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Abstract. This paper presents a constructive, model-driven methodol-
ogy for designing dynamic topology control algorithms. The proposed
methodology characterizes valid and high quality topologies with declar-
ative graph constraints and formulates topology control algorithms as
graph transformation systems. Afterwards, a well-known static analysis
technique is used to enrich graph transformation rules with application
conditions derived from the graph constraints to ensure that this im-
proved approach always produces topologies that (i) are optimized wrt.
to a domain-specific criterion, and (ii) additionally fulfill all the graph
constraints.
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1 Introduction

In the telecommunication engineering domain, wireless sensor networks (WSNs)
[14] are a highly active research area. For instance, WSNs are applied to moni-
tor physical or environmental conditions with distributed, autonomous, battery-
powered measurement devices that cooperatively transmit their collected data
to a central location. To extend the battery lifetime of these measurement de-
vices, topology control (TC) [14] is carried out on WSNs to inactivate redundant
communication links by reducing their transmission power. The most significant
requirements on TC algorithms include the ability to (i) handle continuously
changing network topologies, (ii) operate in a highly distributed environment,
in which each node can only observe and modify its local neighborhood, and
(iii) still guarantee important local and global formal properties for their neigh-
borhood and the whole network, respectively.

The design and implementation of TC algorithms are, therefore, challenging
and elaborate tasks, especially if a high quality of service is a non-functional
requirement of the overall WSN. In a typical development setup, several vari-
ants of different TC approaches have to be prepared and quantitatively assessed
in an iterative process. In each iteration, (i) a new variant must be individually
designed and implemented for a distributed environment, (ii) the preservation of
required formal properties (e.g., connectivity) must be proved, and (iii) perfor-
mance measurements must be carried out in a corresponding runtime environ-
ment (testbed or simulator). This last point also assumes an interaction between
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the TC algorithm and the runtime environment. More specifically, the runtime
environment alters the topology, which has to be repaired by the TC algorithm
in an incremental manner, namely, by retaining unaltered parts of the topology
as much as possible.

The main challenge with the individual design of each new algorithm variant
is that it strongly relies on the experience of highly qualified experts. To enable
a more systematic and well-engineered approach, model-driven principles [1] can
be applied to the development of TC algorithms, as in the case of many other
success stories [17]. More specifically, topologies can be described by graph-
based models, and possible local modifications in the topology can be specified
declaratively with graph transformation (GT) rules [13]. Although this approach
provides a well-defined procedure for repairing the topology even in a distributed
environment, it cannot ensure that all required formal properties hold for the
repaired topology.

A well-known, constructive, static analysis technique [7] has been established
in the GT community to formulate structural invariants and to guarantee that
these invariants hold. In this setup, graph constraints specify positive or negative
patterns, which must be present in or missing from a valid graph, respectively. An
automated process then derives additional rule application conditions from graph
transformation rules and graph constraints to ensure that the application of the
enriched new rules never produces invalid graphs. Although this technique has
already been employed in scenarios where graph constraints represent invariants
that must hold permanently [10], its applicability in the TC domain is hindered
by the fact that topology modifications performed by the runtime environment
may temporarily (and unavoidably) violate graph constraints.

In this paper, we propose a new, constructive, model-driven methodology
for designing TC algorithms by graph transformation. We demonstrate the ap-
proach on the kTC algorithm [15]. More specifically, we define graph constraints
from algorithm-specific formal and quality requirements to characterize valid
and high quality topologies. Such desirable topologies are to be produced by a
TC algorithm, which is formulated as a graph transformation system. We iter-
atively refine this transformation by applying the constructive approach of [7],
which enriches the rules at compile-time with additional application conditions,
derived from the graph constraints. Finally, we prove that our improved GT-
based TC algorithm terminates and always produces connected topologies that
fulfill all the graph constraints.

Section 2 introduces modeling and TC concepts. Section 3 describes graph
constraints and their application to describe invariants of TC algorithms. Sec-
tion 4 illustrates GT concepts on a basic TC algorithm. Section 5 delineates the
construction methodology that enriches the generic TC algorithm with graph
constraints. Section 6 summarizes related work, and Section 7 concludes our
paper with a summary and an outlook.



