Benchmarking for Graph Transformation

Gergely Varré2, Andy Schiirt, Daniel Varrd

gervarro@s. brme. hu, andy. schuerr @s. tu-darnstadt.de, varro@rt.bme. hu

1 Department of Computer Science and Information Theory
Budapest University of Technology and Economics

2 Real-Time Systems Lab
Data Systems Technology Institute
Technical University of Darmstadt

3 Department of Measurement and Information Systems
Budapest University of Technology and Economics

Abstract

Up to this point there did not exist any collection of benchksdor comparing
different tools in the graph transformation area. The airthixf paper is to bridge
this gap and to provide a description of a basic set of bendhem@amples together
with scenarios for which the benchmarks can be used. Morgoueinitiative in-
cludes a quantitative comparison of the performance offgteggmsformation tools
by defining certain parameter settings and optimizatiorsipdiies for different
test cases that are requested to be implemented by toobprsvi

1 Introduction

Benchmarking has a key role in decision making processes atehoice has to be
made between several alternatives. In order to fill this system designers should get
a proper view on the system, which means that characteristihe system have to be
measured under different circumstances (i.e., by usingraggarameter combinations
for measurements).

Graph transformation [4, 11] provides a pattern and ruleethananipulation of
graph models. Since there is a couple of fields where grapfdrasdels can be used,
graph transformation can be considered as a widely appicgiproach. However,
despite the large variety of graph transformation tools GA{5], Fujaba [6], Great

*This work was partially carried out during the visit of thesfiauthor to the Technical University of
Darmstadt (Germany), and it was funded by the SegraVis Reis@aaining Network.

[1], Groove [10], Progres [13], Viatra [17]), up to this pbitmere did not exist any
collection of benchmarks for comparing such tools.

Objectives. The aim of this paper is to bridge this gap and to provide ari#gm

of a basic set of benchmark examples together with scenfmioshich the bench-
marks can be used. Moreover, our initiative includes a dtaive comparison of the
performance of graph transformation tools by defining ¢eparameter settings and
optimization possibilities for different test cases thet eequested to be implemented
by tool providers.

In case of graph transformation benchmarks the sole mdalsui@ature, which
composes the base of comparison in turn, is the executi@dfrpattern matching and
updating phases. (Note that the time needed for generdwinigitial models does not
take partin measurements, and thus, this topic is not dieclia this paper.) Execution
times are measured for several tools and on different tést wile the underlying
hardware remains the same for all benchmarks.

Related work. Benchmarkingis a well-known approach from different fiedlsom-
puter science.

¢ In [18], we proposed a relational database solution forquering graph trans-
formation. Since other tools use different techniquesalilete benchmarks are
irrelevant, nevertheless there exist several benchmarks14] in this field.

e There are already some benchmarks created for rule-bapedt esystems (for
details see [3]). They include the following problems.

— Manners handles the problem of finding an acceptable seatinggement
for guests at a dinner party.

— Waltz is a diagram labeling problem and it analyzes the lioks 2-
dimensional drawing, and labels them as if they were edgea Bt
dimensional object.

— Aeronautical Route Planner (ARP) plots a course over a gieain from
point 1 to point 2, for a plane or missile.

— The Weaver program is an expert system, which is composedwy ather
expert systems that communicate through a common blackiblias used
to do VLSI routing for channels and boxes, and with over sindned rules
it is the largest benchmark among the above-mentioned Inesutts.

As these benchmarks have been created for rule-based sypens, no graph-
ical rule and model description is possible. Moreover, adiog to the bench-
mark descriptions, the largest test set (i.e., the Weawmgrpam) has about 600
rules, 1900 model elements and the transformation seqeensésts of only 100
activations. However, the biggest problem with these beratks is that they do
not cover the typical application areas of graph transfdiona In their present
form, they are unusable for graph transformation, and #ddiptation would be
cumbersome.

We have already launched our research in graph transfambénchmarking in
[18], but that paper mentioned only one test set without atgits, while our current
aim is to provide complete and detailed descriptions foesghbenchmarks.

Overview of terminology. Themetamodetlescribes the abstract syntax of a model-
ing language. Formally, it can be represented by a type gifdpties of the type graph
are calledclasses A class may have attributes that define some kind of progseai
the specific classlnheritancemay be defined between classes, which means that the
inherited class has all the properties its parent has, maytfurther contain some extra
attributes Finally, associationglefine connections between classes.

