constraints are easily manageable if at-
tribute values in symbolic graphs [16] can be restricted in an
unambiguous manner by performing user-defined operations
[2], the current paper solely focuses on structural constraints
that correspond to the graph pattern matching problem [26].
Although recently available pattern matching engines support
type checks and link navigations as unary and binary struc-
tural constraints, respectively, practical model-driven scenar-
ios also require the handling of n-ary constraints to express
ordered references or pattern composition [14].

When constructing a pattern matching engine, its perfor-
mance highly depends on the order in which the constraints of
a pattern are evaluated (cf. the impact of the variable ordering
in general backtracking). This rationale motivates the con-
struction of heuristics-based algorithms for generating con-
straint sequences or search plans [36], which can be effi-
ciently evaluated.

While the majority of state-of-the-art search plan gener-
ation algorithms [9,11,24] exploits only type and multiplic-
ity restrictions derived from the metamodel of the problem
domain, two novel model-sensitive approaches [12,34] take,
for optimization purposes, the potential structure of instance
models into account as further domain-specific knowledge.
Although the inherent performance advantages of model-sen-
sitive search plan generation techniques have already been
clearly shown [4], the applicability of the tools themselves
in a more general modeling context is hindered by the fact
that both engines (i) operate on non-standard (tool specific)
model representations, and (ii) apply graph-based algorithms
for search plan generation, which can handle only unary and
binary constraints in an integrated manner.

This paper is an extended version of [33], which proposed
a completely new model-sensitive search plan generation al-
gorithm, based on dynamic programming, to enable the inte-

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



2 Gergely Varró et al.

grated handling of general n-ary constraints. The algorithm
collects statistical data from the model under transformation
via an extensible framework to improve the precision of the
estimations on operation selectivity [22], which have a highly
critical role in the optimization process. The pluggable col-
lection of statistical data is exemplified on Eclipse Modeling
Framework (EMF) compliant models. Finally, the effects of
the search plan generation algorithm on the performance of
pattern matching are quantitatively evaluated using runtime
measurements.

In this paper, as an extension of [33], (i) a comprehen-
sive algorithm description is provided, which includes the
presentation of all precompilation steps (Sec. 3.2) and sub-
procedures (Algorithms 4 to 9), (ii) all algorithmic tasks are
analyzed from a complexity point of view (Sec. 4.4), (iii) the
running example has been significantly extended (Sec. 4.5),
(iv) the performance of our search plan generation algorithm
has been quantitatively compared to other model-sensitive
approaches (Sec. 5.2), (v) query optimization methods from
other domains have been evaluated as related work (Sec. 6.1).

The remainder of the paper is structured as follows: Sec-
tion 2 introduces basic modeling and pattern specification
concepts. The general pattern matching process (including
its precompilation steps) is surveyed in Sec. 3, while Sec. 4
presents the new search plan generation algorithm. Section 5
provides a quantitative assessment and performance compari-
son. Related work is discussed in Sec. 6, and Sec. 7 concludes
our paper.

2 Metamodel, Model and Pattern Specification

In this section, we introduce basic (meta)modeling concepts
and our notation for specifying patterns. Technical consider-
ations related to the underlying EMF implementation are also
discussed.

2.1 Metamodels and Models

A metamodel represents the core concepts of a domain. In
this paper, our approach is demonstrated on a real-world run-
ning example from the railway domain [1] (developed in the
MOGENTES project [29]), whose metamodel is depicted in
Fig. 1(a). Classes are the nodes in the metamodel: Routes,
Sensors, Signals, SwitchPositions, and TrackElements, which
can either be Switches or Segments. References are the edges
between classes, which can be uni- or bidirectionally naviga-
ble as indicated by the arrows at the end points. A navigable
end is labelled with a role name and a multiplicity, which re-
stricts the number of target objects that can be reached via the
given reference. In our example, a Route has at least 2 Sen-
sors (as shown by the unidirectional reference hasSensors),
and defines an arbitrary number of SwitchPositions, which
is a bidirectional reference. Attributes (depicted in the lower
part of the classes) store values of primitive or enumerated
types, e.g., the length integer in a Segment, or the actualState

of a Switch whose possible values are listed in the enumera-
tion SwitchStateKind. Figures 1(b) and 1(c) depict two mod-
els from the domain, whose nodes and edges are called ob-
jects and links, respectively.
EMF-Specific Issues: In EMF, fully functional Java inter-
faces and implementation classes can be generated from the
classes of the metamodel. In this generation process, refer-
ences and attributes, that are collectively referred to as struc-
tural features, are handled uniformly. For each navigable di-
rection of each structural feature, an attribute and getter and
setter methods are produced in the Java code representing
the source class. The generated Java attribute is an indexed
List, which stores the corresponding target objects. The
generated Java interfaces and implementation classes can be
instantiated at runtime, and the EMF-compliant objects on
the Java heap altogether constitute the EMF model.

Our approach collects statistical data from the model at
runtime via EMF adapters. An object and link counter is in-
troduced for each class and structural feature, which stores
the number of type conforming objects and links, respec-
tively, as shown by the tables in Figures 1(b) and 1(c).

2.2 Pattern Specification

As defined in [14,32], a pattern is a set of constraints over a
set of variables. A variable is a placeholder for an object in a
model, and it has a reference to a class from the metamodel,
which defines the type of the objects that can be assigned to
the variable during pattern matching. A constraint specifies
a condition on a set of variables (which are also referred to
as parameters in this context) that must be fulfilled by the
objects, which are assigned to the parameters.
EMF-Specific Issues: Although the pattern matcher has a
pluggable infrastructure for the constraints that can be used
for specifying patterns, only one kind of constraint is used
throughout the paper. In the following, a constraint maintains
a reference to a structural feature. It also prescribes the ex-
istence of a link, which both (i) conforms to the referenced
structural feature and (ii) connects the source and the target
object assigned to the first and last parameter, respectively.

An ordered or unordered structural feature can be mod-
eled by a binary constraint in the pattern specification, when
the order information is irrelevant in the pattern matching
process. In contrast, ternary constraints should be used for
ordered unidirectional structural features, where the second
parameter is an integer index, which prescribes the location
of the target object in the list of the source object containing
links that conform to the structural feature.

Example 1 Pattern routeSensor (Fig. 2) expresses a sam-
ple requirement defined by railway domain experts. It has
been simplified slightly for presentation purposes, and states
that a route must have a sensor observing a switch, and that
the observed switch itself must be part of the route. The pat-
tern comprises five variables (RO, IDX, SE, SW and SWP),
one ternary and three binary constraints, which prescribe the

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



An Algorithm for Generating Model-Sensitive Search Plans for Pattern Matching on EMF Models 3

«eclass» 
Signal 

+  actualState :SignalStateKind 

«eclass» 
Route 

«eclass» 
SwitchPosition 

+  switchState :SwitchStateKind 

«eclass» 
Switch 

+  actualState :SwitchStateKind 

«eclass» 
Segment 

+  length :EInt 

«eclass» 
TrackElement 

«eclass» 
Sensor 

«enumeration» 
SignalStateKind 

  STOP 
  FAILURE 
  GO 

«enumeration» 
SwitchStateKind 

  FAILURE 
  LEFT 
  RIGHT 
  STRAIGHT 

+sensor 

0..* observes 

+trackElement 

0..* 

+switchPosition 

0..* 
inPosition 

+switch 

0..1 
* 

hasSensors 

+routeDefinition 

2..* 

+route 

1 defines 

+switchPosition 

0..* * 
hasExit +exit 

1 

* 
hasEntry +entry 

1 

(a) The metamodel of the railway track domain

#Route 1

#Segment 3

#Sensor 2

#Signal 0

#Switch 2

#SwitchPosition 1

#defines 1

#hasEntry 0

#hasExit 0

#hasSensors 2

#inPosition 1

#observes 3

ro1 :Route se1 :Sensor

se2 :Sensor

swp1 :SwitchPosition sw1 :Switch

seg1 :Segment

seg3 :Segmentseg2 :Segmentsw2 :Switch

defines

observes
observes

hasS
ensors

hasSensors

observes

inPosition

(b) Model 1

#Route 1

#Segment 0

#Sensor 2

#Signal 0

#Switch 1

#SwitchPosition 3

#defines 3

#hasEntry 0

#hasExit 0

#hasSensors 2

#inPosition 1

#observes 1

ro1 :Route se1 :Sensor

swp1 :SwitchPosition sw1 :Switch

se2 :Sensor

swp2 :SwitchPosition

swp3 :SwitchPosition

hasSensors

de
fin

es

inPosition

observes

de
fin

es

de
fin

es

hasSensors

(c) Model 2

Fig. 1 Metamodel of the railway track domain and two sample models

existence of an ordered unidirectional and three bidirectional
references, respectively.

3 Pattern Matching Process

As [32] states, pattern matching is the process of determin-
ing mappings for all variables in a given pattern, such that all
constraints in the pattern are fulfilled. The mappings of vari-
ables to objects are collectively called a match, which can
be a complete match when all the variables are mapped, or a
partial match in all other cases.

In a runtime session, a pattern matcher searches for those
complete matches in the model that satisfy all constraints of
the specified pattern. An initial partial match, which can al-
ready map some of the variables to objects, is used as a start-
ing point of the recursive search process, which is character-
ized by a fixed constraint sequence (i.e., the search plan). At
each recursion level, the evaluation of the corresponding con-
straint in the sequence is carried out by an operation, which
is a precompiled, atomic constraint evaluation step in the pat-
tern matching process. An operation can only be performed
if the runtime binding of the constraint parameters coincides
with the specified operation adornment, which can be consid-
ered as an application condition. Two kinds of operations are
used in the pattern matching process. An extension operation
makes a step towards completing a partial match by using ob-
jects assigned to bound variables and binding free variables.
A check operation filters a match if its bound variables are
mapped to objects in a constraint violating manner.

The task of search plan generation is to find a valid op-
eration sequence (i.e., fulfilling the application condition of

each operation) that can be efficiently evaluated in the recur-
sive search process of pattern matching.

Validity of search plans. To compactly describe opera-
tion sequences in the search plan generation phase and to de-
termine their validity, a state transition system is introduced,
where the concept of adornment is used as a state descrip-
tor that expresses binding information for all variables of a
pattern, while the application of an operation can be consid-
ered as a transition. Operation applicability (i.e., expressed
by the operation adornment) depends on the actual binding
of the constraint parameters, which constitute a subset of the
variables. To ease the calculations of operation applicability
in the context of an adornment (i.e., which involves binding
information for all variables), a mask is derived from the op-
eration adornment.

Efficiency of search plans. The search plan generation
phase uses a (search plan) cost to characterize the efficiency
of a valid operation sequence. This cost estimates the size of
the state space that would be explored during the recursive
search process if the search plan was executed. The search
plan cost is computed based on the weights of the operations
in the sequence. An operation weight reflects the estimated
number of objects that would have to be considered as a pos-
sible extension of a partial match if the operation was exe-
cuted at a certain recursion level in the search. The operation
weights are actually obtained from statistical data collected
from the model.

The overall process of pattern matching is as follows:

• Tasks at specification time. Two tasks are performed ex-
actly once for each pattern specification.

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



4 Gergely Varró et al.

hasSensors

defines observes

inPosition

RO : Route SE : Sensor

SWP : SwitchPosition SW : Switch

IDX : Integer

pattern routeSensor(RO:Route,IDX:Integer,
SE:Sensor,SW:Switch,SWP:SwitchPosition)={

hasSensors(RO,IDX,SE);
observes(SE,SW);
inPosition(SW,SWP);
defines(RO,SWP);

}

Fig. 2 Pattern routeSensor in a graphical and textual representation

– Section 3.1. Operations representing atomic, precom-
piled constraint evaluation steps in the pattern match-
ing process are created from the pattern specification.

– Section 3.2. By performing a backward reachability
analysis, invalid operation sequences that could never
produce complete matches are filtered out and stored
in a precompiled data structure to speed up tasks per-
formed later at runtime.

• Tasks at runtime. Two tasks are carried out each time
when pattern matching is invoked.
– Section 3.3. The operations are filtered and sorted by

a search plan generation algorithm (for the details see
Sec. 4) to produce efficient search plans.1

– Section 3.4. The search plan is then used by an inter-
preter to control the actual execution of pattern match-
ing, which is carried out as a depth-first traversal.

3.1 Creating Operations

This subsection, which reuses some definitions from [14,32],
introduces a compact notation for operation sequences that
will control the pattern matching execution in Sec. 3.4. Ad-
ditionally, the process of creating operations from the con-
straints in the pattern specification is also described. In the
following, it is assumed that (i) a pattern has |V | variables
with an (arbitrary) fixed order, and (ii) the notation vp denotes
the pth variable according to this order.

An adornment [14] represents the binding information for
all variables in the pattern by a corresponding character se-
quence consisting of letters B or F, which indicate that the
variable in that position is bound or free, respectively. The
final adornment a(B)∗ contains only B characters, and thus,
corresponds to the situation, when all the variables are bound.
Considering the search process of Sec. 3.4, an adornment de-
scribes whether a variable is bound or free in all matches
computed at a certain level of recursion.

Example 2 In the following, we suppose that variables RO,
IDX, SE, SW and SWP of the routeSensor pattern are or-
dered in this specific sequence. The adornment BFFFF com-
pactly describes that variable RO is bound, while variables
IDX, SE, SW and SWP are free.

An operation represents a single atomic step in the match-
ing process. It consists of a constraint, an operation adorn-

1 By using caching mechanisms the search plan generation algo-
rithm can be executed in a just-in-time manner.

ment, and a mask, which is derived from the operation adorn-
ment. An operation adornment prescribes which parameters
must be bound when the operation is executed, while a mask
represents the same binding information, but projected on all
variables in the pattern. An operation adornment and the cor-
responding mask both convey the same binding information
but use a syntactically different notation. A check operation
has only bound parameters. An extension operation has at
least one free parameter, which gets bound when the opera-
tion is executed.

The following process creates |O| operations from the
constraints in the pattern specification.

Maintaining references to constraints. Each operation
o maintains a reference to the constraint co, from which it
originates.

Setting operation adornments. For presentation purpos-
es, we assume that operations use the standard EMF services,
which restricts the set of operations created for a constraint
in the following manner.

For each binary constraint referring to a bidirectional
structural feature, three operations with the corresponding
BB, BF, and FB adornments are created. The check opera-
tion (BB) verifies the existence of a link, while the other two,
adorned by BF and FB, denote forward and backward navi-
gations, respectively. Analogously, for each binary constraint
referring to a unidirectional structural feature, two opera-
tions with the corresponding BB and BF adornments are pre-
pared.