2 Modeling Concepts and Topology Control

This section introduces fundamental modeling and topology control concepts.

2.1 Basic Modeling Concepts

A metamodel describes the basic concepts of a domain as a graph. In this paper,
network topologies are used as a running example, whose metamodel is shown
in Figure 1a. Classes represent the nodes of the metamodel, and associations
represent the edges between classes. An association end is labeled with a mul-
tiplicity, which restricts the number of target objects that can be reached by
navigating along an association in the given direction. Attributes (depicted in
the lower part of the classes) store values of primitive or enumerated types.

Topology

Node Link
w : Real
s : {A, I, O}

2 0..*
0..* 0..*

(a) Metamodel

e3 : Link
s(e3) = O
w(e3) = 2.0

n3 : Noden1 : Node

t : Topology
e1 : Link

s(e1) = O
w(e1) = 1.4

e2 : Link
s(e2) = O
w(e2) = 1.6

n2 : Node

n3 : Node

(b) Abstract syntax

e3[2.0;O]n1 n3

n2

e1[1.4;O] e2[1.6;O]

(c) Concrete syntax

Fig. 1: Topology metamodel and a sample topology in abstract/concrete syntax

A topology is a graph that consists of nodes and (communication) links be-
tween nodes. As specified in Figure 1a, a link connects exactly 2 nodes, and
a node can be an endpoint of zero or more incident links. A link e has an
algorithm-specific weight w(e) and state s(e) attribute, whose role will be ex-
plained together with the corresponding topology control concepts, shortly.
Example. Figures 1b and 1c depict a sample topology with three nodes (n1,n2,n3)
and three links (e1,e2,e3) forming a triangle in abstract and concrete syntax, re-
spectively. In the rest of the paper, the concrete syntax notation is used, which
denotes nodes and links by black circles and solid lines, respectively. Each link
is labeled with its name, followed by its weight and state in brackets.

2.2 Topology Control

Topology control (TC) is the discipline of adapting WSN topologies to optimize
network metrics such as network lifetime [14]. The nodes in a WSN topology are
often battery-powered sensors, which limits the lifetime of the network. For each
node, TC selects a logical neighborhood, which is a subset of the nodes within its
transmission range. Afterwards, each node may reduce its transmission power to
reach its farthest logical neighbor. The weight attribute w(e) of a link e describes



the cost of communicating across this link. In this paper, we use the distance of
the end nodes of a link as a weight metric.

Figure 2 shows the interaction of an evolving network, represented as a stream
of topology change events (e.g., link weight change, addition or removal of nodes
or links1), and a topology control algorithm, which takes an input topology and pro-
duces an output topology, which is a subgraph of the input topology. In this setup,
a batch TC algorithm reconsiders every link in the topology in each execution,
irrespective of the actual topology change events, while an incremental TC al-
gorithm only reevaluates the modified parts of the topology. In this paper, we
assume that no topology change events occur while the TC algorithm is running.

Network
Topology Control

Algorithm

Topology
Change Events

Output
Topology

Input
Topology

Fig. 2: Modification of the topology by network evolution and TC algorithm

We introduce a state attribute for links to handle topologies in transition and
to describe batch and incremental TC algorithms uniformly. A link is active (A)
or inactive (I) if it is included in or excluded from the output topology by the TC
algorithm, respectively. A link is outdated (O) if it has not yet been categorized
as active or inactive by the TC algorithm. A topology control algorithm tries to
activate or inactivate outdated links, while topology change events may outdate
links. Note that the set of active links represents the output topology, which is
always a subgraph of the whole input topology.

Important properties of topologies and TC. Every TC algorithm must
(i) terminate without outdated links and (ii) preserve topology connectivity. The
first property ensures that each link in the input topology is definitely part or not
part of the output topology. A topology is connected if the subgraph induced by
its active and outdated links is connected. This entails that the output topology
is connected if and only if its subgraph induced by the active links is connected.