The instance mode{or, formally, an instance graph) describes concrete syste
defined in a modeling language and it is a well-formed instaofcthe metamodel.
Nodes and edges are calletdjectsandlinks, respectively. Objects and links are the
instances of metamodel level classes and associatiopgategly. Attributes in the
metamodel appear aotsin the instance model. Inheritance in the instance model
imposes that instances of the subclass can be used in ettatii, where instances
of the superclass are required.

Example. In order to present our concepts, the metamodel of the maxadlision
problem (depicted in Fig. 1(a)) can be examined. It has omty ¢classes, which are
called Process and Resource. These classes are connected by edges of itgpe
request, held_by, release, token, andblocked, which correspond to associations in turn.
This metamodel does not define any attributes. Similarlynheritance is specified in
the figure.

A well-formed instance model of this domain is shown e.gFim 3(a). It has two
processes(l andp2) and two links (1 andn2) of typenext.

A graph transformation rule = (LHS, RHS, NAC) contains a left-hand side graph
LHS, a right-hand side grapRHS, and negative application condition grapsC.

The applicationof a ruler to ahost (instance) model replaces a matching of
theLHS in M by an image of th&®HS. This is performed by (i) finding a matching of
LHS in M (by graph pattern matching), (ii) checking the negativdigppon conditions
NAC (which prohibit the presence of certain objects and linkg)rémoving a part of
the modeM that can be mapped ta4S but not toRHS yielding to the context model,
and (iv) gluing the context model with an image of RigS by adding new objects and
links (that can be mapped to tRe1S but not to theLHS) obtaining thederived model
M'. A graph transformatioris a sequence of rule applications from an initial maodel

Example. The mutual exclusion algorithm can be described by 13 gnapistor-
mation rules as it is presented in Fig. 2. By choosiagRule (Fig. 2(a)) as our running
example, we may state that in itBlS a link of typenext connects two processes, while
in its RHS the same processegsl(andp2) also appear, but now there is also a third pro-
cessp, which is placed betweenl andp2. ThenewRule does not have any negative
application conditions.

This rule can be applied on the model that has been presentéd.i3(a). Ifpl
andp2 of the newRule are mapped t@l1 andp2 of the model, respectively, in the
pattern matching phase then the definition of rule appbeagirescribes the deletion
of n2 followed by the insertion op3, n3 andn4. If the same rule is applied again but

now with an inverse mappin@{ of newRule is mapped t@2 and vice versa), then the
model of Fig. 3(b) is resulted.

The structure of the paper. In Sec. 2 an overview is given on the most common
scenarios in graph transformation. Then we present in daafmrm which benchmark
can be used for which scenarios. In this table benchmarksevhmplementation is
requested from tool providers are also marked. In the retsteopaper benchmarks are
presented on a section by section basis. Section 3 intreadutenchmark example,
which is typical for checking the specification of a systerattls defined in a visual
language with dynamic semantics. The benchmark of Sec. mizdel transformation
example. In Sec. 5 a special test set is presented which iegte for testing only
the pattern matching phase, but with different model antepasizes.

2 Benchmark features

Benchmarks can be characterized by different featuresdingg) the size of the pat-
terns, the maximum degree of nodes (fan-out) in the modelntimber of successful
matchings of a rule, and the length of the transformationierge executed during the
test. Thesg@eneric featureare fully determined by rule and model descriptions of the
benchmark, so they are not influenced at all by optimizaatifres of different tools.
On the other hand, based on the application order of rulessipeaific test case,

tools may perform different optimizations. Features, \whace affected by optimiza-
tions, are calledool-dependent-our tool-dependent features are identified initially.

¢ In case oparallel rule executionall the matchings of a rule are calculated in the
pattern matching phase, and then updates are performexhinsattion block on
the collected matchings without re-evaluating valid matgh during the trans-
action.

¢ 'Aslong as possible’ rule applicatiomeans an iterative execution of the selected
rule for which the termination of the iteration is declaredi@uaranteed by the
system designer.

A standard graph rewriting step (with a pattern matchingandpdating phase)
is performed in each iteration. Thus, in order to avoid inéifoops, it must
be ensured that the number of matching patterns always asewhich, in
addition, forms a sufficient guarantee for termination.

e The termmultiplicity based optimizatiois used, when a tool employs a different
(and usually simplified) strategy in order to find matchingdaleelements for an
edge with bounded multiplicity.

e Tools may provide parameter passingossibility between consecutive rule ap-
plications. By passing model elements as parametersypatiztching may be
facilitated in the subsequent rewriting steps, since ghskaments can be reused
directly without performing any recalculation in theseelasteps.

