
Efficient Model Synchronization with
Precedence Triple Graph Grammars

Marius Lauder?, Anthony Anjorin?, Gergely Varró??, and Andy Schürr

Technische Universität Darmstadt, Real-Time Systems Lab,
Merckstr. 25, 64283 Darmstadt, Germany

name.surname@es.tu-darmstadt.de

Abstract. Triple Graph Grammars (TGGs) are a rule-based technique
with a formal background for specifying bidirectional and incremental
model transformation. In practical scenarios, unidirectional rules for in-
cremental forward and backward transformation are automatically de-
rived from the TGG rules in the specification, and the overall transfor-
mation process is governed by a control algorithm. Current incremental
implementations either have a runtime complexity that depends on the
size of related models and not on the number of changes and their af-
fected elements, or do not pursue formalization to give reliable predic-
tions regarding the expected results. In this paper, a novel incremental
model synchronization algorithm for TGGs is introduced, which employs
a static analysis of TGG specifications to efficiently determine the range
of influence of model changes, while retaining all formal properties.

Keywords: triple graph grammars, model synchronization, control al-
gorithm of incremental transformations, node precedence analysis

1 Introduction

Model-Driven Engineering (MDE) established itself as a promising means of cop-
ing with the increasing complexity of modern software systems and, in this con-
text, model transformation plays a central role. As industrial applications require
reliability and efficiency, the need for formal frameworks that guarantee use-
ful properties of model transformation arises. Especially for bidirectional model
transformation, it is challenging to define precise semantics for the manipula-
tion and synchronization of models with efficient tool support. The Triple Graph
Grammar (TGG) [13] approach has not only solid formal foundations [3,11] but
also various tool implementations [1,6,10]. TGGs provide a declarative, rule-
based means of specifying the consistency of two models in their respective do-
mains, and tracking inter-domain relationships between elements explicitly by
using a correspondence model. Although TGGs describe how triples consisting

? Supported by the ’Excellence Initiative’ of the German Federal and State Govern-
ments and the Graduate School of Computational Engineering at TU Darmstadt.

?? Supported by the Postdoctoral Fellowship of the Alexander von Humboldt Founda-
tion and associated with the Center for Advanced Security Research Darmstadt.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-33654-6_27

of source, correspondence, and target models are derived in parallel, most prac-
tical scenarios involve existing models and require unidirectional transformation.
Consequently, TGG tools support model transformation based on unidirectional
forward and backward operational rules, automatically derived from a single
TGG specification, as basic transformation steps, and use an algorithm to con-
trol which rule is to be applied on which part of the input graph. Such a batch
transformation is the standard scenario for model transformation, where existing
models are transformed (completely) from scratch.

In contrast, incremental model transformation supports changing already
related models and propagating deltas appropriately. The challenge is to perform
the update in an efficient manner and to avoid information loss by retaining
unaffected elements of the models. Determining such an update sequence is a
difficult task because transformations of deleted elements and their dependencies,
as well as transformations of potential dependencies of newly added elements
must be revoked [9]. The challenge is to identify such dependent elements in the
model and to undo their previous transformation taking all changes into account.

Current incremental TGG approaches guarantee either the formal properties
of correctness meaning that only consistent graph triples are produced, and com-
pleteness meaning that all possible consistent triples, which can be derived from
a source or a target graph, can actually be produced, but are inefficient (scale
with the size of the overall models) [9], or are efficient (scale with the number of
changes and affected elements), but do not consider formal aspects [5,7].

In this paper, we introduce a novel incremental TGG control algorithm for
model synchronization and prove its correctness, completeness, and efficiency.
Based on our precedence-driven TGG batch algorithm presented in [12], a static
precedence analysis is used to retrieve information, which allows for deciding
which elements may be affected by deletions and additions of elements.

Section 2 introduces fundamentals and our running example. Section 3 pre-
sents our node precedence analysis, used by the incremental TGG algorithm
presented in Sect. 4. Section 5 discusses related approaches, while Sect. 6 con-
cludes with a summary and future work.

2 Fundamentals and Running Example

In this section, all concepts required to formalize and present our contribution
are introduced and explained using our running example.

2.1 Type Graphs, Typed Graphs and Triples

We introduce the concept of a graph, and formalize models as typed graphs.

Definition 1 (Graph and Graph Morphism). A graph G = (V,E, s, t) con-
sists of finite sets V of nodes, and E of edges, and two functions s, t : E → V
that assign each edge source and target nodes. A graph morphism h : G → G′,
with G′ = (V ′, E′, s′, t′), is a pair of functions h := (hV , hE) where hV : V → V ′,
hE : E → E′ and ∀e ∈ E : hV (s(e)) = s′(hE(e)) ∧ hV (t(e)) = t′(hE(e)).

Definition 2 (Typed Graph and Typed Graph Morphisms).

type type´

g

TG

G G´
A type graph is a graph TG = (VTG, ETG, sTG, tTG).
A typed graph (G, type) consists of a graph G together with
a graph morphism type: G→ TG.
Given typed graphs (G, type) and (G′, type′), g : G→ G′ is
a typed graph morphism iff the depicted diagram commutes.