Example. Figure 3 illustrates an incremental variant of the kTC algorithm [15],
which inactivates exactly those links in the sample topology that are the longest
link in a triangle and that are at least k-times longer than the shortest link in
the same triangle. We always assume k > 1.

Initially, all links are outdated �. The first execution of kTC (k = 1.5)
activates or inactivates all links �. A move of node n4 might trigger a weight
change on link e4, which outdates this link�. As link e4 is no longer the longest
link in the triangle (n2,n3,n4), the next (incremental) iteration of kTC activates
e2, inactivates e4, and retains the state of links e1, e3, and e5 �.

1 Such events occur, e.g., when nodes move and join or leave the network.
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Fig. 3: Incremental topology control with kTC

3 Characterizing Topologies with Graph Constraints

As a first step in our constructive TC design methodology, formal properties and
quality requirements of the TC algorithm are analyzed, and graph constraints
are defined as invariants to characterize valid and high quality topologies.

A pattern is a graph consisting of node and link variables together with a
set of attribute constraints. A node (link) variable serves as a placeholder for a
node (link) in a topology. An attribute constraint is a predicate over attributes
of node and link variables. A match of a pattern P in a topology G maps the
node and link variables of P to the nodes and links of G, respectively, such
that this mapping preserves the end nodes of the link variables and all attribute
constraints are fulfilled.

A graph constraint consists of a premise pattern and a conclusion pattern
such that (i) the premise is a subgraph of the conclusion, and (ii) the attribute
constraints of the conclusion imply the attribute constraints of the premise. A
positive (negative) graph constraint P (N ) is fulfilled on a topology G if each
match of the premise in the topology G can (cannot) be extended to a match of
the conclusion in the same topology G.
Demonstration on kTC. For our running example, we specify three con-
straints: two algorithm-specific constraints of kTC and a third constraint that
forbids outdated links in the output topology.

kTC inactivates a link if and only if this link is the longest link in a triangle
and if it is additionally at least k-times longer than the shortest link in the same
triangle. This equivalence yields the following two constraints:

⇒ The inactive-link constraint Pinact, depicted in Figure 4a, states that each
inactive link emax must be part of a triangle in which (i) emax is the longest
link, (ii) emax is at least k-times longer than the shortest link, and (iii) es1
and es2 are either active or inactive.

⇐ The active-link constraint Nact, depicted in Figure 4b, states that no active
link emax may be part of a triangle in which (i) emax is the longest link,
(ii) emax is at least k-times longer than the shortest link, and (iii) es1 and es2
are either active or inactive.

Due to the attribute constraints that require es1 and es2 to be active or
inactive, the active-link constraint may only be violated and the inactive-link



constraint may only be fulfilled if all links in the triangle are either active or
inactive. Therefore, topology change events never violate the active-link con-
straint Nact because no new match of its conclusion may arise. In contrast, the
inactive-link constraint Pinact may be violated by a topology change event, for
instance, if an inactive link belongs to exactly one match of the conclusion of
Pinact and if any of the links es1 or es2 gets outdated.

Finally, the outdated-link constraint Nout, depicted in Figure 4c, describes the
general requirement that the (output) topology shall not contain any outdated
links. Any outdated link causes a violation of Nout because its premise and
conclusion are identical.

emax

es1 es2

s(emax) == I
s(es1) ≠ O ; s(es2) ≠ O
w(emax) ≥ k * min(w(es1), w(es2))
w(emax) ≥ max(w(es1), w(es2))

emax

s(emax) == I

Conclusion

Premise

(a) Pinact

emax

es1 es2

s(emax) == A 
s(es1) ≠ O ; s(es2) ≠ O
w(emax) ≥ k * min(w(es1), w(es2))
w(emax) ≥ max(w(es1), w(es2))