The above-mentioned enumeration cannot be complete, gido@s not contain
any heuristics that is going to be discovered in the futurckibfurther ignores features
that are specific only for a single tool. In case of these Iséinsi tool providers are
asked to prepare both an optimized and an unoptimized veddithe system for the
benchmark where the effects of the optimization are the meastgnizable.

Mutex OR mapping Comb
Generic features Short Long ALAP Simple Several No
TS TS execution model matchings | matching
. large - - - + PD PD
LHS size ¢ mal + + + - PD PD
large PD -
fan-out o mall PD + + + + +
matchings many PD PD PD - + -
few PD PD PD + - +
transformation |long - + -
sequence |medium - - + - -
length short + - - + + +
. Mutex OR mapping Comb
Tool d e.p en.dent Short Long ALAP Simple Several No
optimization TS TS execution model matchings | matching
parameter passing REQ + - - -
0..1 multiplicities REQ + + + + +
parallel execution + + REQ +
as long as possible + + +

Table 1: Feature matrices of test cases and scenarios

Table 1 presents a feature matrix describing what purposéaic test case can be
useful for. Upper and lower parts of Table 1 show generic antddependent features,
respectively. If the given feature is characteristic fa thst case then it is denoted by a
plus sign ¢). A minus sign £) represents the case when the feature is not characteristic
for the test set. If the characteristics of a feature dependhe concrete parameter
settings, then it is called parameter dependent (markeettsréPD).

In case of tool-dependent features a plus sign has an agalitioeaning. It still
denotes a feature of the test case for which optimizationbeadone, but in order to
minimize coding efforts only one (in general the unoptindipeersion of the solution is
needed for the tool comparison. NotatiREQ again denotes a characteristic feature;
but in this case both optimized and unoptimized versiongegeired in order to be
able to compare the effects of optimization. Detailed regaents for comparison are
discussed at the end of test set descriptions Gggtémization possibilities). In the
tool-dependent group minus signg 6till represent non-characteristic features, so in
these cases it is totally meaningless to use heuristics.

3 Distributed mutual exclusion algorithm

This benchmark is a distributed mutual exclusion algoritihose full specification
can be found in [8]. The algorithm is defined in a visual larguavith dynamic se-
mantics. The scenario can be characterized by a nearlg gtaph structure, where

only tokens are passed around, and by short rewriting segsehat are respected for a
long time. These rule application sequences (which areetkfor test cases) describe
possible behaviours of the system in different situations.

Fig. 1(a) presents the unoptimized metamodel of the dorimaivhich all edge mul-
tiplicities are of zero-to-many kind. Tools performing riiplicity based optimization
heuristics may use the optimized metamodel (depicted inlfig) for this benchmark.

next . . next 1
» Process » Process

A A A 1 A A1 A1

held_by | |token | release held_by | |token | release

* ‘ * * [*
Resource < Resource H
blocked request blocked request

Mutex Mutex

(a) Metamodel with zero-to-many multipliciti) Metamodel with some edge multiplicities op-
on all edges timized

Figure 1: Metamodels for the mutual exclusion problem

Processes try to access sharadsources. One requirement of the algorithm is to
give access to each resource by at most one process at a tinieisachieved by
using a token ring, which consists of processes connected@gs of typaext. In the
consecutive phases of the algorithm, (i) a process may &sg@est on a resource, (ii)
the resource may eventually beld by a process and finally (iii) a process majease
the resource. The right to access a resource is modeledidke@ The algorithm
also contains a deadlock detection procedure, which haadk the processes that are
blocked.

The algorithm can be described by 13 graph transformatitas ras presented in
Fig. 2. The most complex rulélpckedRule in Fig.2(j)) has 4 nodes and 3 edges.

3.1 Short transformation sequences

This test case can be characterized by small LHS graphs amtitsinsformation se-
guences. The number of fan-outs of model nodes and of maeldre parameter
dependent, so they are not distinguishing features ofésiscase.

Initial instance graphs in this test set only contain pwacess nodes and two edges
of typenext linking the process nodes in both directions (as it is presgkim Fig. 3(a)).
The test set has one paramedérwhich denotes the maximum number of processes
appearing in the instance model during a specific test.

The transformation sequence can be described as follows.