For each ternary constraint (referring to an ordered uni-
directional structural feature), operations adorned by BBB,
BBF, and BFF are prepared (adornment BFB is disallowed
for presentation purposes). The check operation (BBB) ver-
ifies that (i) a link connects the source and the target ob-
ject mapped to the first and the third parameter, respectively,
and (ii) the target object is stored in the appropriate List
of the source object at the index assigned to the second pa-
rameter. The operation with the BBF adornment is a forward
navigation along the single link, which is stored at the in-
dex assigned to the second parameter. Finally, the operation
adorned by BFF is a forward navigation along all links that
conform to the structural feature of the constraint, and that
retain the source object mapped to the first parameter.

Mask derivation. A mask mo is a sequence of *, B, and
F characters. Character * at position pmeans that the binding
of variable vp is irrelevant, while letters B or F at position p
explicitly prescribe the corresponding variable vp to be bound
or free, respectively. For each letter B or F in the adornment,

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



An Algorithm for Generating Model-Sensitive Search Plans for Pattern Matching on EMF Models 5

the position p of the corresponding parameter vp is looked up
by using the fixed variable order, and position p is set in the
mask to B or F, respectively. All other locations of the mask
are set to *.

Example 3 Figure 3 lists the operations that are derived from
the routeSensor pattern. E.g., the observes(SE,SW)
operation with (operation) adornment BF (highlighted by the
thick frame with grey background in Fig. 3) represents the
precompiled and atomic pattern matching step, which can
evaluate constraint observes(SE,SW) when its first pa-
rameter (i.e., variable SE) is bound and its second parameter
(i.e., variable SW) is free. The same application condition is
also reflected in the corresponding mask **BF* as SE and
SW are the third and fourth variable according to the previ-
ously defined variable order, respectively. As the binding in-
formation for variables RO, IDX and SWP does not influence
the applicability of the operation, mask **BF* has the char-
acter * at the first, second, and fifth position, respectively.

In the first three tasks presented in Secs. 3.1–3.3, an oper-
ation is considered as an abstract step, which has an applica-
tion condition expressed by the operation adornment and the
corresponding mask. The actual implementation will only be
relevant during the execution of the search plan in Sec. 3.4,
when the operation (i) looks up the Sensor object that was as-
signed to the bound variable SE according to a partial match,
(ii) navigates to all neighbouring Switch objects along the ob-
serves links, and (iii) a match is created for each newly ex-
plored Switch object by extending the original partial match
with a mapping that assigns the Switch object to variable SW.
As the operation binds the free variable SW and extends a
match, it is an extension operation.

Categorizing operations. Operations can be categorized
in the context of an adornment. An operation o is a present
(or applicable) operation with respect to an adornment a, if
the following conditions hold:
1. General operation applicability. Each variable vp that

must be free according to the mask mo of operation o is
also free in adornment a. Formally, ∀p, 1 ≤ p ≤ |V | :
mo[p] = F =⇒ a[p] = F.

2. Immediate operation applicability. Each variable vp,
which must be bound according to the mask mo of oper-
ation o, is also bound in adornment a. Formally, ∀p, 1 ≤
p ≤ |V | : mo[p] = B =⇒ a[p] = B.

An operation o is a past operation, if the first condition on
general operation applicability is violated. An operation o is
a future operation, if only the second condition on immediate
operation applicability is violated.

The procedure categorize(o, a) (Algorithm 1) presents
the categorization process in an algorithmic manner. It is ini-
tially assumed that operation o fulfills both applicability con-
ditions (line 1). Operation maskmo and adornment a are then
compared at each position (lines 2–8). If the general opera-
tion applicability condition is violated (line 3), then operation
o is immediately and irrevocably categorized as a past oper-
ation (line 4). However, if the immediate operation applica-
bility condition is violated (line 5), then operation o is first

temporarily categorized as a future operation (line 6), which
turns into a final categorization result, when the cycle exits
(line 9).

Applying operations. If an operation o is a present (or
applicable) operation w.r.t. adornment a, then applying the
operation o on adornment a resulting in an adornment a′

(denoted by a
o⇒ a′) (i) binds all free variables indicated

by mask mo of operation o, and (ii) leaves the binding of all
other variables unaltered.

An operation sequence 〈o1, . . . , ol〉 starting from adorn-
ment a0 is valid, if a sequence of adornments a1, . . . , al can
be derived where (i) each operation or is a present (applica-
ble) operation with respect to the previous adornment ar−1,
and (ii) adornment ar is produced by applying operation or
on the previous adornment ar−1. Formally,

a0
o1⇒ a1

o2⇒ . . .
or−1⇒ ar−1

or⇒ ar
or+1⇒ . . .

ol⇒ al.

An adornment a is backward reachable, if there exists a
valid operation sequence starting from adornment a that leads
to the final adornment a(B)∗ .

Example 4 The observes(SE,SW) operation with mask
**BF* can be categorized as a future operation with respect
to adornment BFFFF, as it violates the immediate operation
applicability condition at the third position. The third charac-
ter in adornment BFFFF states that variable SE is free, while
the character at the same position in mask **BF* demands
that this variable should be bound. Consequently, the opera-
tion cannot be currently applied, but it might eventually be-
come applicable, when variable SE gets bound at some point
in the future.

3.2 Reachability Analysis

In order to have a fast search plan generation process at run-
time, backward reachable adornments have to be determined
in advanced (at specification time). This is achieved by (i) in-
troducing Boolean variables for pattern variables, (ii) prepar-
ing Boolean formulas for sets of adornments and operations
to produce state and transition descriptions, respectively, and
(iii) executing a backward reachability analysis on this newly
defined state-transition system.

Mapping the binding information. In the following, a
freedom indicator function ϕ is used to map binding infor-
mation characters B and F to truth values false and true,
respectively. Formally,

ϕ(α) =

{
false if α = B, and
true if α = F.

Boolean formulas for adornment sets. For each variable
vp in a pattern, a Boolean variable vp is introduced. A charac-
teristic function A(v1, . . . , v|V |) of an adornment set A con-
sisting of adornments of length |V | is expressed as a Bool-
ean formula over the Boolean variables v1, . . . , v|V |. The e-
valuation of the characteristic functionA(v1, . . . , v|V |) of an

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



6 Gergely Varró et al.

Constraint Op. Adornm. Mask
hasSensors(RO,IDX,SE) BBB BBB** future check
hasSensors(RO,IDX,SE) BBF BBF** future extension
hasSensors(RO,IDX,SE) BFF BFF** present extension
observes(SE,SW) BB **BB* future check
observes(SE,SW) BF **BF* future extension
observes(SE,SW) FB **FB* future extension
inPosition(SW,SWP) BB ***BB future check
inPosition(SW,SWP) BF ***BF future extension
inPosition(SW,SWP) FB ***FB future extension
defines(RO,SWP) BB B***B future check
defines(RO,SWP) BF B***F present extension
defines(RO,SWP) FB F***B past extension

 

Operation Category
(w.r.t. BFFFF)

Type

 
   

 

   
   

 

   
   

 

Boolean Formula

ሺRO ∧ RO′ሻ ∧ ሺIDX ∧ IDX′ሻ ∧ SE ∧ SEᇱ ∧ SW ⟺ SWᇱ ∧ ሺSWP ⟺ SWP′ሻ
ሺRO ∧ RO′ሻ ∧ ሺIDX ∧ IDX′ሻ ∧ SE ∧ SEᇱ ∧ SW ⟺ SWᇱ ∧ ሺSWP ⟺ SWP′ሻ
ሺRO ∧ RO′ሻ ∧ ሺIDX ∧ IDX′ሻ ∧ SE ∧ SEᇱ ∧ SW ⟺ SWᇱ ∧ ሺSWP ⟺ SWP′ሻ
ሺRO ⟺ RO′ሻ ∧ ሺIDX ⟺ IDX′ሻ ∧ SE ∧ SEᇱ ∧ SW ∧ SWᇱ ∧ ሺSWP ⟺ SWP′ሻ
ሺRO ⟺ RO′ሻ ∧ ሺIDX ⟺ IDX′ሻ ∧ SE ∧ SEᇱ ∧ SW ∧ SWᇱ ∧ ሺSWP ⟺ SWP′ሻ
ሺRO ⟺ RO′ሻ ∧ ሺIDX ⟺ IDX′ሻ ∧ SE ∧ SEᇱ ∧ SW ∧ SWᇱ ∧ ሺSWP ⟺ SWP′ሻ
ሺRO ⟺ RO′ሻ ∧ ሺIDX ⟺ IDX′ሻ ∧ SE ⟺ SEᇱ ∧ SW ∧ SWᇱ ∧ ሺSWP ∧ SWP′ሻ
ሺRO ⟺ RO′ሻ ∧ ሺIDX ⟺ IDX′ሻ ∧ SE ⟺ SEᇱ ∧ SW ∧ SWᇱ ∧ ሺSWP ∧ SWP′ሻ
ሺRO ⟺ RO′ሻ ∧ ሺIDX ⟺ IDX′ሻ ∧ SE ⟺ SEᇱ ∧ SW ∧ SWᇱ ∧ ሺSWP ∧ SWP′ሻ
ሺRO ∧ RO′ሻ ∧ ሺIDX ⟺ IDX′ሻ ∧ SE ⟺ SEᇱ ∧ SW ⟺ SWᇱ ∧ ሺSWP ∧ SWP′ሻ
ሺRO ∧ RO′ሻ ∧ ሺIDX ⟺ IDX′ሻ ∧ SE ⟺ SEᇱ ∧ SW ⟺ SWᇱ ∧ ሺSWP ∧ SWP′ሻ
ሺRO ∧ RO′ሻ ∧ ሺIDX ⟺ IDX′ሻ ∧ SE ⟺ SEᇱ ∧ SW ⟺ SWᇱ ∧ ሺSWP ∧ SWP′ሻ

Fig. 3 Operations (categorized with respect to adornment BFFFF) and corresponding Boolean formulas

Algorithm 1 The procedure categorize(o, a)
1: cat := PRESENT

2: for (p := 1 to |V |) do
3: if (mo[p] = F ∧ a[p] = B) then // General operation applicability is violated
4: return PAST

5: else if (mo[p] = B ∧ a[p] = F) then // Immediate operation applicability is violated
6: cat := FUTURE

7: end if // Both operation applicability conditions are fulfilled
8: end for
9: return cat

adornment set A on a given adornment a substitutes each
Boolean variable vp with a logic value ϕ(a[p]), which is as-
signed by the freedom indicator function ϕ to the binding in-
formation a[p] of variable vp according to adornment a. For-
mally, for a given adornment a,A(ϕ(a[1]), . . . , ϕ(a[|V |])) is
calculated. The characteristic function A(v1, . . . , v|V |) of an
adornment set A is evaluated to true on exactly those adorn-
ments that are contained in adornment set A. Formally,

a ∈ A⇐⇒ A(ϕ(a[1]), . . . , ϕ(a[|V |])) = true.

Example 5 For instance, the final adornment BBBBB can be
represented by the characteristic functionA0 = ¬RO∧¬IDX∧
¬SE∧¬SW∧¬SWP, which is evaluated to true if and only if
RO = IDX = SE = SW = SWP = false = ϕ(B).

Boolean formulas for operations. Character mo[p] at po-
sition p in mask mo of operation o expresses conditions and
changes in the binding information for variable vp, which can
be compactly defined by a Boolean formula

Rpo(vp, v′p) =


¬vp ∧ ¬v′p if mo[p] = B

vp ∧ ¬v′p if mo[p] = F

vp ⇔ v′p if mo[p] = ∗

where Boolean variables vp and v′p represent the binding in-
formation for variable vp before and after the application of
operation o, respectively. By considering the freedom indica-
tor function ϕ, the Boolean formula ¬vp∧¬v′p is evaluated to
true, if and only if variable vp is bound before and after the
application of operation o, which is exactly what mo[p] = B
prescribes. Similarly, in case of mo[p] = F, variable vp must
be free (vp) before applying operation o and bound (¬v′p) af-
terwards. Finally, the expression vp ⇔ v′p defined for the case

mo[p] = ∗ ensures that the binding information for variable
vp remains unaltered.

Conditions for and effects of applying operation o with
maskmo of character length |V | can be described by a Boole-
an formulaRo(v1, . . . , v|V |, v′1, . . . , v′|V |) with 2 |V | Boolean
variables, which is produced as the conjunction of the com-
posing Boolean formulasRpo(vp, v′p). Formally,

Ro(v1, . . . , v|V |, v′1, . . . , v′|V |) =
|V |∧
p=1

Rpo(vp, v′p)

A Boolean formulaRO(v1, . . . , v|V |, v′1, . . . , v′|V |) for an
operation set O can be obtained by the disjunction of the
Boolean formulas Ro(v1, . . . , v|V |, v′1, . . . , v′|V |) defined for
all operations o in the set O. Formally,

RO(v1, . . . , v|V |, v′1, . . . , v′|V |) =∨
o∈O
Ro(v1, . . . , v|V |, v′1, . . . , v′|V |).

Example 6 The Boolean formulas that correspond to the op-
erations created for routeSensor pattern are depicted in
the rightmost column of Figure 3. For example, the Boole-
an formula of the operation observes(SE,SW) with mask
**BF* (highlighted by the thick frame with grey background
in Fig. 3) is constructed by the conjunction of (RO ⇔ RO′),
(IDX ⇔ IDX′) and (SWP ⇔ SWP′) for * at positions 1, 2
and 5; (¬SE ∧ ¬SE′) for B at position 3; and (SW ∧ ¬SW′) for
F at position 4.

Backward reachability analysis using Boolean formu-
las. Backward reachable adornments can be computed itera-
tively by a backward reachability analysis (cf. Algorithm 2)

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



An Algorithm for Generating Model-Sensitive Search Plans for Pattern Matching on EMF Models 7

which uses fixed point calculation on the Boolean representa-
tion of adornment sets and operations. The fixed point calcu-
lation is initialized (in line 1 of Algorithm 2) with A0, which
is the characteristic function of the singleton set containing
the final adornment a(B)∗ . In each iteration (line 3–5 in Al-
gorithm 2), the set of backward reachable adornments repre-
sented by Ah is extended by the Boolean formula of those
adornments, from which an adornment in Ah can be reached
by applying one single operation. If the characteristic func-
tion Ah remains unchanged in an iteration (line 5), then it is
returned (line 6), and Algorithm 2 terminates.