Conclusion

Premise

emax

s(emax) == A

(b) Nact

Conclusion

e

s(e) == O

Premise

e

s(e) == O

(c) Nout

Fig. 4: Two algorithm-specific constraints and one general graph constraint

4 Specifying Topology Control with Programmed Graph
Transformation

In the second step of our design methodology, topology change events and TC
operations are described by graph transformation (GT) rules. The dynamic be-
havior of TC algorithms is specified by programmed graph transformation [4],
which carries out basic topology modifications by applying graph transformation
rules whose execution order is defined by an explicit control flow.
Programmed Graph Transformation Concepts. A mapping from pattern
P to pattern P ′ maps a subset of node and link variables of pattern P to a subset
of node and link variables of pattern P ′, respectively, such that this mapping
preserves the end nodes of the link variables. A graph transformation rule con-
sists of a left-hand side (LHS) pattern, a right-hand side (RHS) pattern, negative



application condition (NAC) patterns, and mappings from the LHS pattern to
the RHS and NAC patterns. To enable meaningful attribute assignments, the
predicate in the attribute constraints of the RHS pattern can only be an equation
with an attribute of a single node or link variable on its left side.

A GT rule is applicable to a topology G if a match of the LHS pattern exists
in the topology that cannot be extended to a match of any NAC pattern. The
application of a GT rule at a match of its LHS pattern to a topology G produces a
topology G′ by (1) preserving all nodes (links) of the topology that are assigned
to a node (link) variable of the LHS pattern, which has a corresponding node
(link) variable in the RHS pattern (black elements without additional markup);
(2) removing those nodes (links) of the topology that are assigned to a node (link)
variable of the LHS pattern, which has no corresponding node (link) variable
in the RHS pattern (red elements with a ’−−’ markup); (3) adding a new node
(link) to the topology for each node (link) variable of the RHS pattern, which
has no corresponding node (link) variable in the LHS pattern (green elements
with a ’++’ markup); and (4) assigning node (link) attributes (operator ’:=’) in
such a manner that the attribute constraints of the RHS pattern are fulfilled.

Control flow is specified in our approach with an activity diagram based
notation in which each activity node contains a graph transformation rule. A
regular activity node (denoted by a single framed, rounded rectangle) with one
unlabeled outgoing edge applies the contained GT rule once to one arbitrary
match. A regular activity node with an outgoing [Success] and [Failure] edge ap-
plies the contained GT rule and follows the [Success] edge if the rule is applicable
at an arbitrary match, and it follows the [Failure] edge if the rule is inapplicable.
A foreach activity node (denoted by a double framed rounded rectangle) applies
the contained GT rule to all matches and traverses along the optional outgoing
edge labeled with [EachTime] for each match. When all the matches have been
completely processed, the control flow continues along the [End] outgoing edge.
Black and green node and link variables are bound by a successful rule applica-
tion. Subsequent activity nodes can reuse nodes and links that have been bound
by an earlier rule application.

Example. Figure 5 depicts GT rules for each of the five possible topology change
events – link weight change (Rchg), link addition (RaddLink), link removal (RremLink),
node addition (RaddNode), and node removal (RremNode) – and the two TC rules, link
activation (Ract) and link inactivation (Rinact). In Figure 5, x1 denotes the new
weight w(e) of link e. Modified and new links are marked as outdated.

Figure 6 shows a basic TC algorithm that activates all outdated links.2 Link
variable eO is bound by Rloop and reused in Ract and Rinact. Check marks inside
the gray boxes indicate which constraints must be fulfilled in the input topology
(precondition3) and which constraints will be fulfilled in the output topology
(postcondition).

2 The inactivation rule Rinact is deliberately unreachable and only shown for completeness.
3 The example in Section 3 contains a discussion why certain preconditions may be violated.



eRchg

s(e)u:=uO
w(e)u:=ux1

s(e)u:=uO
w(e)u:=ux1

RaddLink e

RremLink e

RaddNode

RremNode

TopologyuChangeuEventuRules

Ract e

Rinact e

TopologyuControluRules

s(e)u:=uA

s(e)u:=uI

++
++

– – – –

Fig. 5: GT rules describing topology change events and TC rules

[End]

[EachTime] [Failure]

[Success]

Ract RinactRloop

eO

s(eO) == O

eO

s(eO) := A

eO

s(eO) := I

Precon.
�act ✓

�inact X

�out X

Postcon.
�act X

�inact X

�out ✓

Fig. 6: Basic TC algorithm

5 Enriching the Graph Transformation with Constraints

The third step of our design methodology is to enrich graph transformation
rules step-by-step with additional application conditions that are derived from
the graph constraints. The resulting topology control algorithm always produces
output topologies that fulfill all the graph constraints.