1. ThenewRule (Fig. 2(a)) is applied firsfV—2 times in an arbitrary order. Since
each application ofiewRule adds a process to the token ring, after this step the

p1:Process

ninext

p:Process

p1:Process

n:next

p2:Process

p2:Process p2:Process
[NewRule | [KilRule |
(@) newRule (b) killRule
p:Process
t:token
[m———

==
(c) mountRule (d) unmountRule

p:Process

[prProcess }964 mRSrce |

reqnirequest

[pProcess }T‘-{ p2Process |

ex

[pt:Process }—‘v{ p2:Process
ninex

reqirequest req:request

titoken ttoken hb:held_by
e
PassRule [ttt
=

(e) passRule (f) requestRule

p:Process

titoken reqirequest

r:Resource

p:Process

hb:held_by

r:Resource

reqn:request
hb:held_by

r:Resource

[Bbaidinaidhenid |

relrelease

r:Resource

[1
TakeRule

(9) takeRule

(h) releaseRule

‘ p1:Process }—lﬁ p2:Process
ninext

[ovmrosess [pzrocess |

relrelease

r:Resource

Givel

Rule

titoken

| Endhachandl]

(i) giveRule

req:request

r:Resource

hbiheld_by

b:blocked

r:Resource

hb:held_by

reqrequest

p1:Process | [p2:Process

[orprocess |

‘ p2:Process

hb:held_by reqrequest|

r1:Resource

b:blocked

hb:held_by

[———

reqrequest

r1:Resource
r2:Resource

bn:blocked

| Bdtnsabend|

() blockedRule

| arngre |

(9] waiti;lgRuIe

[pProcess }4% mRDGrce |

[pprocess |

hbn:held_by
biblocked

r:Resource

hb:held_by biblocked

r:Resource

p:Process

relrelease

r:Resource

[u

[B kbl

() ignoreRule

(m) unlockRule

Figure 2: Rules describing the mutual exclusion algorithm

niinext n6:next —— n5:next
p4:Process
[rzroosss]| |[orpoese]
n2:next e r—
p3:Process
n3:next n4:next
STS Init STS Step 1

(a) Initial model

(b) Model after the 1st step

n6:next n5:next n6:next — n5:next
. rq4:request
t1:token rq1:request t1:token
‘ p1:Process ‘ ‘ r:Resource p2:Process ‘ ‘ p1:Process r:Resource p2:Process ‘
rq3:request rq2:request I
n3:next n4:next n3:next n4:next
STS Step 2 STS Step 3

(c) Model after the 2nd step

(d) Model after the 3rd step

n6:next n5:next nB:next T n5:next
rq1:request t2:token rq4:request t5-token
‘ p1:Process r:Resource ‘ ‘ p2:Process ‘ ‘ p1:Process ‘ ‘ r:Resource ‘ ‘ p2:Process ‘
rg3:request
E E
n3:next n4:next n3:next n4:next
STS Loop STS Step 4

(e) Model after the first loop execution

(f) Model after the 4th step

Figure 3: Models in different phases of short transfornratiequence

instance model will have a ring structure consisting of €yal’ process nodes
that are linked byV edges of typaext as shown in Fig. 3(b).

2. The second step is to create a singisource by performing themountRule
(Fig. 2(c)) once. This rule also gives access rights to ortkeprocesses, which
is modeled by a newly createdken edge. The instance model is shown in
Fig. 3(c).

3. In the third step, each process issuasquest for the single resource, which
means the execution eéquestRule (Fig. 2(f)) for N times. Regardless of the
execution order, the final instance model will be the one thairesented in
Fig. 3(d). (So it is possible to apptgquestRule in parallel.)

4. The final step handles the requests that have been issukd previous step.
To handle a single request rulegeRule, releaseRule andgiveRule have to be
applied in this specific order. In order to speed up patterttinirag, parameter
passings possible among the rules that belong to the same loop.

TakeRule (Fig. 2(g)) assigns the process with the token to the resdwycreat-
ing aheld_by edge. ThemeleaseRule (Fig. 2(h)) lets the resource to be released
by the process. Finally, the resource is released and tlem tiekpropagated to
the next process in the token ring by the executiogiedRule (Fig. 2(i)). The
instance model we have at this point is shown in Fig. 3(e).