These concepts can be lifted in a straightforward manner to triples of connected

graphs denoted as G = GS
hS←− GC

hT−→ GT as shown by [4,11]. In the following,
we work with typed graph triples and corresponding morphisms.
Example: Our running example specifies the integration of class diagrams and
corresponding database schemata. The TGG schema depicted in Fig. 1(a) is the
type graph triple for our running example. In the source domain, class diagrams
consist of Packages, Classes, and inheritance between Classes. In the target
domain, a database schema consists of Databases and Tables. The correspon-
dence domain specifies links between elements in the different domains, in this
case P2D relating packages with databases, and C2T relating classes with tables.
In Fig. 1(b), a schema conform (typed graph) triple is depicted: a package p

C2T

Package

packs

Table

inherits

P2D Database

owns

source domain correspondence domain target domain

Class

p2d

c2t

d2p

t2c

(a) TGG schema

b:Class

cl2:C2T

cl3:C2T

a:Class

p:Package

p1:packs t:Table

c:Class

p2:packs i:inherits

p3:packs
cl4:C2T

cl1:P2D d:Database
o1:owns

source domain correspondence domain target domain

u:Table
o2:owns

pd:p2d

ct1:c2t

ct2:c2t

ct3:c2t

dp:d2p

tc1:t2c

tc2:t2c

tc3:t2c

(b) A TGG schema conform triple

Fig. 1. TGG schema for the running example and a conform triple

consists of three classes a, b, and c, while the corresponding database schema d

contains two tables t and u.

2.2 Triple Graph Grammars and Rules

The simultaneous evolution of typed graph triples can be described by a triple
graph grammar consisting of transformation rules. In general, transformation
rules can be formalized via a double-pushout to allow for creating and deleting
elements in a graph [4]. As TGG rules are restricted to the creation of elements,
we simplify the definition in the following:

Definition 3 (Graph Triple Rewriting for Monotonic Creating Rules).

R G´

K H PO

m

m´

⊇
 ⊆

L G

m

id id

A monotonic creating rule r := (L = K,R), is a pair of
typed graph triples s.t. L ⊆ R. A rule r rewrites (via adding
elements) a graph triple G into a graph triple G′ via a match

m : L → G, denoted as G
r@m
 G′, iff m′ : R → G′ can

be defined by building the pushout G′ as denoted in the
diagram to the right.

Elements in L denote the precondition of a rule and are referred to as context
elements, while elements in R \ L are referred to as created elements.

Definition 4 (Triple Graph Grammar).
A triple graph grammar TGG := (TG,R) is a pair consisting of a type graph
triple TG and a finite set of monotonic creating rules R. The generated language

is L(TGG) := {G | ∃ r1, r2, . . . , rn ∈ R : G∅
r1@m1 G1

r2@m2 ...
rn@mn Gn = G},

where G∅ denotes the empty graph triple.

Example: In Fig. 2, Rules (a)–(c) declare how an integrated class diagram and a
database schema are created simultaneously. Rule (a) creates the root elements
(a Package and a corresponding Database), while Rule (b) appends a Class

and a Table, and Rule (c) extends the models with an inheriting Class, which
is related to the same Table. We use a concise notation (merging L and R)
depicting context elements in black without any markup, and created elements
in green with a “++” markup.

p:Package

++

cl:P2D

++

d:Database

++

pd:p2d
++

dp:d2p
++

Rule (a)

++ p:packs ++ o:owns

p:Package cl1:P2D d:Database pd:p2d dp:d2p

c:Class

++

cl2:C2T

++

T:Table

++

ct:c2t
++

tc:t2c
++

Rule (b)

p1:packs

++ i:inherits

c:Class cl1:C2T ct1:c2t tc1:t2c

d:Class

++

cl2:C2T

++

ct2:c2t
++

tc2:t2c
++

p2:packs
++

p:Package

t:Table

Rule (c)

Fig. 2. TGG Rules (a)–(c) for the integration

2.3 Derived Operational Rules

The real potential of TGGs as a bidirectional transformation language lies in the
automatic derivation of operational rules. Such operational rules can be used to

transform a given source domain model to a corresponding target domain model,
and vice versa. Although we focus in the following sections only on forward
transformations, all concepts and arguments are symmetric and can be applied
analogously for the case of backward transformations.

As shown in [3,13], a sequence of TGG rules, which describes a simultaneous
evolution, can be uniquely decomposed into (and conversely composed from) a
sequence of source rules that only evolve the source model and forward rules
that retain the source model and evolve the correspondence and target models.
In addition, inverse forward rules revoke the effects of forward rules. These
operational rules serve as the building blocks used by our control algorithm. As
inverse forward rules only delete elements, we define monotonic deleting rules:

Definition 5 (Graph Triple Rewriting for Monotonic Deleting Rules).

⊆

R

H K

G PO

m

m´

id

⊇

L

G´
m´

id

A monotonic deleting rule r := (L,K = R), is a pair of
typed graph triples s.t. L ⊇ R. A rule r rewrites (via delet-
ing elements) a graph triple G into a graph triple G′ via a

match m : L → G, denoted as G
r@m
 G′, iff m′ : R → G′

can be defined by building the pushout complement H = G′

as denoted in the diagram to the right.