Our approach is demonstrated again on an incremental variant of kTC. Fig-
ure 7 serves as an overview, particularly during the subsequent sections. The final
transformation is produced by iteratively refining the generic TC algorithm of
Figure 6 according to the following procedure.

Section 5.1 To ensure that the active-link constraint Nact is still fulfilled in
the output topology, a NAC derived from the active-link constraint Nact is
attached to the activation rule Ract and the inactivation rule Rinact. This step

produces the refined rules R
(2)
act and R

(2)
inact.

Section 5.2 To ensure that the inactive-link constraint Pinact is fulfilled in the
output topology, two steps are necessary: (i) The LHS pattern of the inacti-

vation rule R
(2)
inact is extended by the inactive-link constraint Pinact, resulting

in the refined rule R
(3)
inact. (ii) A NAC derived from the inactive-link constraint

Pinact is attached to a new (preprocessing) rule Rpre.
Section 5.3 To ensure that the outdated-link constraint Nout is fulfilled in the

output topology, the LHS pattern of a new (NAC match eliminating) rule
RelimNAC is constructed from the common NACs of the activation and inac-
tivation rules R

(2)
act and R

(3)
inact.



[Failure]

[Success] [Failure]

[Success]
kTC(k : Real)

R(2)
act R(3)

inact
[End]Rpre RelimNAC

[End]
Rloop

Section&5.2 Section&5.3 Section&5.1 Sections&5.1&&&5.2Section&5.3

[End]

[EachTime]

eO

s(eO)&==&O

preprocessing main&loop

Precon.
�act&✓

�inact X

�out X

Postcon.
�act&✓

�inact&✓

�out ✓

Fig. 7: kTC algorithm after performing steps of Sections 5.1 – 5.3

Section 5.4 The connectivity of the output topology and the termination of
the final version of kTC algorithm are proved.

5.1 Fulfilling the Active-Link Constraint

This first step ensures that the active-link constraint Nact is fulfilled in the
output topology. Since the input topology fulfills the constraint, it is enough to
ensure that applying the activation and inactivation rules does not violate the
active-link constraint Nact.

Methodology. The methodology to ensure that a GT rule fulfills a negative
constraint is well-known in literature [7]: The negative constraint is translated
into a number of NACs of the GT rules. Each overlap of the conclusion of the
negative constraint with the RHS of the rule yields one NAC.

Demonstration on kTC. First, we consider the activation rule Ract: The con-
clusion of the active-link constraint Nact and the RHS of the activation rule Ract

can be glued in three different ways such that the link eO overlaps with the link
variables emax, es1, or es2, respectively. This yields the three NACs Nmax, Ns1, and
Ns2. Note that the latter two NACs are equivalent in the sense that any match of
Ns1 is also a match of Ns2, and vice versa. Figure 8 depicts the refined activation

rule R
(2)
act .

Next, we consider the inactivation rule Rinact: The conclusion of the inactive-
link constraint Pinact and the RHS of the inactivation rule Rinact can be glued in
two ways such that the link eO overlaps the link variables es1 or es2, respectively.
This yields two equivalent NACs, Ns1 and Ns2, which are isomorphic to the NACs

of R
(2)
act with the same name. Figure 9 depicts the refined inactivation rule R

(2)
inact.