Since all the N processes have already requested the resource, the above-
mentioned 3 rules have to be executed in a loopNotimes, which results in

a rule execution sequence of lengtlv 3 (Note that there exists only a single
matching to which the subsequent rule can be applied atrtiewiihen the rule
application is scheduled, so the rule execution order ofaleth step is fully
deterministic.) In the end, the instance model will be the tirat is depicted in

Fig. 3(f).

The transformation sequence consists 88 rule applications altogether. The
largest instance graph that appears during the rule agiplicphase hagv+1 nodes
and 2V+1 edges (see Fig. 3(d)N was chosen as 5, 100, and 1000 in our different ex-
periments resulting in models of size 17, 302, and 3002, @mm$tormation sequences
of length 24, 499, and 4999, respectively.

Optimization possibilities and requirements.

e Instead of having zero-to-many multiplicities on all asation ends, it is possi-
ble to restrict some of them to zero-to-one, as it is preskint€&ig.1. Since the
model contains only a singlesource, knowing and using this fact may cause
performance improvements for some tools, since patterohirag can be started
at this well-defined node.

e As it was already mentioned in the test case description3 thees in the loop
of the fourth step may be applied in such way that the selegteckss and
resource nodes can be passed to consecutive rules as parameterh, mwayc
speed up pattern matching.

In order to perform a wide range comparison tool provideesasked to prepare
both an optimized and an unoptimized version of their sotutor this test case. Since
there are two independent optimization possibilitiess tieisults in at most 4 different
rule sets. (The possibility to set paramedéshould also be provided as well.)

Despite the fact that parallel rule application is also fimesn the third step, tool
providers are asked to generate only an unoptimized vergibare rewriting is exe-
cuted sequentially.

The widest range comparison could certainly be achievedebfpopning isolated
measurements for each combination of optimization pd#géisj but it would unnec-
essarily increase the required efforts, and thus, it isdmeby measuring the effects
of a given optimization heuristics only in a single test whés influence on perfor-
mance is really representative. This effort minimizatisritie reason for using only
one version. The unoptimized, sequential version is sadftom the two alternatives,
because it is surely supported by all tools.

3.2 Long transformation sequences

This test case can be characterized by small LHS graphsl somaber of fan-outs of
model nodes and long transformation sequences. The nurhibeaitohings is again
parameter dependent, so it is not a distinguishing featudtest case.

For this test set, we modified two rules (nameéguestRule andreleaseRule of
[8]) in order to restrict their applicability in certain gétions and to get a deterministic
transformation sequence. The modified rules are referred tequestStarRule and
releaseStarRule and are depicted in Fig. 4(a) and in Fig. 4(b), respectively,

n:next n:next
[pProcess J«"——{ p2Process | | [pt:Process || p2:Process [pt:Process | [p2:Process | | [pt:Process | [p2:Process |
h2:held_by h2:held_by h1:held_by Hirelease
hi:held /by Nn-request hi:held_by \{a:request rqrequest (held_by 1request o held_by
[r1:Resource | r2:Resource | | [r1:Resource | 2Resource | | | [r1:Resource | [r2Resource | | [r1:Resource [2Resource |

(a) requestStarRule (b) releaseStarRule

Figure 4: Extra rules for the long transformation sequence

In this case, we have two parameters (nam&lyand R). N denotes the number
of processes and resources in the initial instance model,itainfluences both the
model size and the length of the transformation sequenceef#eto a transformation
sequence aa basic execution unitf (i) instance graphs before and after execution are
isomorphic, and (ii) the sequence can be executed severas in a loop. The role of
R is to determine how many times a basic execution unit is eeéloduring the test.
As a consequencé has influence only on the length of the transformation secglen
The initial instance model now consists oiV2nodes (V processes andV re-
sources) and X edges.N edges are of typeext and they are used to organize process
nodes into a token ring. The othaF edges mark processes holding resources in such
a way that ncheld by edges have common ends (i.e., each resource is held by at most
one process and each process reserves at most one reséisas)ple initial instance
model is presented in Fig. 5(a) for thé = 4 case.