The elements in L \R of a monotonic deleting rule are referred to as deleted ele-
ments. Using this definition, operational rule derivation is formalized as follows:

Definition 6 (Derived Operational Rules). Given a TGG = (TG,R) and a
rule r = (L,R) ∈ R, a source rule rS = (SL, SR), a forward rule rF = (FL,FR)
and an inverse forward rule rF−1 = (FR,FL) are derived as follows:

SR =

SL = LS

RS

∅

∅

∅

∅

σ ε ε

ε

ε

ε

ε
R =

L = LS

RS

LC

RC

LT

RT

σ γ τ

σL

σR

τL

τR

⊇

⊇

FR =

FL = RS

RS

LC

RC

LT

RT

id γ τ

σ◦σL

σR

τL

τR

⊇

FL =

FR = RS

RS

RC

LC

RT

LT

id γ τ

σR

σ◦σL

τR

τL

⊇

source rule rS TGG rule r
(monotonic creating)

forward rule rF

inverse forward rule rF-1

LS ∅ ∅

id ε ε

ε ε SL = LS LC LT

id id id

σL τL L =

RS LC LT

id id id

σ◦σL τL FL =

FL = RS LC LT

id id id

σ◦σL τL Remark: Regarding Defs. 3 and 5, the upper rows denote L,
the center rows K, and the lower rows R.
Thus, components L, K, and R have been extended to triples.

id

id

id id

The forward rule rF can be applied according to Def. 3, i.e., this involves building
a pushout to create the required elements, while the inverse forward rule rF−1

involves building a pushout complement to delete the required elements according

to Def. 5. Given a forward rule rF , the existence of rule rF−1 , which reverses an
application of rF up to isomorphism, can be shown according to Fact 3.3 in [4].

Although forward and inverse forward rules retain all source elements, the
control algorithm keeps track of which source elements are transformed by a rule
application. This can be done by introducing marking attributes [9], or maintain-
ing a bookkeeping data structure in the control algorithm [6]. In concrete syntax,
we equip every transformed element with a checked box, and every untransformed
elements with an unchecked box (cf. Fig. 4) as introduced in [11].
Example: From Rule (b) (Fig. 2), the operational rules rS , rF , and r−1F depicted
in Fig. 3 are derived. The source rule extends the source graph by adding a Class

to an existing Package, while the forward rule rF transforms (denoted as 2→ 2�)
an existing Class by creating a new C2T link and Table in the corresponding
Database. The inverse forward rule untransforms (denoted as 2�→ 2) a Class

in a Package by deleting the corresponding link and Table, i.e., revoking the
modifications of the forward rule. In addition to the already introduced merged
representation of L and R of a rule, we further indicate deleted elements by
a “−−” markup and red color. Forward and inverse forward rules match the
same context element and retain the checked box (denoted as 2�→ 2�).

o:owns

source rule rS

forward rule rF

TGG rule

++ p:packs ++

p:Package cl1:P2D d:Database pd:p2d dp:d2p

c:Class

++

cl2:C2T

++

T:Table

++

ct:c2t
++

tc:t2c
++

inverse forward rule rF-1

++ p:packs

p:Package

c:Class

++

p:packs ++ o:owns

p:Package d:Database pd:p2d dp:d2p

++

T:Table

++

ct:c2t
++

tc:t2c
++

 c:Class

tc:t2c

p:packs -- o:owns

p:Package d:Database pd:p2d dp:d2p

--
T:Table

--

ct:c2t
-- --

 c:Class

cl1:P2D

cl2:C2T

cl1:P2D

cl2:C2T

Fig. 3. Source and forward rules derived from Rule (b)

3 Precedence Analysis for TGGs

In the following, we introduce a path-based precedence analysis, which is used
to partially sort the nodes in a source graph and thus control the transformation
process. We formalize the concepts only for the source domain and a corre-
sponding forward transformation, but, as before, all concepts can be directly
transferred to the target domain and backward transformation, respectively.

Definition 7 (Paths and Type Paths). Let G be a typed graph with type
graph TG. A path p between two nodes n1, nk ∈ VG is an alternating sequence
of nodes and edges in VG and EG, respectively, denoted as p := n1 · eα1

1 · n2 ·

. . . · nk−1 · e
αk−1

k−1 · nk, where αi ∈ {+,−} specifies if an edge ei is traversed from
source s(ei) = ni to target t(ei) = ni+1 (+), or in a reverse direction (–). A type
path is a path between node types and edge types in VTG and ETG, respectively.
Given a path p, its type (path) is defined as typep(p) := typeV (n1) ·typeE(e1)α1 ·
typeV (n2) · typeE(e2)α2 · . . . · typeV (nk−1) · typeE(ek−1)αk−1 · typeV (nk).