Due to the added NACs, applying the refined activation rule R
(2)
act and the

refined inactivation rule R
(2)
inact never violates the active-link constraint Nact.



s(e11)3≠3O3;3s(e12)3≠3O
w(eO)3≥3k3*3min(w(e11),3w(e12))3
w(eO)3≥3max(w(e11),3w(e12))3

Nmax Ns1 Ns2

Equivalent3NACs

eO

e12e11

R(2)
act

eO

s(eO)3:=3A

e21

e22eO

s(e21)3==3A3;3s(e22)3≠3O
w(e21)3≥3k3*3min(w(eO),3w(e22))3
w(e21)3≥3max(w(eO),3w(e22))3

e31

eOe32

s(e31)3==3A3;3s(e32)3≠3O
w(e31)3≥3k3*3min(w(e32),3w(eO))3
w(e31)3≥3max(w(e32),3w(eO))3

Fig. 8: Activation rule R
(2)
act preserving active-link constraint Nact

Ns1 Ns2

Equivalent3NACs

R(2)
inact

eO

s(eO)3:=3I

e21

e22eO

s(e21)3==3A3;3s(e22)3≠3O
w(e21)3≥3k3*3min(w(eO),3w(e22))3
w(e21)3≥3max(w(eO),3w(e22))3

e31

eOe32

s(e31)3==3A3;3s(e32)3≠3O
w(e31)3≥3k3*3min(w(e32),3w(eO))3
w(e31)3≥3max(w(e32),3w(eO))3

Fig. 9: Inactivation rule R
(2)
inact preserving active-link constraint Nact

5.2 Fulfilling the Inactive-Link Constraint

To ensure that the positive inactive-link constraint Pinact is fulfilled in the output
topology, two modifications are necessary: First, an additional preprocessing rule
Rpre ensures that any violation of Pinact in the input topology is repaired. Second,

a refinement of the inactivation rule R
(2)
inact ensures that the constraint is never

violated in the main loop.

Methodology. Due to the page limitation, we present an adaptation of the
methodology described in [7], which is tailored to our scenario: We consider GT
rules without deletion that modify an attribute of a single link.

If a topology fulfills a positive graph constraint before applying a rule, two
steps are necessary to ensure that the topology still fulfills the constraint after
the rule application: (i) If applying the rule produces a new match of the premise
of the constraint, then the RHS of the rule needs to ensure that the conclusion
of the constraint holds. (ii) Applying the rule may not violate the constraint by
destroying any match of the conclusion of the constraint that existed prior to
the rule application.

This means that, first, the LHS pattern of each rule is extended with the
conclusion of the constraint if its RHS overlaps the premise of the constraint.
Second, it is analyzed whether the modified rule may destroy any existing match
of the conclusion of the constraint.



Demonstration on kTC. The input topology may violate the inactive-link
constraint Pinact, which necessitates a new preprocessing rule Rpre, which outdates
all inactive links that violate the inactive-link constraint Pinact. The NAC Npre

of rule Rpre, shown in Figure 10, matches exactly those links that violate Pinact.

s(ep1) ≠ O ; s(ep2) ≠ O
w(eI) ≥ k * min(w(ep1), w(ep2)) 
w(eI) ≥ max(w(ep1), w(ep2)) 

Npre

eI

ep2ep1

Rpre

eI

s(eI) == I
s(eI) := O

Fig. 10: Preprocessing rule Rpre, which outdates all inactive links violating Pinact

Next, we show that the activation rule R
(2)
act remains unchanged: The RHS of

rule R
(2)
act does not overlap with the inactive-link constraint Pinact. Additionally,

applying the rule does not violate the constraint because it activates a link,
which obviously cannot destroy any match of the conclusion of Pinact.