10

h4:held_by h4:held_by rq4:request
" " " 1 (N 1 |
r4:Resource p4:Process r3Resource 4:Resource | | paProcess | { r3:Resource
Aﬁx‘ nam h3:held_by rq1if6queS‘T nd:next n3:next
[p3:Process | [pProcess |
ninext n2:next ni:next n2:next
h1:held_by h1:held_by
‘ [1:Resource ‘ ‘ p2:Process }-—{ r2:Resource ‘ ‘ [1:Resource } " p2:Proce: } } r2:Resource ‘

————— h2:held_by
LTS Init

(a) Initial model with parameteV = 4

rq2:request h2:held_by
LTS Step 1

(b) Model after the 1st step

hd:held_by rad:request hd:held_by rad:request
[r4:Resource | ————{ pa:Process |————] r3Resource | [4:Resource | | paProcess | { r3Resource |
rq1:request anext n3inext l"”e'd—by rq1:request nénext n3mext
p1:Process p3:Process ‘ ‘ p1:Process ‘
n1:next n2:next o n1:next n2:next
h1:he|d_byT N l’“a"eq“es‘ h1:held_byTTb4:bl®\
‘ Resource | *| p2Process }-—{ r2:Resource ‘ ‘ r1:Resource } " p2:Proce: } } r2:Resource ‘

rq2:request h2:held_by
LTS Step 2

ra2request ————— h2held_by
LTS Step 3

| Bl
(c) Model after the 2nd step

(d) Model after the 3rd step

hd:held_by rad:request hd:held_by rad:request
[4:Resource pd:Process r3:Resource | [4:Resource pA:Process | r3Resource |
rqt:request nd:next n3:next th:held_by rqt ifeques‘T nd:next n3:next
[p3:Process | [pt:Process |
ntinext n2inext ’ niinext n2inext
1-release next_ 7 [radrequest rI1:reIeaseT \
‘ r1:Resource } } p2:Proce: } ['r2:Resource ‘ [rt:Resource | { p2:Process | [2Resource |
rqZirequest ——————— h2held_by rqZirequest —————— h2held_by
LTS Step 4 LTS Step 5

(e) Model after the 4th step

(f) Model after the 5th step

h4:held_by rq4:request h4:held_by rq4:request

‘ r4:Resource pd:Process }—»{ r3:Resource ‘ ‘ r4:Resource } } pd-Process } } r3:Resource ‘
rqt-request mext h3eld_by | | rqtroquest] Tamext 3ok

y n3inext
b6:blocked ‘ p3:Process ‘ ‘ p1:Process ‘
] ntnext n2:next pe— ntnext n2:next

rl1:release

[rt:Resource | p2:Process | r2:Resource | [rt:Resource | { p2:Process | [r2Resource |

rg2:request [h2:held_by
LTS Step 6

h5:held_by [— rl2:release
LTS Step 7

(g) Model after the 6th step

(h) Model after the 7th step

ri4:release h7:held_by h7:held_by
‘ r4:Resource pd:Process r3:Resource ‘ ‘ r4:Resource ‘ ‘ pd-Process r3:Resource ‘
rqt:request ndnext n3inext rqt :requestT l“:‘"%ﬁ' n3inext
] | || Lrumes]
ntinext n2next Thﬁ:hel i by ntinext n2inext
[r1:Resource p2:Process | [2Resource | [r1:Resource p2:Process | [2Resource |

h5:held_by ,m
(i) Model after the 8th step

h5:held_by m‘
(i) Model after the 9th step

h7:held_by
[r4Resource | [paProcess +————] r3iResource |
h8:held_by n4:next n3:next
n1:next n2:next
‘ 1:Resource p2:Process ‘ ‘ r2:Resource ‘
hsiheld by —————
LTS Step 10

(k) Model after the 10th step

Figure 5: Models in different phases of long transformatiequence

11

The transformation sequence inside the basic executiamsuhefined as follows.

1. As afirst steprequestStarRule (Fig. 4(a)) is appliedV times.RequestStarRule
selects two neighboring processes holding each at leasesnarce, and the one
that is ahead in the token ring, issues a request on the westhat is held by
the other process, if it has not issued any requests yet sathe resource. The
resulting instance model (see Fig. 5(b)) should be idehsiftar any sequence
of rule applications during the first step, so this set of sutan be applied in
parallel.

2. This step is a single execution obickedRule (Fig. 2(j)), which initiates the
deadlock detection algorithm by introducing a new blockédee There areV
matchings for this rule before its application, so the grphsformation engine
can choose freely on which matching the concrete rule isiegpThe result of
the rule application is something similar to Fig. 5(c).

3. ThewaitingRule (Fig. 2(k)) is executed noWw—1 times. Since the model contains
only a singleblocked edge, this sequence is fully deterministic. Moreover, it
describes how thblocked edge is propagated in the token ring of processes in
the same direction that is marked by the seheft edges. After this step, the
blocked edge makes a whole round in the token ring as it isctipin Fig. 5(d).