Example 7 The execution of Algorithm 2 on the operations of
the routeSensor pattern is illustrated in Figs. 4(a) to 4(d),
which depict the initialA0 and the 3 calculated characteristic
functions A1–A3, respectively. The characteristic functions
are presented as Karnaugh maps [35] (in the upper parts) as
well as Boolean formulas (in a minimized conjunctive normal
form representation in the lower parts). A Karnaugh map is
the truth table representation of a Boolean function, in which
each cell stores the truth value assigned to one combination of
input conditions. E.g., the grey cell in Fig. 4(b) corresponds to
the situation, when truth values false (¬RO), false (¬IDX),
false (¬SE), true (SW), false (¬SWP) are assigned to Bool-
ean variables RO, IDX, SE, SW, SWP, respectively. In this case,
the characteristic function A1 returns the cell content 1 (i.e.,
the truth value true).

An iteration in Algorithm 2 can be demonstrated by cal-
culating the conjunction of A0(RO

′, IDX′, SE′, SW′, SWP′) =
¬RO′ ∧ ¬IDX′ ∧ ¬SE′ ∧ ¬SW′ ∧ ¬SWP′ (representing the sin-
gleton set with the final adornment BBBBB) and the Boolean
formula prepared for operation observes(SE,SW) with
adornment BF (marked by the thick frame with grey back-
ground in Fig. 3). As already mentioned, A0 can only be
evaluated to true if and only if RO′ = IDX′ = SE′ = SW′ =
SWP′ = false. When these truth values are substituted into
the Boolean formula of the operation, we get ¬RO ∧ ¬IDX ∧
¬SE ∧ SW ∧ ¬SWP, which is evaluated to true, if Boolean
variables RO, IDX, SE, SW, SWP are mapped to false, false,
false, true, false, respectively. Note that this is again the
case, which is represented by value 1 in the grey cell of the
Karnaugh map in Fig. 4(b). Moreover, this case represents the
adornment BBBFB, from which the final adornment BBBBB
can be reached in one single step by applying operation ob-
serves(SE,SW) with adornment BF.

Implementation. In order to have an efficient implemen-
tation, reachability analysis is carried out on the reduced or-
dered binary decision diagram [20] (ROBDD) representation
of Boolean formulas.

A binary decision diagram (BDD) is a directed acyclic
graph with a single root. It consists of decision nodes and
two terminal nodes (leaves). The latter two (with integers 0
and 1 inside) correspond to the truth values false and true,
respectively. A decision node is characterized by a Boolean
variable and it has two outgoing edges labelled by false and
true, respectively. An outgoing edge of a decision node rep-
resents the assignment of the Boolean variable in the node

to the truth value on the edge label. Consequently, each path
leading from the root to a terminal node means one evalua-
tion of the complete Boolean formula to the truth value of the
terminal node by using the value assignments defined by the
edges of the path. A BDD is ordered, if the Boolean variables
appear in the same order on all paths that lead from the root
to a terminal node. A sub-OBDD is a subgraph induced by a
given node and all its transitively accessible child nodes. An
ordered BDD is reduced, if (i) each decision node has differ-
ent child nodes, and (ii) all sub-OBDDs are non-isomorphic.

Example 8 The ROBDD for the characteristic function A3 is
shown in Fig. 5. In this figure, dashed or solid edges represent
the assignment to the truth value false or true, respectively.
The evaluation of this ROBBD on the adornment BBBFB,
which corresponds to the variable assignment RO = false,
IDX = false, SE = false, SW = true, SWP = false is
shown by the bold path in Fig. 5. The evaluation starts with a
navigation from RO along the dashed edge (RO = false) to
IDX, which is followed by a traversal of the other bold dashed
edge (IDX = false) to the terminal node 1, which means that
the characteristic function A3 evaluates to true in this case.

Using the results of backward reachability analysis at
runtime. The ROBDD representation of the characteristic
function Ah returned by Algorithm 2 is going to be used
later in Section 4 by the search plan generation algorithm as
a precompiled data structure to quickly determine at runtime
whether an adornment a is backward reachable, which is in-
dicated by the truth value true when the Boolean formula
Ah is evaluated on adornment a. In formal terms, the method
isBackwardReachable(Ah, a) returns

Ah(ϕ(a[1]), . . . , ϕ(a[|V |])).

Complexity analysis. When discussing complexity anal-
ysis results, it should be strongly emphasized that the effi-
ciency of the procedure isBackwardReachable(Ah, a) is of
the utmost importance and significance as (1) only this pro-
cedure is invoked by the search plan generation algorithm,
and (2) search plans might need to be prepared at each in-
vocation of the pattern matcher (in contrast to the complex
backward reachability analysis machinery, which is carried
out only once at specification time).

Remark 1 (Complexity of checking backward reachability at
runtime) The procedure isBackwardReachable(Ah, a) re-
quires the evaluation of the characteristic functionAh, which
can be carried out in O(|V |) steps.

In order to determine the complexity of Algorithm 2, ba-
sic logic operations on ROBDDs, which are described com-
prehensively in [20] together with their complexity analysis,
must be assessed. Simple ROBDDs representing the conjunc-
tion of non-negated (vp) or negated (¬vp) Boolean variables
can be produced in |V | steps. In the following, the number of
internal nodes in an ROBDD is denoted by |R|. Equality test-
ing is linear in the number of internal nodes in the input ROB-
DDs (i.e., O(|R|)) just like the unary restriction operation,

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



8 Gergely Varró et al.

Algorithm 2 The procedure reachableSet(RO)
1: A0(v1, . . . , v|V |) := ¬v1 ∧ . . . ∧ ¬v|V |
2: h := 0
3: repeat
4: Ah+1(v1, . . . , v|V |) := Ah(v1, . . . , v|V |) ∨ ∃ v′1, . . . , v′|V | :

[
RO(v1, . . . , v|V |, v

′
1, . . . , v

′
|V |) ∧ Ah(v

′
1, . . . , v

′
|V |)
]

5: until (Ah(v1, . . . , v|V |) 6= Ah+1(v1, . . . , v|V |))
6: return Ah(v1, . . . , v|V |)

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

SWP ¬SWP¬SWP

SE¬SE

SWSW¬SW ¬SW¬SW

IDX

¬IDX

¬IDX RO

¬RO

A0 = ¬RO ∧ ¬IDX ∧ ¬SE ∧ ¬SW ∧ ¬SWP

(a) The initial Boolean formula describing the final adornment

1 1 0 1 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

SWP ¬SWP¬SWP

SE¬SE

SWSW¬SW ¬SW¬SW

IDX

¬IDX

¬IDX RO

¬RO

A1 = (¬RO ∧ ¬IDX ∧ ¬SE ∧ ¬SW) ∨ (¬RO ∧ ¬IDX ∧ ¬SE ∧ ¬SWP)
∨ (¬RO ∧ SE ∧ ¬SW ∧ ¬SWP) ∨ (¬IDX ∧ ¬SE ∧ ¬SW ∧ ¬SWP)

(b) The Boolean formula after the first iteration

1 1 1 1 1 0 1 1

0 0 0 0 1 0 1 1

0 0 0 0 0 0 0 1

1 1 0 1 0 0 0 1

SWP ¬SWP¬SWP

SE¬SE

SWSW¬SW ¬SW¬SW

IDX

¬IDX

¬IDX RO

¬RO

A2 = (¬RO ∧ ¬IDX ∧ ¬SE) ∨ (¬IDX ∧ ¬SE ∧ ¬SWP)
∨ (¬IDX ∧ ¬SE ∧ ¬SW) ∨ (¬RO ∧ SE ∧ ¬SWP)
∨ (¬RO ∧ SE ∧ ¬SW) ∨ (SE ∧ ¬SW ∧ ¬SWP)

(c) The Boolean formula after the second iteration

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1

1 1 1 1 1 0 1 1

SWP ¬SWP¬SWP

SE¬SE

SWSW¬SW ¬SW¬SW

IDX

¬IDX

¬IDX RO

¬RO

A4 = A3 = (¬RO ∧ SE) ∨ (¬IDX ∧ ¬SE) ∨ (SE ∧ ¬SW) ∨ (SE ∧ ¬SWP)

(d) The Boolean formula after the third (last) iteration

Fig. 4 The Boolean formulas produced by Algorithm 2 for the operations of Fig. 3

01

RO

IDXIDX

SE SESE

SW

SWP

true

false

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1

1 1 1 1 1 0 1 1

SWP ¬SWP¬SWP

SE¬SE

SWSW¬SW ¬SW¬SW

IDX

¬IDX

¬IDX RO

¬RO

Fig. 5 The characteristic function A3 and its ROBDD representation

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



An Algorithm for Generating Model-Sensitive Search Plans for Pattern Matching on EMF Models 9

which assigns a truth value to a Boolean variable and cal-
culates the resulting Boolean formula. The number of steps
required for performing binary logic operations on ROBDDs
is proportional to the product of the number of internal nodes
in the operand ROBDDs (O(|R| · |R|)).

Based on these considerations, the characteristic formula
A0 describing the final adornment a(B)∗ can be constructed
in O(|V |) steps, just like the Boolean formula Ro built for
an operation o. The Boolean formula RO that represents all
the operations is calculated by O(|O|) disjunctions. Each it-
eration in Algorithm 2 (line 3) performs 1 disjunction, 1 con-
junction, and 1 equality test, while the resolution of existen-
tial quantification requires 2 reductions and 1 disjunction for
each quantified Boolean variable v′p (i.e., 3 + 3|V | logic op-
erations). At most |V | iterations are carried out, as each cy-
cle either increases the number of F characters in the added
adornments by (at least) one, or termination is detected. By
considering the fact that basic logic operations on ROBDDs
also produce ROBDDs as a result, it can be stated that alto-
getherO(|O| · |R| · |R|+ |V | · |V | · |R| · |R|) steps have been
executed by Algorithm 2 at pattern specification time.

Although the worst case upper bound for the size of an
ROBDD (|R|) is unfortunately exponential in the number of
pattern variables, several arguments still justify the practical
applicability of our approach and ROBDDs.

1. Reachability analysis is executed only once for each pat-
tern at specification time, in contrast to search plan gen-
eration, which is executed at runtime for each invocation
of the pattern matcher.

2. The number of variables in a pattern is typically small in
practical application scenarios as shown by [5,17].

3. The complexity of logic operations on ROBDDs is influ-
enced by the number of internal nodes in an ROBDD,
which is always at most as large as the number of paths.
Additionally, a reduced OBDD has at most as many paths
as a non-reduced OBDD, which corresponds to the truth
table representation of a Boolean formula with an expo-
nential number of cells.

4. The size of the ROBDD produced by Algorithm 2 is fre-
quently on a linear scale when pattern specifications only
include the traditional unary and binary constraints (i.e.,
type checks and link navigations), but no general n-ary
constraints.

5. As the size of the intermediate ROBDDs is influenced
by the order of the Boolean variables, sophisticated tech-
niques like [6] can avoid the production of large interme-
diate ROBDDs in reachability analysis scenarios, if the
Boolean formula RO prepared for all the operations can
be split into smaller independent expressions, which can
be naturally and evidently done as each operation ma-
nipulates a well-identifiable set of positions in the adorn-
ments.

3.3 Search Plan Generation

When pattern matching is invoked, variables can already be
bound to objects to restrict the search. The corresponding
binding information of all variables is called initial adorn-
ment aI . By using the initial adornment, a search plan gen-
eration algorithm filters and sorts the operations to produce
a search plan. The current search plan formalism is a precise
and extended variant of [14].

A search plan SP = 〈o1, o2, . . . , ol〉, starting from an
initial adornment aI , is a valid operation sequence, in which
each constraint of the pattern is represented by at most one
corresponding operation. The adornment aSP of the search
plan SP is the last element al in the adornment sequence
aI = a0

o1⇒ a1
o2⇒ . . .

ol⇒ al = aSP derived by using search
plan SP on initial adornment aI . A search plan is complete, if
each constraint is represented by exactly one operation in the
sequence, and the search plan adornment (the last adornment
of the sequence) is the final adornment a(B)∗ .

Example 9 Figure 6 depicts two search plans generated by
our algorithm for Models 1 and 2, when variable RO is ini-
tially bound and, thus, the initial adornment is BFFFF. The
rightmost column presents the adornment after applying the
operation in the same line. SP1 extends the partial match
along two separate directions before joining the two branches
with the last (check) operation, while SP2 employs a clock-
wise navigation along the references in the pattern.

 

Constraint Op. Adornm. Mask

(1) defines(RO,SWP) BF B***F BFFFB
(2) inPosition(SW,SWP) FB ***FB BFFBB
(3) hasSensors(RO,IDX,SE) BFF BFF** BBBBB
(4) observes(SE,SW) BB **BB* BBBB B

(1) hasSensors(RO,IDX,SE) BFF BFF** BBBFF
(2) observes(SE,SW) BF **BF* BBBBF
(3) inPosition(SW,SWP) BF ***BF BBBBB
(4) defines(RO,SWP) BB B***B B BBBB

   

Adornm. ai
(aI = BFFFF)

Search plan Step Operation

Search plan 1
(derived from 
model 1)

Search plan 2
(derived from 
model 2)

 

Fig. 6 Search plans as sequence of operations

3.4 Search Plan Execution by a Pattern Matcher Interpreter

By conceptually following the corresponding part of [32], the
interpreter uses a match array for storing the matches, and the
search plan for guiding the pattern matching process. The size
of the match array is determined by the number of variables
in the pattern. Each operation has a mapping, which identifies
the slots in the match array that correspond to the parameters
of the operation.

When pattern matching is invoked, the initial match array
is filled in by the objects that are initially assigned to the vari-
ables, and it is passed on to the first operation in the search
plan. When an extension operation is executed, the structural
feature of its constraint is navigated in forward (BF, BBF,
BFF) or backward (FB) direction depending on the operation

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



10 Gergely Varró et al.

adornment, then each accessed object is type checked and
bound to the corresponding free variable, and the execution is
passed on to the following operation for subsequent process-
ing together with the extended match array. A check opera-
tion simply passes on the unchanged match array, if the ac-
tual check succeeded, and stops triggering further processing
steps otherwise. If a match array passes beyond the last op-
eration, then it represents a complete match, which is copied
and stored in the result set.