Finally, we describe the refinement of the inactivation rule R
(2)
inact: The link

variable emax in the premise of the inactive-link constraint Pinact and the link

eO in the RHS of R
(2)
inact overlap. Therefore, the LHS of R

(2)
inact is extended by an

image of the conclusion of the constraint. The refined inactivation rule R
(3)
inact is

depicted in Figure 11.

s(e11)C≠COC;Cs(e12)C≠CO
w(eO)C≥CkC*Cmin(w(e11),Cw(e12))C
w(eO)C≥Cmax(w(e11),Cw(e12))C
s(eO)C:=CI

R(3)
inact Ns1 Ns2

EquivalentCNACs

eO

e12
e11

e21

e22eO

s(e21)C==CAC;Cs(e22)C≠CO
w(e21)C≥CkC*Cmin(w(eO),Cw(e22))C
w(e21)C≥Cmax(w(eO),Cw(e22))C

e31

eOe32

s(e31)C==CAC;Cs(e32)C≠CO
w(e31)C≥CkC*Cmin(w(e32),Cw(eO))C
w(e31)C≥Cmax(w(e32),Cw(eO))C

Fig. 11: Inactivation rule R
(3)
inact preserving Nact and Pinact

Due to the additional preprocessing rule Rpre, which ensures that the topology
fulfills the inactive-link constraint Pinact at the beginning of the main loop, and

the refined inactivation rule R
(3)
inact, the inactive-link constraint Pinact is fulfilled

in the output topology as well.



5.3 Fulfilling the Outdated-Link Constraint

To ensure that the outdated-link constraint Nout is fulfilled in the output topol-

ogy, a new GT rule is added in this section because the activation rule R
(2)
act

and inactivation rule R
(3)
inact share the NACs Ns1 and Ns2, which may block the

activation and inactivation of outdated links in some topologies. Due to the
equivalence of the NACs Ns1 and Ns2, we only consider Ns1 in the following.
NAC-elimination rule. We propose to insert a new rule RelimNAC, depicted in

Figure 12, prior to the activation rule R
(2)
act , which removes all matches of NAC

Ns1. The LHS of rule RelimNAC is an image of Ns1, and the RHS outdates the
longest link emax. Note that the outdated state propagates only toward longer
links.

RelimNAC

s(emax) == A ; s(e3) ≠ O
w(emax) ≥ k * min(w(eO), w(e3)) 
w(emax) ≥ max(w(eO), w(e3)) 
s(emax) := O

emax

e3eO

Fig. 12: NAC elimination rule RelimNAC

Loop rule. The new NAC elimination rule RelimNAC results in additional out-
dated links that are not considered when Rloop is first applied. Consequently, the
foreach activity node around loop rule Rloop changes to a regular activity node in
this step, as shown earlier in Figure 7. For this reason the algorithm terminates
if and only if the topology contains no more outdated links. Consequently, the
output topology fulfills the outdated-link constraint Nout.

5.4 Proofs of Termination and Connectivity

The rule refinements and additions in Sections 5.1, 5.2, and 5.3 ensure that the
active-link constraint Nact, the inactive-link constraint Pinact, and the outdated-
link constraintNout are fulfilled in the output topology. We still have to show that
the algorithm in Figure 7 terminates and that the output topology is connected.

Theorem 1 (Termination). The algorithm terminates for any input topology.

Proof. Consider a topology with link set E. The preprocessing loop Rpre is ex-
ecuted at most once for each link, so it suffices to show that the main loop
terminates.

We consider the sequence of all link states si(e1), . . . , si(em) with m := |E|
after the i-th execution of Rloop, where the links ek are ordered according to their



weight. We compare two sequences of link states, si and sj , as follows: si ≺ sj
if and only if (i) some link ek is outdated in si and active or inactive in sj , and
(ii) the states of all links shorter than ek are identical in si and sj , formally:

si ≺ sj :⇔∃k, 1 ≤ k ≤ m : si(ek) = O ∧ sj(ek) ∈ {A, I}
∧ ∀`, 1 ≤ ` ≤ k − 1 : si(e`) = sj(e`)

Note that any sequence of active and inactive links is an upper bound for ≺.
We now show that si−1 ≺ si for i > 1. Let ek be the link that is bound by

applying the loop rule Rloop. The NAC elimination rule RelimNAC outdates links ej

with w(ej) > w(ek) and thus j > k. The activation rule R
(2)
act or the inactivation

rule R
(3)
inact activate or inactivate ek, respectively.