4. Now a single execution of thenlockRule (Fig. 2(m)) follows, which can be done
only on a single matching. This breaks the circular bloclsitigation that causes
deadlock, by forcing a process to release its resource. &sudtwill be a model
that is shown in Fig. 5(e).

5. In the fifth step, thélockedRule (Fig. 2(j)) is executed once again, generating a
newblocked edge. In this case, the rule can be applied on posdiblé match-
ings. Since this is a nondeterministic choice, the resultheisomething similar
to Fig. 5(f).

6. Now thewaitingRule (Fig. 2(k)) is applied at mos¥—1 times. There exists only
a single matching on which next rule application can be peréa until the
point, when théblocked edge points to the same process as¢lease edge (see
Fig. 5(g)). From that point, no matchings can be found. Thie & successful
and unsuccessful rule application steps depends on thextamm which the
previousblockedRule was executed.

7. TheignoreRule (Fig. 2(1)) is executed once to restore the instance modt ke
had after the fourth step (Fig. 5(e)) by deleting biwxked edge.

8. The eighth step is an execution of a loop that contgiveRule, takeRule and
releaseStarRule in this specific order. The first execution of the loop cyclelgs
the model of Fig. 5(h). In order to accelerate pattern matgparts of successful
matches can be passed as parameters to the successivetheléoaip cycle.

GiveRule (Fig. 2(i)) releases a resource that was held by a procedsgigas
the token to the next process in the ring. During the exenutioa takeRule

12

(Fig. 2(g)), the process that has a token for a requestedin@soreserves it
by introducing aheld_by edge between them. TheleaseStarRule handles the
release of a resource in a special context to ensure a detstimiexecution
order.

The loop is executed/—1 times altogether. Note that the cardinality of match-
ings of giveRule is decreased by one after each loop execution. The resulting
model we get after the eighth step is presented in Fig. 5(i).

9. In the ninth stemiveRule is performed once on the single matching that still
exists, resulting in a model that is depicted in Fig. 5()).

10. The final step is a singtakeRule application again on the only possible match-
ing, and the result (shown in Fig. 5(k)) will be isomorphidhwFig. 5(a). The
single difference is that now each resource is held by thegqa® that is one
step ahead of the one that reserved the resource beforediteezacution unit
started.

A basic execution unit contains a transformation sequehieagth @V+1. During
the execution of such a basic unit the instance graph hadlgXa¥ nodes and at
most 3V+1 edges as can be seen in Fig. 5(c). This unit was exedutades in our
experiments resulting in the same upper bound for the markebsid a transformation
sequence of length d?(6 N+1).

Concrete values of parameters wéfe= 4 and R = 100 in one case, resulting in a
model with 8 nodes and 13 edges and a transformation seqoélecgyth 2500. In the
other caseV had a value 1000, an was equal to 1, which yielded a model of size
5001 and a transformation sequence of length 60001.

Optimization possibilities. There are test case specific optimization possibilities in
the first and eighth step, but again, in order to minimize réffotool providers are
asked to prepare only the unoptimized version (based on giamwodel presented in
Fig. 1(a), using no parallelism and parameter passing)ef folution.

3.3 Aslong as possible rule application

This test case can be characterized by small LHS graphsl somaber of fan-outs of
model nodes and transformation sequences of medium lemgthnumber of match-
ings is again parameter dependent, so it is not a distinogigbature of this test case.

RequestRule has to be slightly modified again to ensure the approprigteaer
during the execution of this test set. The modifieduestRule will be referred to as
requestSimpleRule and is depicted in Fig. 6.

This test set used as its single parameter and it determines both the model size
and the length of the transformation sequence. More pigci8edenotes both the
number of processes and resources in the system.

The initial instance model consists aV2nodes (V processes anl resources) and
2N edges again edges are of typeext and they are used to organize process nodes
into a token ring. The othe¥ edges denote processes holding resources in such a way

13

p:Process p:Process

t:token reqnirequest ttoken req:request
[rwoe] | [oomwe]

Bkt sishenaid|

Figure 6: Simplified version akquestRule

that noheld by edges have common ends (i.e., each resource is reservedbgtaine
process and each process holds at most one resource). Aesaitipl instance model

is presented in Fig. 7(a) for th¥ = 4 case.