This pattern matching (PM) process implements a depth-
first traversal of a PM state space, where a PM state repre-
sents a partial match that is produced by an extension op-
eration during pattern matching. The PM state space can be
described by a tree, whose root is the initial match, while in-
ternal nodes and leaves correspond to partial and complete
matches, respectively. Note that each tree level is produced by
a corresponding extension operation, and check operations do
not influence the tree structure as they do not bind any vari-
ables.

Example 10 Figure 7 depicts two PM state spaces, which are
traversed by executing search plans SP1 and SP2 on Model 2,
respectively. For example, the second level of Fig. 7(a) rep-
resents the partial matches that are prepared when navigat-
ing along defines links from route ro1 to switch posi-
tions swp1, swp2, and swp3, as prescribed by operation
defines(RO,SWP) with adornment BF. The leaves that
are outlined represent those complete matches that pass be-
yond the last check operation (only shown in Fig. 6), while
unframed ones fail this check. It is obvious from Fig. 7 that
SP2 is better than SP1, as SP2 traverses less PM states.

4 Dynamic Programming Based Search Plan Generation

As demonstrated in Fig. 7, the search plan has a large im-
pact on the number of produced (partial) matches, and con-
sequently, on the performance of pattern matching. As such,
the production of a good search plan is an essential issue,
and that is why a quantitative characterization of operations
and search plans is introduced for optimization purposes by
means of weights and costs. Note that an ideal cost function
should strongly correlate with the size of the PM state space.

4.1 Algorithm Data Structures

Operation weight calculation. An extension operation o is
augmented by a weight wo, which denotes the cost of per-
forming the operation. From a clearly algorithmic aspect, op-
eration weights can be arbitrarily defined.

In this paper, weight calculation uses the statistical data
collected from the underlying EMF model. More specifically,
a weight is defined as an average branching factor for that
level of the PM state space tree, which represents the oper-
ation execution. The weights of ternary operations with the
BBF adornment are set to 1 (irrespective of the model), as

these operations never induce any branching in the match-
ing process. For binary and ternary operations with the corre-
sponding BF and BFF adornments (forward navigation), the
structural feature referenced by the constraint of the operation
is determined, and the weight is the ratio of the link and ob-
ject counters defined for this structural feature and its source
class, respectively. For binary operations with FB adornment
(backward navigation), the link counter of the structural fea-
ture is divided by the object counter of the target class to
define the weight.

Search plan costs. The only algorithmic criterion is that
the search plan cost cl must be iteratively computable from
the weight wol of the last operation ol and the cost cl−1 of the
previous search plan (i.e., the one without the last operation).

In this paper, the search plan cost cl estimates the size
of the PM state space tree via the cl =

∑l
j=1

∏j
i=1 woi ex-

pression [34], which sums up the estimated number of PM
states on a level-by-level basis (excluding the root). To sup-
port an iterative search plan cost calculation, the cost cl is
complemented by a product value πl and the calculation is
rearranged as

(cl, πl) = f(cl−1, πl−1, wol),

where c0 = 0, π0 = 1,

πl = πl−1wol ,

and

cl =
l∑

j=1

j∏
i=1

woi

=

cl−1︷ ︸︸ ︷
wo1 + . . .+ wo1wo2 · · ·wol−1

+

πl︷ ︸︸ ︷
wo1 · · ·wol−1︸ ︷︷ ︸

πl−1

· wol︸︷︷︸
wol

= cl−1 + πl.

States. To avoid unnecessary recalculations in our ap-
proach, a state stores only the best of those search plans that
share the same adornment. A state S contains a search plan
SPS with its adornment aS and costs (cS , πS); and sequenc-
es of present extension OpeS , future extension OfeS , and fu-
ture check OfcS operations2 (w.r.t. adornment aS), which are
(i) pairwise disjoint by definition, and (ii) ordered based on
their weights. Two states are adornment disjoint, if they have
different adornments.

The initial state S0 has an empty operation sequence as
its search plan, the initial adornment aI as its adornment, and
its cost values are set as cS0

:= c0, πS0
:= π0. Its operations

are categorized w.r.t. the initial adornment aI .

2 Note that past and present check operations need not be stored
as they will be immediately processed by the algorithm.

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



An Algorithm for Generating Model-Sensitive Search Plans for Pattern Matching on EMF Models 11

ROB IDXF SEF SWF SWPF 

ro1 - - - - 

ROB IDXF SEF SWF SWPB 

ro1 - - - swp1 

ROB IDXF SEF SWF SWPB 

ro1 - - - swp2 

ROB IDXF SEF SWF SWPB 

ro1 - - - swp3 

ROB IDXF SEF SWB SWPB 

ro1 - - sw1 swp1 

ROB IDXB SEB SWB SWPB 

ro1 1 se1 sw1 swp1 

ROB IDXB SEB SWB SWPB 

ro1 2 se2 sw1 swp1 

(1) defines(RO,SWP) BF B***F 

(2) inPosition(SW,SWP) FB ***FB 

(3) hasSensors(RO,IDX,SE) BFF BFF** 

     

     

     

     

     

     

     

     

     

     

    

    

    

(a) PM state space by performing SP1 on Model 2

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    

    

    

ROB IDXF SEF SWF SWPF 

ro1 - - - - 

ROB IDXB SEB SWF SWPF 

ro1 1 se1 - - 

ROB IDXB SEB SWF SWPF 

ro1 2 se2 - - 

ROB IDXB SEB SWB SWPF 

ro1 1 se1 sw1 - 

ROB IDXB SEB SWB SWPB 

ro1 1 se1 sw1 swp1 

(1) hasSensors(RO,IDX,SE) BFF BFF** 

(2) observes(SE,SW) BF **BF* 

(3) inPosition(SW,SWP) BF ***BF 

(b) PM state space by performing SP2 on Model 2

Fig. 7 Sample PM state spaces for Model 2

4.2 Main Algorithm

An efficient search plan is generated by a dynamic program-
ming based algorithm (see Algorithm 3), which iteratively
fills states into an initially empty table T with n+1 columns
and k rows, where n is the number of free variables |aS0

|F
in the adornment aS0 of the initial state S0 and k ≥ 1 is a
user-defined parameter that influences the trade-off between
efficiency and optimality of the algorithm. In general, the col-
umn T [i] stores the best k adornment disjoint states (in an
increasing cost order), which have i free variables in their
adornment, while T [i][j] is the jth best from these adornment
disjoint states.

The two key features of the algorithm can be summarized
as follows. (i) The table only stores adornment disjoint states
with the consequence of keeping only the best search plan
from those ones that share a common prefix. (ii) Additionally,
the table only stores a constant number of adornment disjoint
states in each column, immediately discarding costly search
plans, which are not among the best k solutions, and implic-
itly all their possible continuations. This avoids the produc-
tion of all search plans, which could alone result in the same
(exponential) complexity as the match calculation process.

First, the algorithm determines the number of free vari-
ables n = |aS0 |F in the adornment aS0 of the initial state S0

(line 1), and stores this state S0 in T [n][1] (line 2). Then, the
table is traversed by processing columns in a decreasing order
based on the number of free variables in the state adornments
(lines 3–17). In contrast, the inner loop (lines 4–16) proceeds
in an increasing state cost order starting from the best state
T [i][1] in each column T [i]. For each present extension oper-
ation o in each stored state S (lines 6–15), the next state S′

is prepared in a two-phase process, which (1) calculates the
search plan SPS′ , the adornment aS′ and the cost cS′ of the
next state S′ immediately in calculateNextState (lines 8
and 9), and (2) updates the search plan, and the sequences of
present extension, future extension, and future check opera-
tions in a delayed manner in updateOperation (line 12), but
only if the next state S′ passes the insert condition (line 11),
which uses the set of backward reachable adornments rep-

resented by the precalculated characteristic function Ah and
indices a and c for decision making, which latter are calcu-
lated by determineIndices (line 10). If the insert condi-
tion is fulfilled, the complete next state S′ is inserted into the
column T [i′] by using indices a and c (line 13). Finally, the
algorithm returns the search plan SPT [0][1] of the state stored
in T [0][1] (line 18).

4.3 Subroutines

The method calculateNextState(S, o) (presented in Al-
gorithm 4) partially calculates the new state S′ from state S
and operation o. The new search plan SPS′ is determined
by appending operation o to the search plan SPS of state
S (line 1). The new adornment aS′ is calculated by apply-
ing operation o on the adornment aS of state S (i.e., aS

o⇒
aS′ ), which is carried out by the loop in lines 2–8, which
(i) binds all free variables indicated by mask mo of operation
o (lines 3–4), and (ii) leaves the binding of all other variables
unaltered (line 6). The new costs cS′ and πS′ are computed
from the costs cS and πS of state S, and the weight wo of
operation o according to the cost function f (line 9). More
specifically, the new product value πS′ is calculated as πSwo,
while the new cost cS′ is determined as cS + πS′ .

The procedure determineIndices(T [i′], S′) calculates
indices a and c. Index a marks the position of that stored state
T [i′][a], which has the same adornment aS′ as state S′. Index
a is set to k + 1, if no such stored state exists. Index c marks
the position at which state S′ should be inserted based on its
cost. Index c is set to k + 1, if state S′ is not among the best
k adornment disjoint states. Formally, c is the smallest index
for which cS′ < cT [i′][c] holds (or T [i′][c] = null).

The calculation of indices a and c is carried out by pro-
cedure determineIndices(T [i′], S′) as presented in Algo-
rithm 5. Indices a and c are initialized to k+1 and 1 (lines 1–
2), respectively. States in column T [i′] are looked up in an
increasing (search plan cost) order (lines 3–14). While exe-
cuting the loop, index a is set exactly once to the running
index j, when the stored state T [i′][j] at position j has the
same adornment as the new state S′ (lines 5–7), while index

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



12 Gergely Varró et al.

Algorithm 3 The procedure calculateSearchPlan(S0, k,Ah)
1: n := |aS0 |F // number of free variables in the initial state adornment aS0 is calculated
2: T [n][1] := S0

3: for (i := n down to 1) do
4: for (j := 1 to k) do
5: S := T [i][j] // current state S
6: for all (o ∈ Ope

S ) do
7: // for each present extension operation
8: S′ := calculateNextState(S, o) // next state S′ is partially calculated
9: i′ := |aS′ |F // next state S′ has i′ free variables in its adornment aS′

10: (a, c) := determineIndices(T [i′], S′)
11: if (checkInsertCondition(T [i′], S′,Ah,a, c)) then
12: updateOperations(S′, S, o)
13: insert(T [i′], S′,a, c)
14: end if
15: end for
16: end for
17: end for
18: return SPT [0][1]

Algorithm 4 The procedure calculateNextState(S, o)
1: SPS′ := 〈SPS , o〉 // Operation o is appended to the operation sequence of search plan SPS

2: for (p := 1 to |V |) do
3: if (mo[p] = F) then
4: aS′ [p] := B // Binding information is switched from F to B, if the corresponding character of the mask mo of operation o is F
5: else
6: aS′ [p] := aS [p] // Binding information is left unchanged in other cases
7: end if
8: end for
9: (cS′ , πS′) := f (cS , πS , wo) // Product and cost values are updated as follows πS′ := πSwo, cS′ := cS + πS′

10: return S′

c increases continuously until the first such index is found for
which cT [i′][j] ≤ cS′ < cT [i′][j+1] (lines 8–10), and in this
case j + 1 will be the final value for index c. Indices a and
c are returned prematurely when column T [i′] is not com-
pletely filled with stored states (i.e., slot T [i′][j] is empty)
(line 12), or regularly, when the loop terminates (line 15).

The checkInsertCondition(T [i′], S′,Ah,a, c) proce-
dure (shown in Algorithm 6) makes a positive decision, if

(1) column T [i′] does not contain any states with the adorn-
ment aS′ of new state S′ (a = k + 1), new state S′ is
among the best k adornment disjoint states (c < a), and
adornment aS′ of new state S′ is backward reachable
as determined by evaluating characteristic function Ah
on adornment aS′ (isBackwardReachable(Ah, aS′) =
true), or

(2) column T [i′] already stores a state T [i′][a] at location a
with the adornment aS′ of new state S′ (a < k+ 1), and
this new state S′ is better than the stored state T [i′][a]
(c ≤ a).

The method updateOperations(S′, S, o) processes all
operations o∗ of present extensionOpeS , future extensionOfeS ,
and future check OfcS sequences of state S in an increasing
weight order by also recategorizing these operations with re-
spect to the adornment aS′ of new state S′.

On the implementation level, operation processing is car-
ried out in two phases as presented side-by-side in Algo-
rithm 7. In the first phase, only extension operations OpeS and
OfeS of state S are considered (lines 1–15), while the sec-
ond phase only deals with the corresponding check opera-
tions OfeS (lines 16–30). In order to iterate through exten-
sion operations in an increasing weight order, the sorted se-
quences of present extension OpeS and future extension OfeS
operations have to be merged first (in line 2) by the well-
known technique [8], which is also presented as procedure
merge(OpeS , O

fe
S ) (Algorithm 8) for completeness.

The rest of Algorithm 7 is similar for both phases. Op-
erations are iterated in an increasing weight order (lines 4
and 19). If the referenced constraints of operation o∗ and the
selected operation o differ (i.e., co∗ 6= co in lines 5 and 20),
then operation o∗ is recategorized w.r.t adornment aS′ by Al-
gorithm 1 (lines 6 and 21) and further processed according to
the following rules:

• Discard past operations. If operation o∗ is a past opera-
tion, then it is discarded as it violates the general opera-
tion applicability condition (lines 13 and 28).

• Append present check operations to the search plan.
If operation o∗ is a present check operation, then it is im-
mediately appended to the search plan to perform the cor-
responding checks as soon as possible (lines 22–24).