Therefore, si−1 ≺ si because (i) the first k−1 elements of si−1 and si are
identical, and (ii) si−1(ek) = O and si(ek) ∈ {A, I}. The termination follows
because any ordered sequence s1 ≺ s2 ≺ . . . has finite length.

Theorem 2 (Connectivity). The output topology of the algorithm is connected
if its input topology is connected.

Sketch of Proof. The output topology only contains active and inactive links
because the outdated-link constraint Nout is fulfilled. It is thus enough to show
the claim that the end nodes of each link are connected by a path of active links
in the output topology. This trivially holds for the end nodes of active links.

By induction, we show that the claim also holds for all inactive links: We
consider the inactive links ei1 , . . . , eik of the topology ordered by weight.

Induction start: The shortest inactive link, ei1 , is part of a triangle with two
shorter, active links that connect the end nodes of link ei1 . Thus, the claim holds
for link ei1 .

Induction step: We now consider an inactive link ei`+1
with 1 ≤ ` ≤ k−1,

which is part of a triangle with two links, e1 and e2. We assume that only e1
is inactive.4 Thus, there is some s ≤ ` such that e1 := eis . Since the claim has
been proved for all inactive links shorter than ei`+1

, there is a path of active
links between the end nodes of eis . A path of active links between the end nodes
of link e`+1 can be constructed by joining the two paths between the end nodes
of e1 and e2.

6 Related Work

We briefly present related work on verification and model-based development.
Verification. Model checking [12] is an analysis technique used to verify partic-
ular properties of a system. If a symbolic problem description is missing, model
checking tools are often limited to a finite model size. The approach in this paper
constructively integrates constraints at design time so that it can be shown that
constraints are fulfilled on arbitrary topologies.

4 If both links are active, the claim follows trivially. If both links are inactive, the argument
applies for each link individually.



In [7], graphical consistency constraints, which express that particular com-
binations of nodes and edges should be present in or absent from a graph, are
translated into application conditions of GT rules. This technique has been gen-
eralized later [3] and extended to cope with attributes [2]. The basic idea is to
translate consistency conditions, characterizing “valid” graphs, into application
conditions of GT rules. This paper applies and extends this generic methodology
for a practical and complex application scenario. We represent positive applica-
tion conditions in [7] as extensions of the LHS of GT rules, which is equivalently
expressive [5]. This representation is unsuitable to express global constraints
such as connectivity, which requires, e.g., second-order monadic logic [7]. This
paper ensures connectivity of topologies by an additional proof.

In [6], the authors distinguish four situations in which a model transformation
considers consistency conditions, including the preservation and enforcement of
consistency constraints. The algorithm in this paper preserves the active-link
constraint, and it enforces and preserves the inactive-link constraint.
Model-based development. Model-based techniques have shown to be suit-
able to describe [16] and construct [8] adaptive systems. Formal analysis of sup-
posed properties of complex topology adaptation algorithms has already revealed
special cases in which the implemented algorithms violate crucial topology con-
straints [18]. In [9], model checking is applied to detect bugs and to point at
their causes in the TC algorithm LMST, leading to an improved implementa-
tion thereof. This paper, in contrast, applies a constructive methodology [7] for
GT to develop correct algorithms in the first place.

In [11], variants of the TC algorithm kTC [15] are developed using GT, in-
tegrating the GT tool eMoflon5 with a network simulator. While [11] focuses on
improving a concrete algorithm, this paper aims at devising a generic method-
ology to develop TC algorithms that fulfill the given constraints by design.

7 Conclusion

In this paper, we proposed a new, model-driven methodology for designing topol-
ogy control algorithms by graph transformation, and demonstrated the approach
on an incremental variant of the kTC algorithm. The presented procedure char-
acterizes valid topologies with graph constraints, specifies topology control algo-
rithms as graph transformation system, and applies a well-known static analysis
technique to enrich graph transformation rules with application conditions de-
rived from the graph constraints. The new algorithm always terminates and
produces connected, valid topologies.

Future research includes interleaving the network evolution with topology
control and evaluating the methodology on further topology control algorithms.
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