For our analysis we are only interested in paths that are induced by certain
patterns present in the TGG rules:

Definition 8 (Relevant Node Creation Patterns). For a TGG = (TG,R)
and all rules r ∈ R, where r = (L,R) = (LS ← LC → LT , RS ← RC → RT),
the set PathsS denotes all paths in RS (note that LS ⊆ RS).
The predicates contextS : PathsS → {true, false} and
createS : PathsS → {true, false} in the source domain are defined as follows:
contextS(pr) := ∃ r ∈ R s.t. pr is a path between two nodes nr, n

′
r ∈ RS :

n’r
++

nr pr

(nr ∈ LS) ∧ (n′r ∈ RS \ LS), i.e., a rule r in R contains
a path pr which is isomorphic to the node creation pattern
depicted in the diagram to the right.

createS(pr) := ∃ r ∈ R s.t. pr is a path between two nodes nr, n
′
r ∈ RS :

n’r
++

nr pr

++ (nr ∈ RS \LS)∧ (n′R ∈ RS \LS), i.e., a rule in R contains
a path pr which is isomorphic to the node creation pattern
depicted in the diagram to the right.

We can now define the set of interesting type paths, relevant for our analysis.

Definition 9 (Type Path Sets). The set TPathsS denotes all type paths of
paths in PathsS (cf. Def. 8), i.e. TPathsS := {tp | ∃ p ∈ PathsS s.t. typep(p) =
tp}. Thus, we define the restricted create type path set for the source domain as

TPcreateS := {tp ∈ TPathsS | ∃ p ∈ PathsS ∧ typep(p) = tp ∧ createS(p)},
and the restricted context type path set for the source domain as

TPcontextS := {tp ∈ TPathsS | ∃ p ∈ PathsS ∧ typep(p) = tp ∧ contextS(p)}.

In the following, we formalize the concept of precedence between nodes, reflecting
that one node could be used as context for transforming another node.

Definition 10 (Precedence Function PFS). Let P := {l, .=, ·�·} be the set
of precedence relation symbols. Given a TGG = (TG,R) and the restricted type
path sets for the source domain TPcreateS ,TPcontextS . The precedence function for
the source domain PFS : {TPcreateS ∪ TPcontextS } → P is computed as follows:

PFS(tp) :=
l iff tp ∈ {TPcontextS \ TPcreateS }
.
= iff tp ∈ {TPcreateS \ TPcontextS }
·�· otherwise

Example: For our running example, PFS consists of the following entries:
Rule (a): ∅. Rule (b): PFS(Package · packs+ · Class) = l.
Rule (c): PFS(Package ·packs+ ·Class) = l, PFS(Class ·inherits− ·Class) =
l, PFS(Class · packs− · Package · packs+ · Class) = l.

Note that regarding our running example, path Class · packs− · Package is
not in PFS as this path is neither in TPcreate

S nor in TPcontext
S .

Restriction: As our precedence analysis depends on paths in rules of a given
TGG, the presented approach only works for TGG rules that are (weakly) con-
nected in each domain. Hence, considering the source domain, the following must
hold: ∀ r ∈ R : ∀ n, n′ ∈ RS : ∃ p ∈ PathsS between n, n′.

Based on the precedence function PFS , we now analyze typed graphs with
two relations lS and

.
=
∗
S . These are used to topologically sort a given source

input graph and determine the sets of affected elements due to changes.

Definition 11 (Source Path Set). For a given typed source graph GS, the
source path set for the source domain is defined as follows:
PS := {p | p is a path between n, n′ ∈ VGS

∧ typep(p) ∈ {TPcreateS ∪TPcontextS }}.

Definition 12 (Precedence Relation lS). Given PFS, the precedence func-
tion for a given TGG, and a typed source graph GS. The precedence relation
lS ⊆ VGS

× VGS
for the source domain is defined as follows: n lS n′ if there

exists a path p ∈ PS between nodes n and n′, such that PFS(typep(p)) = l.

Example: For our example triple (Fig. 1(b)), the following pairs constitute lS :
(p lS a), (p lS b), (p lS c), (a lS c).

Definition 13 (Relation
.
=S). Given PFS, the precedence function for a given

TGG, and a typed source graph GS. The symmetric relation
.
=S⊆ VGS

× VGS

for the source domain is defined as follows: n
.
=S n

′ if there exists a path p ∈ PS
between nodes n and n′ such that PFS(typep(p)) =

.
=.

Definition 14 (Equivalence Relation
.
=

∗
S). The equivalence relation

.
=
∗
S is

the transitive and reflexive closure of the symmetric relation
.
=S.

Example: For our example triple (Fig. 1(b)), relation
.
=
∗
S partitions the nodes

of the source graph into the following equivalence classes: {p}, {a}, {b}, and
{c}. For a more complex example with non-trivial equivalence classes we refer
to [12].

We now define the concept of a precedence graph based on our relations
.
=
∗
S ,

lS to sort a given graph according to its precedences, which is used by the
incremental algorithm to determine if an element is available for transformation.

Definition 15 (Precedence Graph PGS). The precedence graph for a given
source graph GS is a graph PGS constructed as follows:
(i) The equivalence relation

.
=
∗
S is used to partition VGS

into equivalence classes
EQ1, . . .EQn which serve as the nodes of PGS, i.e., VPGS := {EQ1, . . . ,EQn}.

(ii)The edges in PGS are defined as follows:
EPGS := {e | s(e) = EQi, t(e) = EQj : ∃ ni ∈ EQi, nj ∈ EQj with nilS nj}.