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



An Algorithm for Generating Model-Sensitive Search Plans for Pattern Matching on EMF Models 13

Algorithm 5 The procedure determineIndices(T [i′], S′)
1: a := k + 1
2: c := 1
3: for (j := 1 to k) do
4: if (T [i′][j] 6= null) then
5: if

(
aS′ = aT [i′][j]

)
then // When the new state S′ has the same adornment as the stored state T [i′][j] at position j

6: a := j // Index a is set (exactly once) to the running index j
7: end if
8: if

(
cS′ ≥ cT [i′][j]

)
then

9: c := j + 1 // c is incremented, until the first such index is found, for which cT [i′][j] ≤ cS′ < cT [i′][j+1]

10: end if
11: else
12: return (a, c) // Indices a and c are returned prematurely when slot T [i′][j] is empty
13: end if
14: end for
15: return (a, c) // Indices a and c are returned regularly when the loop terminates

Algorithm 6 The procedure checkInsertCondition(T [i′], S′,Ah,a, c)
1: return (a = k + 1 ∧ c < a ∧ isBackwardReachable(Ah, aS′))︸ ︷︷ ︸

(1)

∨ (a < k + 1 ∧ c ≤ a)︸ ︷︷ ︸
(2)

Algorithm 7 The procedure updateOperations(S′, S, o)
1: // Extension operations
2: Oe

S := merge(Ope
S , O

fe
S )

3: i′pe := 1, i′fe := 1
4: for all (o∗ ∈ Oe

S) do
5: if (co∗ 6= co) then
6: cat := categorize(o∗, aS′)
7: if (cat = PRESENT) then
8: Ope

S′ [i
′
pe] := o∗

9: i′pe := i′pe + 1
10: else if (cat = FUTURE) then
11: Ofe

S′ [i
′
fe] := o∗

12: i′fe := i′fe + 1
13: end if // Operation o∗ is discarded, if cat = PAST

14: end if // Operation o∗ is discarded, if co∗ = co
15: end for

16: // Check operations
17:
18: i′fc := 1

19: for all (o∗ ∈ Ofc
S ) do

20: if (co∗ 6= co) then
21: cat := categorize(o∗, aS′)
22: if (cat = PRESENT) then
23: SPS′ := 〈SPS′ , o

∗〉
24:
25: else if (cat = FUTURE) then
26: Ofc

S′ [i
′
fc] := o∗

27: i′fc := i′fc + 1
28: end if // Operation o∗ is discarded, if cat = PAST

29: end if // Operation o∗ is discarded, if co∗ = co
30: end for

Algorithm 8 The procedure merge(OpeS , O
fe
S )

1: ipe := 1, ife := 1, ie := 1
2: while (ipe ≤ |Ope

S | ∨ ife ≤ |O
fe
S |) do

3: if (ife > |Ofe
S | ∨O

pe
S [ipe] < Ofe

S [ife]) then
4: Oe

S [ie] := Ope
S [ipe]

5: ipe := ipe + 1
6: else
7: Oe

S [ie] := Ofe
S [ife]

8: ife := ife + 1
9: end if

10: ie := ie + 1
11: end while
12: return Oe

S

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



14 Gergely Varró et al.

• Append present extension, future extension, and fu-
ture check operations to the corresponding list. If op-
eration o∗ is a present extension, a future extension or
a future check operation w.r.t. adornment aS′ , then it is
appended to the corresponding operation sequence OpeS′
(lines 7–9), OfeS′ (lines 10–12), or OfcS′ (lines 25–27) of
state S′, respectively.

If operation o∗ originates from the same constraint as the se-
lected operation o, then operation o∗ is discarded to avoid
checking a constraint more than once (lines 14 and 29).

As operation application can only change variables from
free to bound, a past operation can never be recategorized in
any states derivable from S′, (hence, its immediate disposal
is justified) while a future operation might eventually become
a present or past operation in a later phase of Algorithm 3.

The procedure insert(T [i′], S′,a, c) (Algorithm 9) de-
termines m = min {a, k} (line 1), shifts elements between
T [i′][c] and T [i′][m − 1] downward, which wipes state
T [i′][m] out (lines 2–4), and inserts state S′ at position c
(line 5).

4.4 Complexity Analysis of the Search Plan Generation
Algorithm

The worst case runtime complexity of Algorithm 3 can be
calculated as follows.

The number of free variables in state adornments (lines 1
and 9) can be determined in |V | steps. Fields of table T can
be accessed (lines 2 and 5) in constant time. As n ≤ |V | and
k is a constant parameter of the algorithm, the body of the
two outermost cycles (lines 5–15) is executed O (|V |) times.
The body of the innermost cycle (lines 7–14) is performed at
most |O| times. As a summary, Algorithm 3 has

O(|V |+ 1 + |V | · 1 · (1 + |O| · I)︸ ︷︷ ︸
lines 5–15

) = O (|V | · |O| · I) ,

runtime complexity, where I denotes the number of steps
needed for one execution of the innermost cycle.

The procedure calculateNextState(S, o) (Alg. 4) ap-
pends operation o to search plan SPS (line 1) in one step.
Adornment aS′ is calculated in |V | steps (lines 2–8). Cost
calculation (line 9) can be considered a constant time activity.
The complexity of procedure determineIndices(T [i′], S′)
(Algorithm 5) is O(|V |) as (i) its cycle is executed k (con-
stant) times, (ii) the adornment equality check in line 5 re-
quires |V | steps, (iii) while all other comparisons and as-
signments are single step activities. The procedure check-
InsertCondition(T [i′], S′,a, c) (Algorithm 6) consists of
constant time comparisons and Boolean operations except
for the invocation of the isBackwardReachable(Ah, aS′)
method, which fills in each Boolean variable of the precom-
piled characteristic function Ah in |V | steps. In procedure
updateOperations(S′, S, o) (Algorithm 7), (i) the merge
of present and future extension operations (Algorithm 8) can
be carried out in |O| steps, (ii) at most |O| operations are

(re)categorized, (iii) each categorization (i.e., each invocation
of categorize(o∗, aS′)) is performed in |V | steps, as opera-
tion mask mo∗ and adornment aS′ must be compared at each
variable position, and (iv) all other activities can be executed
in constant time. Finally, the insert(T [i′], S′,a, c) proce-
dure (Algorithm 9) performs a constant number of single step
rearrangements. Thus, I = O(|V |+|V |+|V |+|V |·|O|+1) =

O(|V | · |O|), which results in an overall O(|V |2 · |O|2) run-
time complexity for the search plan generation algorithm.

4.5 Running Example for the Algorithm

The execution of our algorithm on Model 2 with initial adorn-
ment BFFFF and parameter k = 2 is illustrated in Figures 8
to 11, which present the contents of table T (in the corre-
sponding dashed boxes) after the innermost cycle (lines 6–
15) of Algorithm 3 has been executed on the states stored in
T [3][1], T [2][1], T [2][2], and T [0][1], respectively.

Notational guide. Figures 8 to 11 use a common notation
for states, whose visual appearance is summarized in the bot-
tom left corner of Fig. 8 as a notational guide. The headers of
states have light grey backgrounds. The first line of the state
headers contains the cost (typeset in bold), the adornment,
and the product value of the search plan whose operations
are enumerated in the bottom part of the header. The rest of
the state description (already with a white background) lists
sequences of present extension, future extension and future
check operations in this specific order. These sequences are
separated from each other by thin black lines, and each se-
quence is sorted based on the operation weights, which ap-
pear as numbers in the rightmost column. The 3 columns on
the left present the constraint, the adornment and the mask of
the operations, respectively.

Each arrow represents the derivation of a new state pro-
duced by one execution of the innermost cycle (lines 6–15).
Within the range of Figures 8 to 11, solid edges mark those
derivations that are new compared to the previous figure (i.e.,
the delta), while derivations denoted by dashed edges already
appeared in one of the former figures.

States with watermark letter A were temporarily stored in
the table (but later discarded due to the appearance of better
states). The state with letter B failed the backward reacha-
bility analysis test, while states with watermark C were dis-
carded as the corresponding column had already contained a
better state with the same adornment.

Initialization. The initial adornment BFFFF has 4 free
parameters, consequently, the initial state is stored at T [4][1]
(see lines 1–2 of Algorithm 3). The initial state has 0 as its
cost, BFFFF as its adornment, 1 as its product value, and an
empty search plan. The operations in the initial state are cat-
egorized with respect to the adornment BFFFF, which pro-
cess was already presented in Fig. 3. However, in contrast to
Fig. 3, the representation used in Figs. 8 to 11 omits the past
operations (e.g., defines(RO,SWP) adorned by FB), and
lists operations in a category grouped and weight sorted man-
ner. For instance, operation hasSensors(RO,IDX,SE)

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



An Algorithm for Generating Model-Sensitive Search Plans for Pattern Matching on EMF Models 15

Algorithm 9 The procedure insert(T [i′], S′,a, c)
1: m := min {a, k}
2: for (j :=m− 1 down to c) do
3: T [i′][j + 1] := T [i′][j] // Elements between T [i′][c] and T [i′][m− 1] are shifted downward and state T [i′][m] is discarded
4: end for
5: T [i′][c] := S′ // State S′ is inserted at position c

with adornment BFF, which is the best present extension op-
eration (with respect to state adornment BFFFF), has weight
#hasSensors

#Route
= 2

1 = 2 as Model 2 has 2 hasSensors links,
and 1 Route.

Processing states in columns T [4] and T [3] (Figure 8).
The first execution of the innermost cycle (lines 6–15) of
Algorithm 3 processes the best present extension operation
(i.e., hasSensors(RO,IDX,SE) with adornment BFF)
of state stored in T [4][1]. The corresponding new state is in-
serted into T [2][1] as its adornment BBBFF has 2 free vari-
ables, The positive decision on insertion is made according
to case (1) of Algorithm 6 as column T [2] is empty at this
time (1 = c < a = k + 1 = 3), and adornment BBBFF
is backward reachable (A3(ϕ(B), ϕ(B), ϕ(B), ϕ(F), ϕ(F)) =
true). In the new state, both the cost and the product value
are 2, operations originating from the constraint hasSen-
sors(RO,IDX,SE) are discarded, and all other operations
are recategorized w.r.t. adornment BBBFF. The next itera-
tion processes the other present extension operation (de-
fines(RO,SWP) with adornment BF) of state stored in
T [4][1] producing the new state appearing in T [3][1]. As the
state in T [4][1] has no more present extension operations and
T [4][2] is empty, Algorithm 3 continues with column T [3]
creating two new states with the same process and inserting
them into T [2][2] and T [1][1], respectively, resulting in the
table contents shown in Fig. 8.

Processing the state stored in T [2][1] (Figure 9). When
the innermost cycle of Algorithm 3 is carried out on the two
present extension operations of state stored in T [2][1], the
previous content of T [1][1] (i.e., in Fig. 8) is pushed down-
wards by the first newly created state (shown in T [1][1] in
Fig. 9), and then replaced by the second newly created state
(shown in T [1][2] in Fig. 9). As a consequence, the previous
content of T [1][1] has been wiped out, which is denoted in
Fig. 9 in such a manner that the discarded state now appears
below the table with watermark A.

The insertion of the first newly created state is based on
case (1) of Algorithm 6 as the adornment BBBBF of the new
state is backward reachable and the new state has a smaller
cost (c = 1) and a different adornment (a = k + 1). The
corresponding state rearrangements in the table are carried
out by one execution of line 3 of Algorithm 9 with j = 1. The
insertion of the second newly created state is prescribed by
case (2) of Algorithm 6 as the table already contains a worse
state with the same adornment (2 = c = a < k + 1 = 3).
Note that in this situation, Algorithm 9 simply overwrites the
contents of T [1][2] with the new state (line 5).

Processing the state stored in T [2][2] (Figure 10). When
the present extension operation observes(SE,SW) with

adornment FB of state stored in T [2][2] is processed, a new
(partially calculated) state with adornment BFBBB is created
and discarded due to the fact that adornment BFBBB is not
backward reachable as A3(ϕ(B), ϕ(F), ϕ(B), ϕ(B), ϕ(B)) is
evaluated to false. The handling of present extension op-
eration hasSensors(RO,IDX,SE) with adornment BFF
results in a new state being inserted into T [0][1] as shown
in Fig. 10. Note that operation observes(SE,SW) with
adornment BB has been recategorized (w.r.t. the final adorn-
ment BBBBB) in the new state to a present check operation,
which is immediately appended to the corresponding search
plan (see the fourth search plan line in T [0][1]) as prescribed
by line 23 of Algorithm 7.

Processing states in column T [1] (Figure 11). As shown
in Fig. 11, the first of the last 4 iterations of the innermost
cycle replaces the state with cost 6 in T [0][1] (according to
Fig. 10) by a new state having the same adornment (a = 1)
and a smaller cost (c = 1) as prescribed by case (2) in Algo-
rithm 6 (1 = c = a < k+1 = 3). The remaining 3 iterations
produce partially calculated states, which are discarded as the
table already contains a better state (in T [0][1]) with the same
adornment.

5 Quantitative Evaluation

In this section, we quantitatively assess and evaluate the ef-
fects of different cost models and various configurations of
our proposed search plan generation algorithm on the runtime
performance of the pattern matching process.

5.1 Comparison with the Domain-Specific Approach

In the first scenario, the performance effects of using differ-
ent cost models in the same search plan generation algorithm
were analyzed.

Experimental environment. Our model-sensitive (MS)
cost model was compared to a domain-specific (DS) one,
which latter used operation weights 1 and 10 for constraints
representing structural features with at most one (1) and arbi-
trary (*) multiplicity, respectively. For configuring our algo-
rithm, its parameter k was set to 1 and 2.

The pattern routeSensor of Fig. 2 and 10 models of
different size from the case study [1] were used for experi-
mentation purposes. Pattern matching was always restricted
to a given Route in the model, which was assigned to vari-
able RO in the initial match and used as a starting point. The
complete process (including search plan generation) was re-
peated on each distinct Route.