Example: The corresponding PGS constructed from our example triple is de-
picted in Fig. 5(a) in Sect. 4.
Remark: PGS defines a partial order over equivalence classes. This is a direct
consequence of Def. 15.

Finally, we define the class of typed graph triples that do not introduce
contradicting precedence relations between connected source and target domain
elements. This is important as the synchronization control algorithm presented
in Sect. 4 relies only on the source domain when applying appropriate changes
to the correspondence and target domain.

Definition 16 (Forward Precedence Preserving Graph Triples). Given

a graph triple G = GS
hS←− GC

hT−→ GT and two corresponding precedence graphs
PGS and PGT . For EQS ∈ VPGS and EQT ∈ VPGT , the predicate cross-domain-
connected on pairs of equivalence classes in precedence graphs of different do-
mains is defined as follows: cross-domain-connected(EQS , EQT) := ∃ nC ∈ VGC

s.t. hS(nC) ∈ EQS ∧ hT (nC) ∈ EQT .
Given EQS , EQ

′
S ∈ VPGS , EQS 6= EQ′S and EQT , EQ

′
T ∈ VPGT , EQT 6= EQ′T

s.t. cross-domain-connected(EQS , EQT)∧ cross-domain-connected(EQ′S , EQ
′
T).

The graph triple G is forward precedence preserving iff
∃ path pT (EQT , EQ

′
T) = EQT ·e

αT1

T1
·. . .·eαTn

Tn
·EQ′T s.t. αTi

= + ∀ i ∈ {1, . . . , n}
⇒
∃ path pS(EQS , EQ

′
S) = EQS ·e

αS1

S1
·. . .·eαSn

Sn
·EQ′S s.t. αSi = + ∀ i ∈ {1, . . . , n}

Example: The running example (Fig. 1(b)) satisfies this property.

4 Incremental Precedence TGG Algorithm

To realize bidirectional incremental model synchronization with TGGs, a control
algorithm is required that accepts a triple G = GS ← GC → GT ∈ L(TGG), an
update graph triple [9] for the source domain ∆S = GS ← D → G′S , the pre-
compiled precedence function for the source domain PFS , and precedence graph
PGS used in a previous batch or incremental transformation, and returns a con-
sistent graph triple G′ = G′S ← G′C → G′T with all changes propagated to the
correspondence and target domain. Therefore, this algorithm (i) untransforms
deleted elements and their dependencies in a valid order, (ii) untransforms ele-
ments (potentially) dependent on additions in a valid order, and (iii) transforms
all untransformed and newly created elements by using the precedence-driven
batch algorithm of [12]. Regarding the valid order, the algorithm has to find a
way to delete elements in the opposite domain without compromising the trans-
formation of existing elements. As a (fomal) restriction, edges can only be added
(deleted) together with adjacent nodes, hence we focus on nodes only. In practice,
Ecore for example assigns all edges to nodes, which overcomes this restriction.
Example: Using our example, we describe the incremental forward propagation
of the following changes in the source domain (Fig. 4(a)): class a is deleted (in-
dicated by «del») and a new class d is added (indicated by «add»). Parameters
passed to the algorithm (line 1) are the original graph triple G (Fig. 1(b)), its
source domain precedence graph PGS (Fig. 5(a)), update ∆S with deleted nodes
∆− := VGS

\VD and added nodes ∆+ := VG′S \VD, and the pre-compiled source
domain precedence function PFS (cf. example for Def. 10). The algorithm returns
a consistent graph triple with all changes propagated (Fig. 4(d)) on line 13.

Algorithm 1 Incremental Precedence TGG Algorithm

1: procedure propagateChanges(G,∆S ,PFS ,PGS)
2: for (node n− ∈ ∆−) do
3: untransform(n−,PGS)
4: end for
5: (G−S , PG

−
S)← remove all n− in ∆− from GS and PGS

6: (G+
S , PG

+
S)← insert all n+ in ∆+ to G−S and PG−S

7: if PG+S is cyclic then
8: terminate with error . Additions invalidated G′S
9: end if

10: for (node n+ ∈ ∆+) do
11: untransform(n+,PG+S)
12: end for . At this point G has changed to G∗ = G′S ← G∗C → G∗T
13: return (G′S ← G′C → G′T)← transform(G∗,PFS) . Call batch algo [12]
14: end procedure
15: procedure untransform(n,PGS)
16: deps← all nodes in all equiv. classes in PGS with incoming edges from EQ(n)
17: for node dep in deps do
18: if dep is transformed then
19: untransform(dep,PGS)
20: end if
21: end for
22: neighbors← all nodes in EQ(n)
23: for node neighbor in neighbors do
24: if n is transformed then
25: applyInverseRule(n) . Throw exception if Def. 16 is violated
26: end if
27: end for
28: end procedure