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



16 Gergely Varró et al.

T[4] (states with 4 free variables)   T[3] (states with 3 free variables)   T[2] (states with 2 free variables)   T[1] (states with 1 free variable)   T[0] (states with 0 free variables) 

1 

0   BFFFF 1   3   BFFFB 3   2   BBBFF 2   9   BBBFB 6           
        defines(RO,SWP) BF B***F 3 hasSensors(RO,IDX,SE) BFF BFF** 2 defines(RO,SWP) BF B***F 3         
                        hasSensors(RO,IDX,SE) BFF BFF** 2         
                                        
                                        
hasSensors(RO,IDX,SE) BFF BFF** 2   inPosition(SW,SWP) FB ***FB 1/3   observes(SE,SW) BF **BF* 1/2   inPosition(SW,SWP) FB ***FB 1/3           
defines(RO,SWP) BF B***F 3   hasSensors(RO,IDX,SE) BFF BFF** 2   defines(RO,SWP) BF B***F 3   observes(SE,SW) BF **BF* 1/2           
inPosition(SW,SWP) FB ***FB 1/3 observes(SE,SW) BF **BF* 1/2 inPosition(SW,SWP) FB ***FB 1/3                 
observes(SE,SW) BF **BF* 1/2 hasSensors(RO,IDX,SE) BBF BBF** 1 inPosition(SW,SWP) BF ***BF 1                 
hasSensors(RO,IDX,SE) BBF BBF** 1 observes(SE,SW) FB **FB* 1                         
observes(SE,SW) FB **FB* 1                                 
inPosition(SW,SWP) BF ***BF 1                                 
hasSensors(RO,IDX,SE) BBB BBB**     hasSensors(RO,IDX,SE) BBB BBB**     observes(SE,SW) BB **BB*     observes(SE,SW) BB **BB*             
observes(SE,SW) BB **BB*     observes(SE,SW) BB **BB*     inPosition(SW,SWP) BB ***BB     inPosition(SW,SWP) BB ***BB             
inPosition(SW,SWP) BB ***BB     inPosition(SW,SWP) BB ***BB     defines(RO,SWP) BB B***B                       
defines(RO,SWP) BB B***B                                           

2 

                4   BFFBB 1                 
                defines(RO,SWP) BF B***F 3                 
                inPosition(SW,SWP) FB ***FB 1/3                 
                observes(SE,SW) FB **FB* 1                 
                hasSensors(RO,IDX,SE) BFF BFF** 2                 
                hasSensors(RO,IDX,SE) BBF BBF** 1                 
                hasSensors(RO,IDX,SE) BBB BBB**                   
                    observes(SE,SW) BB **BB*                       

cS   aS πS 
SPS - search plan       
Os

pe - present extension operations   
Os

fe - future extension operations   
Os

fc - future check operations     

Fig. 8 Contents of table T after processing states in columns T [4] and T [3] when Algorithm 3 is executed on Model 2 with k = 2

T[4] (states with 4 free variables)   T[3] (states with 3 free variables)   T[2] (states with 2 free variables)   T[1] (states with 1 free variable)   T[0] (states with 0 free variables) 

1 

0   BFFFF 1   3   BFFFB 3   2   BBBFF 2   3   BBBBF 1           
        defines(RO,SWP) BF B***F 3 hasSensors(RO,IDX,SE) BFF BFF** 2 hasSensors(RO,IDX,SE) BFF BFF** 2         
                        observes(SE,SW) BF **BF* 1/2         
                                        
                                        
hasSensors(RO,IDX,SE) BFF BFF** 2   inPosition(SW,SWP) FB ***FB 1/3   observes(SE,SW) BF **BF* 1/2   inPosition(SW,SWP) BF ***BF 1           
defines(RO,SWP) BF B***F 3   hasSensors(RO,IDX,SE) BFF BFF** 2   defines(RO,SWP) BF B***F 3   defines(RO,SWP) BF B***F 3           
inPosition(SW,SWP) FB ***FB 1/3 observes(SE,SW) BF **BF* 1/2 inPosition(SW,SWP) FB ***FB 1/3                 
observes(SE,SW) BF **BF* 1/2 hasSensors(RO,IDX,SE) BBF BBF** 1 inPosition(SW,SWP) BF ***BF 1                 
hasSensors(RO,IDX,SE) BBF BBF** 1 observes(SE,SW) FB **FB* 1                         
observes(SE,SW) FB **FB* 1                                 
inPosition(SW,SWP) BF ***BF 1                                 
hasSensors(RO,IDX,SE) BBB BBB**     hasSensors(RO,IDX,SE) BBB BBB**     observes(SE,SW) BB **BB*     inPosition(SW,SWP) BB ***BB             
observes(SE,SW) BB **BB*     observes(SE,SW) BB **BB*     inPosition(SW,SWP) BB ***BB     defines(RO,SWP) BB B***B             
inPosition(SW,SWP) BB ***BB     inPosition(SW,SWP) BB ***BB     defines(RO,SWP) BB B***B                       
defines(RO,SWP) BB B***B                                           

2 

                4   BFFBB 1 8   BBBFB 6         
                defines(RO,SWP) BF B***F 3 hasSensors(RO,IDX,SE) BFF BFF** 2         
                inPosition(SW,SWP) FB ***FB 1/3 defines(RO,SWP) BF B***F 3         
                observes(SE,SW) FB **FB* 1 inPosition(SW,SWP) FB ***FB 1/3         
                hasSensors(RO,IDX,SE) BFF BFF** 2 observes(SE,SW) BF **BF* 1/2         
                hasSensors(RO,IDX,SE) BBF BBF** 1                 
                hasSensors(RO,IDX,SE) BBB BBB**   observes(SE,SW) BB **BB*           
                    observes(SE,SW) BB **BB*     inPosition(SW,SWP) BB ***BB             

9   BBBFB 6 
defines(RO,SWP) BF B***F 3 
hasSensors(RO,IDX,SE) BFF BFF** 2 
        
        
inPosition(SW,SWP) FB ***FB 1/3 
observes(SE,SW) BF **BF* 1/2 
        
observes(SE,SW) BB **BB*   
inPosition(SW,SWP) BB ***BB   

        

Fig. 9 Table contents and discarded states after processing the state stored in T [2][1]

Quantitative results. Figure 12(a) presents the measured
data. The first column indicates the model identifier, the sec-
ond and third columns the model size and the number of
distinct Routes in the model, respectively. The remaining
columns show the measured values for the different configu-
rations, which independently involve DS and MS cost mod-
els, and algorithm parameter values k = 1 and 2. The PM
columns denote the number of PM states (i.e., elementary

pattern matching steps), which was averaged over all distinct
Routes in the model. The SP columns show the cost of the
(model-sensitive) search plan that was considered the best by
the search plan generation algorithm and that was actually
used to control pattern matching.

Evaluation. Fig. 12(a) shows that model-sensitive search
plans can clearly outperform domain-specific ones (in this
case on all test models by nearly 400 steps in average) when

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



An Algorithm for Generating Model-Sensitive Search Plans for Pattern Matching on EMF Models 17

T[4] (states with 4 free variables)   T[3] (states with 3 free variables)   T[2] (states with 2 free variables)   T[1] (states with 1 free variable)   T[0] (states with 0 free variables) 

1 

0   BFFFF 1   3   BFFFB 3   2   BBBFF 2   3   BBBBF 1   6   BBBBB 2 
        defines(RO,SWP) BF B***F 3 hasSensors(RO,IDX,SE) BFF BFF** 2 hasSensors(RO,IDX,SE) BFF BFF** 2 defines(RO,SWP) BF B***F 3 
                        observes(SE,SW) BF **BF* 1/2 inPosition(SW,SWP) FB ***FB 1/3 
                                hasSensors(RO,IDX,SE) BFF BFF** 2 
                                observes(SE,SW) BB **BB*   
hasSensors(RO,IDX,SE) BFF BFF** 2   inPosition(SW,SWP) FB ***FB 1/3   observes(SE,SW) BF **BF* 1/2   inPosition(SW,SWP) BF ***BF 1           
defines(RO,SWP) BF B***F 3   hasSensors(RO,IDX,SE) BFF BFF** 2   defines(RO,SWP) BF B***F 3   defines(RO,SWP) BF B***F 3           
inPosition(SW,SWP) FB ***FB 1/3 observes(SE,SW) BF **BF* 1/2 inPosition(SW,SWP) FB ***FB 1/3                 
observes(SE,SW) BF **BF* 1/2 hasSensors(RO,IDX,SE) BBF BBF** 1 inPosition(SW,SWP) BF ***BF 1                 
hasSensors(RO,IDX,SE) BBF BBF** 1 observes(SE,SW) FB **FB* 1                         
observes(SE,SW) FB **FB* 1                                 
inPosition(SW,SWP) BF ***BF 1                                 
hasSensors(RO,IDX,SE) BBB BBB**     hasSensors(RO,IDX,SE) BBB BBB**     observes(SE,SW) BB **BB*     inPosition(SW,SWP) BB ***BB             
observes(SE,SW) BB **BB*     observes(SE,SW) BB **BB*     inPosition(SW,SWP) BB ***BB     defines(RO,SWP) BB B***B             
inPosition(SW,SWP) BB ***BB     inPosition(SW,SWP) BB ***BB     defines(RO,SWP) BB B***B                       
defines(RO,SWP) BB B***B                                           

2 

                4   BFFBB 1 8   BBBFB 6         
                defines(RO,SWP) BF B***F 3 hasSensors(RO,IDX,SE) BFF BFF** 2         
                inPosition(SW,SWP) FB ***FB 1/3 defines(RO,SWP) BF B***F 3         
                observes(SE,SW) FB **FB* 1 inPosition(SW,SWP) FB ***FB 1/3         
                hasSensors(RO,IDX,SE) BFF BFF** 2 observes(SE,SW) BF **BF* 1/2         
                hasSensors(RO,IDX,SE) BBF BBF** 1                 
                hasSensors(RO,IDX,SE) BBB BBB**   observes(SE,SW) BB **BB*           
                    observes(SE,SW) BB **BB*     inPosition(SW,SWP) BB ***BB             

9   BBBFB 6 
defines(RO,SWP) BF B***F 3 
hasSensors(RO,IDX,SE) BFF BFF** 2 
        
        
inPosition(SW,SWP) FB ***FB 1/3 
observes(SE,SW) BF **BF* 1/2 
        
observes(SE,SW) BB **BB*   
inPosition(SW,SWP) BB ***BB   

5   BFBBB 1 
defines(RO,SWP) BF B***F 3 
inPosition(SW,SWP) FB ***FB 1/3 
observes(SE,SW) FB **FB* 1 

Fig. 10 Table contents and discarded states after processing the state stored in T [2][2]

the pattern has many structural feature constraints with ar-
bitrary multiplicity. Our algorithm generated the very same
search plan for the settings of the fifth and the seventh col-
umn, which explains the equal values there. In Fig. 12(b) the
relative frequency distribution histogram of the PM state dif-
ferences of DS and MS approaches (with parameter k = 2)
is depicted for the case when these differences are calculated
on a route-by-route basis for each of the 2560 starting points
of model 128 (see the thick frames in Fig. 12(a)). Fig. 12(b)
shows that the DS approach was better by 6 to 10 steps in
1.875% of the 2560 cases (first column), the MS search plan
was faster by 562 to 1000 steps in nearly 10% of the cases
(last column), while a draw occured in 6.875% of the cases
(fifth column).

In contrast to our preliminary expectations, which pre-
sumed that it was sufficient to set parameter k only to 1 in
practical cases, it can be seen that a more thorough analysis
with k = 2 can already pay off for small and simple patterns.

Unfortunately, the models of this case study were struc-
turally similar, since all the MS search plans (irrespectively
of the different models) were the same for a given parameter,
which should not necessarily be the case. As a further gen-
eral characteristic, a single PM step took 51 ns in average.3

3 The runtime value is an average of 20 wall clock time measure-
ments performed on a computer with 1.57 GHz Intel Core2 Duo
CPU and 2.96 GB RAM. Windows XP Professional SP 3 and Java
1.7 served as the underlying operating system and virtual machine,
respectively.

Neither the search plan generation, nor the pattern matching
is affected by the model-sensitive nature of the approach, as
object and link counters are initialized and incrementally up-
dated, when the model is loaded and changed, respectively.

5.2 Comparison with the Graph-Based Model-Sensitive
Approach

In the second scenario, the performance effects of using dif-
ferent search plan generation algorithms have been quantita-
tively analyzed in a common, model-sensitive setup.

Measurement setup. Our new dynamic programming al-
gorithm (DP) with parameter settings k = 1 and k = 2
was compared to the graph-based approach (G) that was em-
ployed by the GrGen [12] and Viatra [34] model transforma-
tion tools.

In order to clearly focus on the capabilities of the search
plan algorithms themselves and on their effect on the runtime
performance of pattern matching in a modeling layer, pro-
gramming language and virtual machine independent man-
ner, we decided not to use GrGen and Viatra in our measure-
ments, but to reimplement the graph-based search plan gener-
ation approach in our pattern matching engine and to employ
this implementation in the performance analysis.

As the graph-based search plan algorithm cannot sup-
port general n-ary constraints, the pattern routeSensor
of Fig. 2 was simplified by removing variable IDX and re-
placing the ternary constraint hasSensors(RO,IDX,SE)

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



18 Gergely Varró et al.

T[4] (states with 4 free variables)   T[3] (states with 3 free variables)   T[2] (states with 2 free variables)   T[1] (states with 1 free variable)   T[0] (states with 0 free variables) 

1 

0   BFFFF 1   3   BFFFB 3   2   BBBFF 2   3   BBBBF 1   4   BBBBB 1 
        defines(RO,SWP) BF B***F 3 hasSensors(RO,IDX,SE) BFF BFF** 2 hasSensors(RO,IDX,SE) BFF BFF** 2 hasSensors(RO,IDX,SE) BFF BFF** 2 
                        observes(SE,SW) BF **BF* 1/2 observes(SE,SW) BF **BF* 1/2 
                                inPosition(SW,SWP) BF ***BF 1 
                                defines(RO,SWP) BB B***B   
hasSensors(RO,IDX,SE) BFF BFF** 2   inPosition(SW,SWP) FB ***FB 1/3   observes(SE,SW) BF **BF* 1/2   inPosition(SW,SWP) BF ***BF 1           
defines(RO,SWP) BF B***F 3   hasSensors(RO,IDX,SE) BFF BFF** 2   defines(RO,SWP) BF B***F 3   defines(RO,SWP) BF B***F 3           
inPosition(SW,SWP) FB ***FB 1/3 observes(SE,SW) BF **BF* 1/2 inPosition(SW,SWP) FB ***FB 1/3                 
observes(SE,SW) BF **BF* 1/2 hasSensors(RO,IDX,SE) BBF BBF** 1 inPosition(SW,SWP) BF ***BF 1                 
hasSensors(RO,IDX,SE) BBF BBF** 1 observes(SE,SW) FB **FB* 1                         
observes(SE,SW) FB **FB* 1                                 
inPosition(SW,SWP) BF ***BF 1                                 
hasSensors(RO,IDX,SE) BBB BBB**     hasSensors(RO,IDX,SE) BBB BBB**     observes(SE,SW) BB **BB*     inPosition(SW,SWP) BB ***BB             
observes(SE,SW) BB **BB*     observes(SE,SW) BB **BB*     inPosition(SW,SWP) BB ***BB     defines(RO,SWP) BB B***B             
inPosition(SW,SWP) BB ***BB     inPosition(SW,SWP) BB ***BB     defines(RO,SWP) BB B***B                       
defines(RO,SWP) BB B***B                                           