A for-loop (line 2) untransforms every deleted node in ∆− (in our case class a)
by calling method untransform. Line 16 places c in deps as this is dependent
on EQ(a) (EQ(x) returns the appropriate equivalence class of node x) and calls
untransform recursively on line 19. The equivalence class of c has no depen-
dent elements in PGS and on line 25, calling applyInverseRule untransforms c
by applying the inverse forward rule of Rule (c) (Fig. 2). Note that with an ap-
propriate bookkeeping data structure (not explained here) this method is aware
of all previous rule applications and applies the correct inverse forward rule to the
same match used previously by the forward transformation. The rule application
can only fail if building the pushout complement was not possible due to depen-
dencies in GT which would violate the forward precedence preserving property
for graph triples (Def. 16). In this case, an appropriate exception is thrown. After
returning from the recursive call, a is untransformed by using the inverse for-
ward rule of Rule (b). The resulting graph triple is depicted in Fig. 4(b). Next,
all changes in ∆S are used to update GS and PGS on lines 5 and 6. Adding
elements may result in a cyclic precedence graph indicating cyclic context de-

b:Class

cl2:C2T

cl3:C2T

a:Class

p:Package

p1:packs t:Table

c:Class

p2:packs
i:inherits

p3:packs
cl4:C2T

cl1:P2D d:Database

source domain corresponce domain target domain

u:Table

pd:p2d

ct1:c2t

ct2:c2t

ct3:c2t

dp:d2p

tc1:t2c

tc2:t2c

tc3:t2c

d:Class p4
:p

ac
ks

 «del»

«add»

o1:owns

o2:owns

j:inherits

(a) Original triple G with a merged repre-
sentation of all changes in ∆S

b:Class cl3:C2T

a:Class

p:Package

p1:packs

c:Class

p2:packs
i:inherits

p3:packs

cl1:P2D d:Database

source domain corresponce domain target domain

u:Table

pd:p2d

ct2:c2t

dp:d2p

tc2:t2c

«del»

o2:owns

d:Class p4
:p

ac
ks

«add»

j:inherits

(b) Triple after untransforming deletions
and their dependencies

b:Class

p:Package

c:Class

p2:packs

p3:packs

cl1:P2D d:Database

source domain corresponce domain target domain

pd:p2d dp:d2p

d:Class p4
:p

ac
ks

«add»

j:inherits

(c) Triple G∗ after handling changes and
untransforming their dependencies

b:Class

p:Package

c:Class

p2:packs

p3:packs

cl1:P2D

source domain corresponce domain target domain

pd:p2d dp:d2p

d:Class p4
:p

ac
ks

«add»

j:inherits

cl6:C2T

cl5:C2T

ct3:c2t

ct2:c2t

ct1:c2t

tc3:t2c

tc2:t2c

cl7:C2T

v:Table

w:Table

o3:owns

o4:owns

d:Database

tc1:t2c

(d) Final updated triple G′ with all
changes propagated

Fig. 4. Consistent change propagation from source to target domain

pendencies and the algorithm would terminate with an error on line 8. For our
running example, the updated precedence graph PGS is acyclic (Fig. 5(b)), so
the algorithm continues untransforming all elements that potentially depend on
newly added elements as context. The only dependent element of d, which is b,
is untransformed by calling untransform on line 11 which results in the triple
G∗ (Fig. 4(c)). Finally, on line 13 the intermediate triple G∗ is passed to the TGG
batch transformation algorithm of [12], which transforms all untransformed ele-
ments (with empty checkboxes) and returns the integrated and updated graph
triple G′S ← G′C → G′T depicted in Fig. 4(d).

a:Class

p:Package

b:Class c:Class

(a)

d:Class

p:Package

b:Class c:Class

(b)

Fig. 5. PGS for the original (left) and PG+S for the updated source graph (right)

Formal Properties of the Incremental Precedence TGG Algorithm

In this section, we prove that our algorithm retains all formal properties proposed
in [14] and proved for the precedence-driven TGG batch algorithm of [12].

Definition 17 (Correctness, Completeness and Efficiency).
Correctness: Given an input graph triple GS ← GC → GT ∈ L(TGG) and an
update ∆S = GS ← D → G′S, the transformation algorithm either terminates
with an error or produces a consistent graph triple G′S ← G′C → G′T ∈ L(TGG).
Completeness: ∀ GS ← GC → GT ∈ L(TGG), G′S ← G′C → G′T ∈ L(TGG)
and a corresponding update ∆S = GS ← D → G′S, the transformation algorithm
produces a consistent triple G′S ← G∗C → G∗T ∈ L(TGG).
Efficiency: According to [14], a TGG batch transformation algorithm is efficient
(polynomial runtime) if its runtime complexity class is O(nkS), where nS is the
number of nodes in the source graph to be transformed and k is the largest number
of elements to be matched by any rule r of the given TGG. In the incremental
case, the algorithm is efficient if the synchronization runtime effort scales with
the number of changes (|∆−| + |∆+|) and (potentially) dependent elements nδ
and not with the size of the updated graph triple, i.e., the incremental algorithm
runs in the order of O(nkδ).

All properties are defined analogously for backward transformations.

Theorem. Algorithm 1 is correct, complete, and efficient for any source-local
complete TGG (due to space restrictions we refer to Def. 13 in [11]) and forward
precedence preserving graph triples (Def. 16).