2 

                4   BFFBB 1 8   BBBFB 6         
                defines(RO,SWP) BF B***F 3 hasSensors(RO,IDX,SE) BFF BFF** 2         
                inPosition(SW,SWP) FB ***FB 1/3 defines(RO,SWP) BF B***F 3         
                observes(SE,SW) FB **FB* 1 inPosition(SW,SWP) FB ***FB 1/3         
                hasSensors(RO,IDX,SE) BFF BFF** 2 observes(SE,SW) BF **BF* 1/2         
                hasSensors(RO,IDX,SE) BBF BBF** 1                 
                hasSensors(RO,IDX,SE) BBB BBB**   observes(SE,SW) BB **BB*           
                    observes(SE,SW) BB **BB*     inPosition(SW,SWP) BB ***BB             

9   BBBFB 6 6   BBBBB 2 
defines(RO,SWP) BF B***F 3 defines(RO,SWP) BF B***F 3 
hasSensors(RO,IDX,SE) BFF BFF** 2 inPosition(SW,SWP) FB ***FB 1/3 
        hasSensors(RO,IDX,SE) BFF BFF** 2 
        observes(SE,SW) BB **BB*   
inPosition(SW,SWP) FB ***FB 1/3         
observes(SE,SW) BF **BF* 1/2         
                
observes(SE,SW) BB **BB*   6   BBBBB 3 
inPosition(SW,SWP) BB ***BB   hasSensors(RO,IDX,SE) BFF BFF** 2 

5   BFBBB 1 observes(SE,SW) BF **BF* 1/2 
defines(RO,SWP) BF B***F 3 defines(RO,SWP) BF B***F 3 
inPosition(SW,SWP) FB ***FB 1/3 10   BBBBB 2 
observes(SE,SW) FB **FB* 1 hasSensors(RO,IDX,SE) BFF BFF** 2 

defines(RO,SWP) BF B***F 3 
inPosition(SW,SWP) FB ***FB 1/3 

11   BBBBB 3 
hasSensors(RO,IDX,SE) BFF BFF** 2 
defines(RO,SWP) BF B***F 3 
observes(SE,SW) BF **BF* 1/2 

Fig. 11 Table contents and discarded states, when the execution of Algorithm 3 on Model 2 with k = 2 is completed
Sheet2

Model Routes DS (k=1) DS (k=2)
size PM PM SP PM SP PM

# # # # cT[0][1] # cT[0][1] #
1 1450 20 1128.55 579.80 430 579.80 115 118.50
2 2601 40 885.15 456.75 349 456.75 102 104.78
4 5234 80 881.15 454.94 355 454.94 101 105.19
8 10627 160 912.64 470.81 361 470.81 102 106.29

16 21186 320 939.48 483.93 357 483.93 104 107.36
32 42202 640 936.80 482.44 353 482.44 104 107.21
64 85428 1280 960.83 494.65 362 494.65 105 108.51

128 171030 2560 955.14 491.77 362 491.77 105 108.78
256 339490 5120 943.89 486.02 356 486.02 104 107.93
512 685830 10240 953.93 491.18 364 491.18 106 109.18

MS (k=1) MS (k=2)

Page 1

(a) Comparison of PM state spaces

10

15

20

25

eq
ue

nc
y 
of
 d
iff
er
en

ce
 in
te
rv
al
s 

(%
)

DS is better
(negative difference)

MS is better
(positive difference)

0

5

‐100 ‐10 0 10 100 1000 10000

Re
la
ti
ve
 fr
e

PM state difference of DS and MS approaches (DS ‐MS)

(b) PM state difference profile

Fig. 12 Measurement results for the comparison of the domain-specific and the model-sensitive approaches

with the binary constraint hasSensors(RO,SE). In this
setup, only a single model with 53760 model elements (more
specifically, 2560 Routes, 10240 Switches, 30720 Sen-
sors, and 10240 SwitchPositions) was used. How-
ever, the pattern matching was executed with 3 different ini-
tial adornments. In each of the 3 cases, only a single variable
(namely, RO, SW, and SWP) was initially bound. Similarly to
Sec. 5.1, the complete process (including search plan gener-

ation) was repeated on each distinct Route, Switch, and
SwitchPosition, respectively.

Quantitative results. Figure 13(a) presents the data mea-
sured for the comparison of model-sensitive search plan gen-
eration techniques. The first column shows the type of those
objects that were designated as starting points in the measure-
ments, while the second column indicates how many such
objects existed in the model. The remaining columns present
the measured values for the graph-based algorithm (G) and

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



An Algorithm for Generating Model-Sensitive Search Plans for Pattern Matching on EMF Models 19

our dynamic programming based approach (DP), which lat-
ter used parameter values k = 1 and 2. The SP columns show
the average wall clock time3 needed for the search plan gener-
ation. The PM columns again denote the number of PM states
(i.e., elementary pattern matching steps), which was averaged
over all distinct starting points.

Starting Starting
point point SP PM SP PM SP PM
type # ms # ms # ms #

Route 2560 3.683 18.0 5.372 18.0 5.434 12.0

Switch 10240 1.041 4.5 5.141 4.5 5.148 4.5
SwitchPosition 10240 0.978 4.5 5.063 4.5 5.250 4.5

G DP (k=1) DP (k=2)

(a) Comparison of PM state spaces

20

25

30

35

40

45

en
cy
 o
f d

iff
er
en

ce
 in
te
rv
al
s 

(%
)

G is better
(negative difference)

DP is better
(positive difference)

0

5

10

15

‐10 0 10 100

Re
la
ti
ve
 fr
eq

ue

PM state difference of G and DP approaches  (G ‐ DP)

(b) PM state difference profile

Fig. 13 Measurement results for the comparison of the graph based
and the dynamic programming based algorithms

Evaluation. Figure 13(a) shows that our dynamic pro-
gramming based approach generates a search plan that is at
least as good as the one provided by the graph based al-
gorithm (G). In the case highlighted by the thick frames in
Fig. 13(a), the dynamic programming based technique with
parameter k = 2 produced a 33% speed-up in average. This
acceleration effect can be further analyzed using Fig. 13(b),
which depicts the relative frequency distribution histogram
of the PM state differences of G and DP approaches (with
parameter k = 2) when these differences are calculated on
a route-by-route basis for each of the 2560 starting points.
Fig. 13(b) shows that the G approach was better by 2 to 4
steps only in 0.508% of the 2560 cases (first column to the
left of the vertical axis), the search plan produced by our DP
algorithm was faster in 94.297% of the cases (columns to the
right of the vertical axis), while a draw occured in 5.195% of
the cases (column on the vertical axis).

The DP algorithm needs 50% to 400% more time than
the graph based approach to generate the search plan itself.
For a fair evaluation, it should be emphasized that the search
plan generation is still on the millisecond scale in both cases,
and it is executed only once while pattern matching is car-
ried out several times on large models. Additionally, the DP
algorithm can easily handle arbitrary cost functions and non-

binary constraints in an integrated manner, which are missing
features in the graph based approach.

An interesting observation can be made when examining
the effect of increasing the parameter value of the DP algo-
rithm from 1 to 2. Although the size of table T is doubled,
the increase in the time needed for search plan generation is
relatively small, which might be explained by the costliness
of the reachability analysis. As shown by Fig. 13(a), the DP
approach with parameter k = 1 produces exactly the same
search plan (and measurement results) as the graph based
technique. Based on our preliminary analysis, we suspect that
these algorithms always generate the same result, however,
this statement is still to be proven in the future.

5.3 Limitations of the Quantitative Evaluation

The presented performance evaluation has a number of limi-
tations. The most important and obvious restriction is that the
quantitative assessment of search plan generation and pattern
matching algorithms can never be complete due to the fact
that these are heuristic-based approaches, whose performance
can be measured, analyzed and compared in several different
scenarios, but the overall best technique cannot be determined
in a formally proven manner (e.g., by complexity analysis).

In this paper, our measurement setups have been limited
to (i) a single metamodel, (ii) one pattern having a small size
and a fixed arrangement, (iii) structurally similar models, and
(iv) a restricted starting point selection for the pattern match-
ing process.

Another unexplored issue is the quantitative comparison
of our model-sensitive pattern matching technique to the Ull-
mann [30] and VF2 [7] algorithms. In [10], these well-known
recursive backtracking algorithms were quantitatively com-
pared to each other with a clear statement that the VF2 ap-
proach outperformed the Ullmann algorithm. As shown in
[31], both the VF2 approach and our search plan based pat-
tern matching technique traverse a state space in a conceptu-
ally similar manner. However, while the VF2 algorithm em-
ploys a larger lookahead in the syntactic and semantic feasi-
bility rules, our approach filters the candidate pairs already in
an earlier phase by considering domain-specific restrictions,
which exploit the metamodel conformance of the underlying
models.

6 Related Work

This section surveys those related approaches that carry out
tasks that are similar to search plan generation. In this con-
text, query optimizers in different domains are investigated
first, which are followed by an overview on search plan driven
pattern matching techniques used in model transformation
tools.

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



20 Gergely Varró et al.

6.1 Query Optimization

From a methodological aspect, query optimization and search
plan generation aim to answer the same question, namely,
how to prepare search plans (without their actual execution)
in advance that can be efficiently carried out later on. For an
efficient plan execution, the search space to be traversed must
be as small as possible, or equivalently, the tree representing
the explorable search space should be narrow at the top (i.e.,
near to its root). A tree of such a shape can be achieved by
applying the well-justified principle to rank operations in a
decreasing order according to their selectivity starting with
the activity that filters out the most disallowed solutions. A
key point in this process is that estimating operation selectiv-
ity is a non-trivial task even if it is based on model statistics
that can be collected at various levels of granularity in the
different domains.

Optimization of relational database queries. In rela-
tional databases, the table contents can be used for query
optimization purposes to estimate join selectivity as already
suggested by [27] decades ago. When comparing relational
database approaches to model-based techniques, the gap in
the abstraction level of the different data models, which is fre-
quently bridged by an object-relational mapping [25], has to
be emphasized. Consequently, the operations in the query op-
timization process have differing granularities. For instance,
the number of links of a certain reference type defined in a su-
perclass is immediately available in an object-oriented setup,
while a query optimizer in a relational database cannot di-
rectly access this information as it is typically stored in an-
other table. A further general characteristic difference is that
relational database management systems store the table con-
tents on disk, while our approach operates on models in the
main memory.

A graph based algorithm is proposed in [19] to prepare
execution plans that describe the order in which joins in an
SQL query have to be performed. The algorithm calculates
a directed spanning tree similarly to [12,34], and it produces
a near optimal execution plan in polynomial time. The cost
function in our approach uses only the estimated number of
intermediate results as an optimization criterion, in contrast
to [19], which additionally considers the size of the tuples in
the cost calculations. Note that such a kind of extension could
be easily integrated into our algorithm in the future.

Another sophisticated join optimizer is presented in [21],
which uses singleton sets to represent tables participating in
a join, and combines these sets in all possible ways by a dy-
namic programming algorithm. This technique always pro-
duces an optimal query execution plan by exploring 2n com-
binations, which takes at least 7 minutes for complex joins on
20 tables, in contrast to our approach, which traverses only
a limited search space if the parameter k is set to a small
constant value to be able to provide good search plans in a
practially reasonable amount of time. Moreover, our dynamic
programming algorithm is able to handle search plan validity
restrictions, e.g., caused by unidirectionally navigable refer-
ences, which are non-existing setups in join opitmization.

Optimization of graph queries from the semantic web
domain. In the semantic web domain, SPARQL queries can
be used to formulate graph patterns. Finding the optimal join
order in such queries can be interpreted as a search plan gen-
eration task. The query engines that support the SPARQL
language can operate either on disk-based or on in-memory
models. In the first case, the join order is determined by the
underlying relational database yielding to solutions with the
already mentioned advantages and disadvantages. In the other
case, the in-memory models are persisted in a triple (or RDF)
store, which employs a generic data model representing do-
main concepts in a flat (or unstructured) manner as triples that
use string labels as identifiers. In contrast, a model-based ap-
proach can easily describe the same concepts in a structured
manner. For example, links that are instances of a reference
type in a superclass are immediately accessible in an EMF
model, while looking up the same information already re-
quires a sequence of joins to perform on a triple store. Based
on these observations and on the corresponding statements
of [18], more joins have to be carried out during the execu-
tion of a SPARQL query in comparison with the number of
operations and joins performed for a similar graph and SQL
query in a model-based pattern matcher and a query engine
of a relational database, respectively.

While our approach generates a separate search plan for
each pattern, the technique proposed in [18] recognizes com-
mon substructures in multiple SPARQL queries, and rewrites
these queries into an equivalent form that is more efficiently
executable. In order to rank joins according to their selec-
tivity, the estimations [28] are based on precomputed statis-
tics from the dataset in the triple store. More specifically, se-
lectivity is represented by a number from the [0, 1] interval.
An unbound variable does not provide any filtering which is
marked by the corresponding 1 value, while the selectivity of
a bound variable depends on whether the variable plays the
subject, object, or predicate role in a triple. The selectivity of
a triple is defined by the product of the corresponding selec-
tivity values calculated for the 3 variables. The experiences
in [28] show that estimations based on this technique become
inaccurate if the number of joins increases, which is a typical
scenario in case of SPARQL queries.

To improve the precision of the selectivity estimations,
which have a highly critical role in optimization of SPARQL
queries, [22] introduces a selectivity measure for pairwisely
joined triples, which corresponds to the situation if weights
for operation sequences of length 2 were established in our
approach. In this context, [22] collects statistics about triples,
all of their pre-aggregated binary and unary projections, and
about all triple combinations, which might be a feasible tech-
nique for flat data models, but not necessarily in a model-
based setup, which has to handle hierarchical data structures
in a dynamically changing environment.

Query optimization in object-oriented databases. As
[23] gives an excellent survey on query processing in object-
oriented database management systems (OODBMS), we fo-
cus only on the most important similarities and differences
between graph pattern matching and object-oriented queries.

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



An Algorithm for Generating Model-Sensitive Search Plans for Pattern Matching on EMF Models 21

The first observation is that both domains use the object-
oriented data model. Queries in an OODBMS are defined by
object algebraic expressions, which constitute a richer lan-
guage in comparison with the basic graph pattern formalism
that excludes advanced pattern composition constructs [3].