Proof.
Correctness: Lines 2 – 12 of the algorithm only invert previous rule applica-
tions. The order of rule applications is directed by the precedence graph (Def. 15),
which represents potential dependencies between nodes, i.e., a node x has as de-
pendencies all other nodes y, which may be transformed by applying a rule that
matches x as context. These dependencies are potential dependencies as actual
rule applications may select other nodes in place of x. Nevertheless, y poten-
tially depends on x. The algorithm traverses to the very last dependency of
every deleted/added node and applies the inverse of the rule used in a previous
transformation. Demanding precedence preserving graph triples (Def. 16) guar-
antees that PGS is sufficient to correctly revoke forward rules in a valid order.
If an element on the target side is deleted by applying an inverse forward rule,
although this element is still in use as context for another element, we know that
the forward precedence preserving property is violated. This also guarantees that
deleting elements via building a pushout complement (Def. 5) is always possible
and cannot be blocked due to “dangling” edges. In combination with bookkeep-
ing of previously used matches, it is guaranteed (Def. 6) that the resulting triple
is in the state it was before transforming the untransformed node.
It directly follows that if the triple G was consistent, the remaining integrated
part of G remains consistent. Since untransform inverts rule applications of
a previous transformation, we know that the graph triple after line 12 is a valid
intermediate graph triple produced by the batch transformation algorithm. As
shown in [12], the precedence-driven TGG batch algorithm is correct (produces
only correct graph triples or terminates with an error if no correct graph triple
can be produced), so it directly follows that Algorithm 1 is also correct. ut

Completeness: The correctness proof shows that the incremental update pro-
duces a triple via a sequence of rule applications that the batch algorithm
could have chosen for a forward transformation of G′S . Completeness arguments
from [12] for the batch algorithm can, hence, be transferred to this algorithm.ut
Efficiency: Efficiency is influenced mainly by the cost of (i) untransforming de-
pendent elements of a deleted or added node (lines 2–4 and 10–12), (ii) updating
the precedence graph and graph triple itself (lines 5 and 6), and (iii) transform-
ing all untransformed elements via our precedence-driven TGG batch algorithm
(line 13). The number of deleted/added nodes (|∆−|+|∆+|) and their dependen-
cies is denoted by nδ. Regarding untransform, a recursive depth-first search
on the precedence graph PGS is invoked starting at a certain node. Depth-first
search has a worst-case complexity of O(|VPGS | + |EPGS |) if the changed node
was an (indirect) dependency of all other equivalence classes in PGS . If the al-
gorithm encounters an already untransformed element on line 18, we know for
sure that all subsequent elements are already untransformed and, therefore, can
safely terminate recursion. Independent of the position of the changed element,
untransform traverses every dependent element exactly once. Finally, apply-
ing the inverse operational rule (line 25) is (at most) of the same complexity
as the appropriate previous rule application since the rule and match are al-
ready known. Considering both untransformation runs together, we know that
nδ elements are untransformed, and that every element is treated exactly once.
Updating GS on line 5 (6) involves deleting (inserting) |∆−| (|∆+|) elements
m ∈ ∆−(∆+) and updating, each time, a number of adjacent nodes (degree(m)).
Updating PGS has similar costs since elements have to be deleted (added) and
updating the edge set of PGS means to traverse all adjacent nodes of a deletion or
addition in GS and retrieve appropriate entries from PFS . Thus, the complexity
of line 5 and 6 can be estimated with O(|∆S |), as ∆S contains all nodes and edges
that have been changed and, therefore, need to be revised. Finally, transforming
the rest of the prepared graph (line 13) has O(nkδ) complexity [12]. Because only
added elements, their dependencies, and the dependencies of removed elements
have been untransformed, nδ refers to these elements only, and not to all elements
in GS . The algorithm, therefore, scales with the number of changes and their
dependencies and not with the size of the graph triple: nδ ≤ n. ut

5 Related Work

This section complements the discussion from Sect. 1 on related incremental
synchronization approaches grouped according to their strengths.

Formality: Providing formal aspects for incremental updates that guarantee
well-behavedness according to a set of laws or properties is challenging. Alge-
braic approaches such as lenses [2] and the framework introduced by Stevens [15]
provide a solid basis for formalizing concrete implementations that support in-
cremental model synchronization. Inspired by [2], a TGG model synchronization
framework was presented in [9] that is correct and complete. The proposed al-
gorithm, however, requires a complete remarking of the entire graph triple and

depends, therefore, on the size of the related graphs and not on the size of the
update and affected elements. This is infeasible for an efficient implementation
and the need for an improved strategy is stated as future work in [9].

Efficiency: In contrast to this formal framework, an incremental TGG trans-
formation algorithm has been presented in [5], which exploits the correspondence
model to determine an efficient update strategy. Although the batch mode of this
algorithm has been formally presented in [6], the incremental version has not
been fully formalized and it is unclear how the update propagation order is de-
termined correctly for changes to elements that are not linked via the correspon-
dence model to other elements. The authors describe an event-handling mech-
anism and so it can be assumed that model changes are instantly propagated.
This allows for reduced complexity regarding dependencies between changes, but
forbids the option of collecting a set of changes before propagating. This is, how-
ever, a requirement for scenarios in which changes are applied to models offline
(i.e., without access to the related model) and the actual model synchronization
must be performed later. The TGG interpreter described in [7] employs basically
the same approach as [5], but additionally attempts to reuse elements instead of
deleting and creating them. This is important as it prevents a loss of information
that cannot be recovered by (re-)creating an element (user added contents). Un-
fortunately, this approach has also not been formalized and it is unclear whether
the algorithm guarantees correctness and completeness. Nonetheless, this con-
cept of reuse is crucial for industrial relevance and should be further investigated.

Concurrency: The challenge of dealing with concurrent changes to both
domains has been discussed and investigated in [8,16]. A cascade of propagate,
calculate diff, and merge steps is proposed that finally results in a consistent
model. Extending our TGG algorithm based upon these ideas but retaining
efficiency is also an important task of future research.

6 Conclusion and Future Work

A novel incremental algorithm for TGG has been presented that employs a prece-
dence analysis to determine the effects of model changes. This involves not only
determining which elements rely on deletions and, hence, must be untransformed,
but also includes finding all elements that may rely on additions and also have
to be untransformed. This must be achieved without compromising formal prop-
erties (i.e., correctness and completeness) while scaling efficiently with the size
of the changes and their dependencies and not with the size of the overall graph.

Current restrictions include the lack of support for concurrent change prop-
agation, which we plan to handle according to [16], and the formal requirement
that edges can only be deleted or added together with adjacent nodes. Last but
not least, we shall implement the presented incremental algorithm as an exten-
sion of our current implementation in our metamodelling tool eMoflon1[1] and
perform empirical performance assessments and comparisons with other imple-
mentations.

1 http:\\www.moflon.org

http:\\www.moflon.org

References

1. Anjorin, A., Lauder, M., Patzina, S., Schürr, A.: eMoflon: Leveraging EMF and
Professional CASE Tools. In: Heiß, H.U., Pepper, P., Schlingloff, H., Schneider, J.
(eds.) Informatik 2011. LNI, vol. 192, p. 281. GI, Bonn (2011)

2. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
State- to Delta-Based Bidirectional Model Transformations: The Symmetric Case.
In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp.
304–318. Springer, Berlin (2011)

3. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving
Bidirectional Model Transformations. In: Dwyer, M., Lopes, A. (eds.) FASE 2007,
LNCS, vol. 4422, pp. 72–86. Springer, Berlin (2007)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Berlin (2006)

5. Giese, H., Hildebrandt, S.: Efficient Model Synchronization of Large-Scale Models.
Tech. Rep. 28, Universitätsverlag Potsdam (2009)

6. Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap Between Formal
Semantics and Implementation of Triple Graph Grammars. In: MoDeVVA 2010.
pp. 19–24. IEEE, New York (2010)

7. Greenyer, J., Pook, S., Rieke, J.: Preventing Information Loss in Incremental Model
Synchronization by Reusing Elements. In: France, R., Kuester, J., Bordbar, B.,
Paige, R. (eds.) ECMFA 2007. LNCS, vol. 6698, pp. 144–159. Springer, Berlin
(2011)

8. Hermann, F., Ehrig, H., Ermel, C., Orejas, F.: Concurrent Model Synchronization
with Conflict Resolution Based on Triple Graph Grammars. In: de Lara, J., Zisman,
A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 178–193. Springer, Berlin (2012)

9. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correct-
ness of Model Synchronization Based on Triple Graph Grammars. In: France, R.,
Kuester, J., Bordbar, B., Paige, R. (eds.) MODELS 2011, LNCS, vol. 6981, pp.
668–682. Springer, Berlin (2011)

10. Kindler, E., Rubin, V., Wagner, R.: An Adaptable TGG Interpreter for In-Memory
Model Transformations. In: Schürr, A., Zündorf, A. (eds.) Fujaba Days 2004. pp.
35–38. Paderborn (2004)

11. Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars
with Efficient and Compatible Graph Translators. In: Engels, G., Lewerentz, C.,
Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift, LNCS, vol. 5765,
pp. 141–174. Springer, Berlin (2010)

12. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Bidirectional Model Transformation
with Precedence Triple Graph Grammars. In: Tolvanen, J.P., Vallecillo, A. (eds.)
ECMFA 2012. LNCS, vol. 7349, pp. 287–302. Springer, Berlin (2012)

13. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Tinhofer, G. (ed.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Berlin (1994)

14. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars. In: Ehrig, H., Heckel,
R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008, LNCS, vol. 5214, pp. 411–425.
Springer, Berlin (2008)

15. Stevens, P.: Towards an Algebraic Theory of Bidirectional Transformations. In:
Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol.
5214, pp. 1–17. Springer, Berlin (2008)

16. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Synchronizing Concurrent Model Up-
dates Based on Bidirectional Transformation. SoSyM pp. 1–16 (2011), Online
FirstTM , January 4th 2011

	Efficient Model Synchronization with Precedence Triple Graph Grammars
	Introduction
	Fundamentals and Running Example
	Type Graphs, Typed Graphs and Triples
	Triple Graph Grammars and Rules
	Derived Operational Rules

	Precedence Analysis for TGGs
	Incremental Precedence TGG Algorithm
	Related Work
	Conclusion and Future Work