Search plan generation in object-oriented databases is a
complex tree transformation that processes object algebraic
expressions and produces operation trees. In this method, ei-
ther algebraic or path expression based techniques are applied
for optimization purposes. In algebraic optimizers, which ma-
nipulates the abstract syntax tree representation of the alge-
braic expressions, an exhaustive search is carried out that ex-
plores and enumerates the entire search space, in contrast
to our approach. Techniques using path expressions embed
model navigations into the where clause of the operation tree.
In this context, determining an optimal sequence of model
navigations could be interpreted as a search plan generation
procedure from the graph pattern matching domain, however,
query optimizers in object-oriented databases cannot reverse
navigations along bidirectional references.

6.2 Search Plan Driven Pattern Matching in Model
Transformation Tools

Numerous useful model transformation tools are now sur-
veyed, which internally perform search plan driven pattern
matching. A more detailed comparison of pattern matcher en-
gines is provided in [32].

Search plan driven pattern matchers. Fujaba [11] uses
a search plan generation strategy that solely exploits type and
multiplicity restrictions, which are derived from the meta-
model. According to the used strategy, a navigation along an
edge with an at most one multiplicity precedes navigations
along edges with arbitrary multiplicity. Fujaba originally op-
erated on top of a non-standard model representation, but re-
cent versions can handle EMF models as well.

Pattern matchers with model-sensitive search plans.
Although Fujaba [13] is a model-sensitive approach and runs
on EMF models, it has only a simple greedy strategy to con-
trol pattern matching. GrGen [12] and Viatra [34], which em-
ploy model-sensitive search plans, operate on a non-standard
modeling layer, which has a number of consequences. On one
hand, these tools can use an arbitrary and optimized model
representation, which can already have an integrated support
for statistical data collection. On the other hand, if these tools
aim to manipulate EMF-compliant models, then they have
to be converted by import and export mechanisms, which
(i) is not always possible for legacy EMF-based systems, and
(ii) results in the inherent duplication of the complete model,
which has a significant negative impact on the memory con-
sumption. Since all other similarities and distinctions of Gr-
Gen, Viatra, and our approach are related to the employed
search plan generation algorithms, these are evaluated in the
following paragraphs.

Analysis of model-sensitive search plan generation al-
gorithms. In contrast to our dynamic programming search

plan generation algorithm, GrGen and Viatra use graph based
techniques, which are obviously sufficient for sorting and fil-
tering unary and binary constraints, which are the most wide-
spread restriction types, but these solutions lack the integrated
handling of general n-ary constraints, which are required for
ordered references and pattern composition [14]. Both Gr-
Gen and Viatra support the construction of complex patterns
from simpler ones, but the calculation of matches along pat-
tern composition is scheduled by a separate piece of code and
not the core search plan algorithm.

Search plan costs are calculated from the weights of op-
erations as a sum

∑
i woi in Viatra, and as a product

∏
i woi

in GrGen, which can also be restructured to a sum by using
the logarithm operator (i.e.,

∑
i lnwoi ). As a graph based al-

gorithm provides a provably optimal solution with these cost
functions, they are perfect for filtering operations, but com-
pletely useless for sorting due to the insensitivity of these cost
functions to the operation order.

A dynamic programming algorithm can cope with more
complex cost functions, and it can provably find the optimum,
if the whole solution space is explored when k =

(
n
bn2 c
)
. For

a smaller k, the optimality is no longer guaranteed as the op-
timal search plan might have a prefix that is not among the
best k adornment disjoint solutions at some point, and thus,
this solution is discarded. In this sense, the selection of k can
be considered as a trade-off between the polynomial runtime
of the algorithm and the proven optimality of the solution.

Finally, it must be emphasized that the overall success
of model-sensitive search plan generation algorithms highly
rely on a strong correlation between the search plan cost and
the size of the actually traversed state space, which is only
a hypothesis that was thoroughly analyzed in [4], but not a
provable fact.4

7 Conclusion

In this paper, we proposed a novel search plan generation
algorithm based on dynamic programming together with a
model-sensitive cost function to speed up pattern matching
in practice. Although the approach was exemplified with a
cost function defined for EMF models, the technique itself is
independent from the underlying modeling layer and it can
be used with an arbitrary (iteratively computable) cost func-
tion. Our comprehensive description presented the main algo-
rithm, its precompilation steps and all the subprocedures. Ad-
ditionally, the search plan generation algorithm and its run-
time effects on the pattern matching engine have been evalu-
ated by complexity analysis techniques and by (hardware and
JVM independent) quantitative performance measurements,
respectively.

Our future tasks are to repeat measurements in additional
scenarios, and to embed the pattern matching framework into
different modeling tools.

4 This means that the execution of the optimal search plan does
not necessarily result in the traversal of the smallest state space.

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



22 Gergely Varró et al.

Acknowledgements The authors acknowledge the help of Benedek
Izsó, István Ráth and Dániel Varró in providing us the railway sce-
nario for the measurements.

References

1. Efficient instance-level ontology validation by incremen-
tal model query techniques. http://viatra.inf.mit.
bme.hu/publications/trainbenchmark, accessed:
15/10/2012

2. Anjorin, A., Varró, G., Schürr, A.: Complex attribute manipu-
lation in TGGs with constraint-based programming techniques.
In: Hermann, F., Voigtländer, J. (eds.) Proc. of the 1st Interna-
tional Workshop on Bidirectional Transformations. Electronic
Communications of the EASST, vol. 49 (Mar 2012)

3. Balogh, A., Varró, D.: Advanced model transformation lan-
guage constructs in the VIATRA2 framework. In: Proc. of the
21st ACM Symposium on Applied Computing. pp. 1280–1287.
ACM Press, Dijon, France (April 2006)

4. Batz, G.V., Kroll, M., Geiß, R.: A first experimental evalua-
tion of search plan driven graph pattern matching. In: Schürr,
A., Nagl, M., Zündorf, A. (eds.) Proc. of the 3rd International
Symposium on the Applications of Graph Transformation with
Industrial Relevance. LNCS, vol. 5088, pp. 471–486. Springer
(2008)

5. Buchmann, T., Westfechtel, B., Winetzhammer, S.: The added
value of programmed graph transformations – a case study from
software configuration management. In: Schürr, A., Varró, D.,
Varró, G. (eds.) Proc. of the 4th International Symposium on
Applications and Graph Transformations with Industrial Rel-
evance. LNCS, vol. 7233, pp. 198–209. Springer, Budapest,
Hungary (Oct 2012)

6. Byröd, M., Lennartson, B., Vahidi, A., Åkesson, K.: Efficient
reachability analysis on modular discrete-event systems using
binary decision diagrams. In: Proc. of the 8th International
Workshop on Discrete Event Systems. pp. 288–293. IEEE
(2006)

7. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: An improved
algorithm for matching large graphs. In: Proc. of the 3rd IAPR-
TC15 Workshop on Graph-based Representations in Pattern
Recognition. pp. 149–159 (May 2001)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Intro-
duction to Algorithms. The MIT Press, 3rd edn. (Sep 2009)

9. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story dia-
grams: A new graph rewrite language based on the Unified
Modeling Language. In: Engels, G., Rozenberg, G. (eds.) Proc.
of the 6th International Workshop on Theory and Applica-
tion of Graph Transformation. LNCS, vol. 1764, pp. 296–309.
Springer (1998)

10. Foggia, P., Sansone, C., Vento, M.: A performance comparison
of five algorithms for graph isomorphism. In: Proc. of the 3rd
IAPR-TC15 Workshop on Graph-based Representations in Pat-
tern Recognition. pp. 188–199 (May 2001)

11. Geiger, L., Schneider, C., Reckord, C.: Template- and model-
based code generation for MDA-tools. In: Giese, H., Zündorf,
A. (eds.) Proc. of the 3rd International Fujaba Days. pp. 57–
62 (2005), ftp://ftp.upb.de/doc/techreports/
Informatik/tr-ri-05-259.pdf

12. Geiß, R., Batz, V., Grund, D., Hack, S., Szalkowski, A.M.:
GrGen: A fast SPO-based graph rewriting tool. In: Corradini,
A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.)

Proc. of the 3rd International Conference on Graph Transfor-
mation. LNCS, vol. 4178, pp. 383–397. Springer (2006)

13. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and
scalability by interpreting story diagrams. In: Margaria, T., Pad-
berg, J., Taentzer, G. (eds.) Proc. of the 8th Int. Workshop on
Graph Transformation and Visual Modeling Techniques. ECE-
ASST, vol. 18 (2009)

14. Horváth, Á., Varró, G., Varró, D.: Generic search plans for
matching advanced graph patterns. In: Ehrig, K., Giese, H.
(eds.) Proc. of the 6th International Workshop on Graph Trans-
formation and Visual Modeling Techniques. Electronic Com-
munications of the EASST, vol. 6. Braga, Portugal (Mar 2007)

15. Jouault, F., Kurtev, I.: Transforming models with ATL. In:
Bézivin, J., Rumpe, B., Schürr, A., Tratt, L. (eds.) Proc. of the
International Workshop on Model Transformation in Practice.
LNCS, vol. 3844, pp. 128–138. Springer (2005)

16. Lambers, L., Hildebrandt, S., Giese, H., Orejas, F.: Attribute
handling for bidirectional model transformations: The triple
graph grammar case. In: Hermann, F., Voigtländer, J. (eds.)
Proc. of the 1st International Workshop on Bidirectional Trans-
formations. Electronic Communications of the EASST, vol. 49.
Tallinn, Estonia (Mar 2012)

17. Lauder, M.: Incremental Model Synchronization with
Precedence-Driven Triple Graph Grammars. Ph.D. thesis,
Technische Universität Darmstadt (Feb 2013)

18. Le, W., Kementsietsidis, A., Duan, S., Li, F.: Scalable multi-
query optimization for SPARQL. In: Gehrke, J., Ooi, B.C., Pi-
toura, E. (eds.) Proc. of the 2012 IEEE 28th International Con-
ference on Data Engineering. pp. 666–677. IEEE Computer So-
ciety, Arlington, Virginia, USA (2012)

19. Lee, C., Shih, C.S., Chen, Y.H.: Optimizing large join queries
using a graph-based approach. IEEE Transactions on Knowl-
edge and Data Engineering 13(2), 298–315 (2001)

20. Meinel, C., Theobald, T.: Algorithms and Data Structures in
VLSI Design: OBDD Foundations and Applications. Springer
(1998)

21. Moerkotte, G., Neumann, T.: Analysis of two existing and one
new dynamic programming algorithm for the generation of op-
timal bushy join trees without cross products. In: Proc. of the
32nd International Conference on Very Large Data Bases. pp.
930–941. VLDB Endowment, Seoul, Korea (2006)

22. Neumann, T., Weikum, G.: Scalable join processing on very
large RDF graphs. In: Binnig, C., Dageville, B. (eds.) Proc. of
the 2009 ACM SIGMOD International Conference on Manage-
ment of Data. pp. 627–640. ACM, Providence, Rhode Island,
USA (2009)

23. Özsu, M.T., Blakeley, J.A.: Query processing in object-oriented
database systems. ACM Transactions on Information Systems
8, 387–430 (1994)

24. Rensink, A.: The GROOVE simulator: A tool for state space
generation. In: Pfalz, J.L., Nagl, M., Böhlen, B. (eds.) Proc. of
the 2nd International Symposium on the Applications of Graph
Transformations with Industrial Relevance. LNCS, vol. 3062,
pp. 479–485. Springer (2004)

25. Roebuck, K.: Object-Relational Mapping: High-Impact Strate-
gies - What You Need to Know: Definitions, Adoptions, Im-
pact, Benefits, Maturity, Vendors. Lightning Source Incorpo-
rated (2011)

26. Rozenberg, G. (ed.): Handbook of Graph Grammars and Com-
puting by Graph Transformation, vol. 1: Foundations. World
Scientific (1997)

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2



An Algorithm for Generating Model-Sensitive Search Plans for Pattern Matching on EMF Models 23

27. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A.,
Price, T.G.: Access path selection in a relational database man-
agement system. In: Bernstein, P.A. (ed.) Proc. of the 1979
ACM SIGMOD International Conference on Management of
Data. pp. 23–34. ACM, Boston, Massachusetts, USA (1979)

28. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds,
D.: SPARQL basic graph pattern optimization using selectivity
estimation. In: Ma, W.Y., Tomkins, A., Zhang, X. (eds.) Proc.
of the 17th International Conference on World Wide Web. pp.
595–604. ACM, Beijing, China (Apr 2008)

29. The MOGENTES project: http://www.mogentes.eu/
30. Ullmann, J.R.: An algorithm for subgraph isomorphism. Jour-

nal of the ACM 23(1), 31–42 (Jan 1976)
31. Varró, G.: Advanced Techniques for the Implementation of

Model Transformation Systems. Ph.D. thesis, Budapest Univer-
sity of Technology and Economics (Apr 2008)

32. Varró, G., Anjorin, A., Schürr, A.: Unification of compiled
and interpreter-based pattern matching techniques. In: Tolva-
nen, J.P., Vallecillo, A. (eds.) Proc. of the 8th European Con-
ference on Modelling Foundations and Applications. Lecture
Notes in Computer Science, vol. 7349, pp. 368–383. Springer,
Lyngby, Denmark (Jul 2012)

33. Varró, G., Deckwerth, F., Wieber, M., Schürr, A.: An algorithm
for generating model-sensitive search plans for EMF models.
In: Hu, Z., de Lara, J. (eds.) Proc. of the 5th International Con-
ference on Model Transformation. Lecture Notes in Computer
Science, vol. 7307, pp. 224–239. Springer, Prague, Czech Re-
public (May 2012)

34. Varró, G., Varró, D., Friedl, K.: Adaptive graph pattern match-
ing for model transformations using model-sensitive search
plans. In: Karsai, G., Taentzer, G. (eds.) Proc. of International
Workshop on Graph and Model Transformation. Electronic
Notes in Theoretical Computer Science, vol. 152, pp. 191–205.
Elsevier, Tallinn, Estonia (Sep 2005)

35. Wickes, W.E.: Logic Design with Integrated Circuits. John Wi-
ley & Sons, Inc. (1968)

36. Zündorf, A.: Graph pattern matching in PROGRES. In: Cuny,
J., Ehrig, H., Engels, G., Rozenberg, G. (eds.) Proc. 5th Int.
Workshop on Graph Grammars and Their Application to Com-
puter Science. LNCS, vol. 1073, pp. 454–468. Springer (1996)

The final publication is available at http://link.springer.com/article/10.1007%2Fs10270-013-0372-2