hd:held_by Hl:release
[r4:Resource |————{ pa:Process | [r3Resource | [r4:Resource |————{ pa:Process | [r3:Resource |
nd:next n3:next h3held_by Aexi n3:next i3release
(oo [rooms] | | [oroms] o]
n1:next n2:next n1:next n2:next
h1:held_by rI1:reIeaseT \
‘ r1:Resource ‘ ‘ p2:Process }-—{ r2:Resource ‘ ‘ [1:Resource ‘ ‘ p2:Process }-—{ r2:Resource ‘
) h2iheld_by) fi2welease
ALAP Init LAP Step 1
(a) Initial model with parametev = 4 (b) Model after the 1st step
t3:token rq3:request
[r4:Resource | [paProcess J+———— ra:Resource | [r4:Resource | [paProcess | [r3Resource |
R LR -
[p3:Process | [pt:Process | [p3:Process |
n1:next n2:next n1 next n2:next
/ th:(oken u tokei Tq2: requesl moken
‘ [1:Resource }—»{ p2:Process ‘ ‘ r2:Resource ‘ ‘ r1:Resource | | p2:Process r2 Resource
t1:token rq1:request
LAP Step LAP Step
(c) Model after the 2nd step (d) Model after the 3rd step
h3:held_by
[4Resource | [paProcess Je———— r3iResource |
h:held_by ndinext n3inext
B =
n1next n2:next Thz:he\d_by
‘ r1:Resource }—»{ p2:Process ‘ ‘ r2:Resource ‘
hitheld by ————
LAP Step 4|

(e) Model after the 4th step

Figure 7: Models in different phases of 'as long as possihll execution

The test sequence consists of 4 major steps.

1. During the first stepgeleaseRule is executedV times, resulting in a model (see
Fig. 7(b)) where all the resources are now linked to theiresponding processes
via arelease edge.

2. Then the execution a@fiveRule follows, which is performedV times. This rule
application enables the next process in the ring to resbesessource by giving
the token to the process. The model looks like the one in K@).after this step.

3. The third step consists df requestSimpleRule applications, which initiates a
process to issue a request on the resource for which the ggradeady has a

token. As a result, we get the model of Fig. 7(d).

14

4. Finally,takeRule is executedV times. This rule makes the assignment of a pro-
cess to a resource, if the process has already a token foedgested resource.
The final instance model is again isomorphic to the initiadelo The only dif-
ference is that in the final model, a certain resource is hgld process that is
one step forward in the token ring (see Fig. 7(e)).

This test sequence has two special properties.

e Since the order of rule applications in a major step is iuaht, the specific rule
can be applied concurrently (in parallel) on different meses.

e Moreover, each rule application of a major step (i) disabiesexecution of the
same rule on the same process, (i) it leaves the enabledhdiss same rule
on other processes unchanged, and finally, (iii) it enaliiesekecution of the
following rule on the same process. These observationd yiel'as long as
possible’ style application of rules appearing in the samagnstep.

This test sequence produced models of siXe Which were 50, 150, 250, 500, and
1000 in the concrete runs.

Optimization possibilities and requirements. Tool providers are asked to create
two versions of their solution. In the first (optimized) viersparallel rule application
is required in all situations where parallel execution isgible. In the other (unop-
timized) version, no parallelism is allowed. This test sesvgelected to explore the
effects of parallel execution, because it has the largesteingsize among the bench-
marks, for which parallelism appears as a feature.

For all other features the preparation of only the unoptédizersion (based on
the metamodel presented in Fig. 1(a), without performing passible optimization
techniques for 'as long as possible’ style rule applicgtismequired.

4 Object to Schema Mapping

Now a typical model transformation example is presentethibicase, an algorithm is
defined by means of graph transformation and it generatdatareal database schema
from a UML class diagram. The algorithm used in this benchmarforms a standard
mapping that can be found in any database textbook (e.dL6i). [

In order to be able to modify both the source and the targeteinaith graph
transformation, a metamodel should be defined that contamsnetamodel of both
the UML language and the relational database schema. Suekt@mded metamodel
is presented in Fig. 8.

The part of the metamodel that describes the structure s dimgrams is a portion
of the standard UML metamodel [15]. gackage may consist o€lasses, associations,
and nodes expressingneralization relations. This kind of containment is expressed
by element ownership (EO) edges. Classes and associations may h#ubutes and
association ends, respectively, as thettlassifier features (CF). At the same time, the
same set of association ends are connected to classesttyral feature type (SFT)

15

e | rr
TCF EO EO EO
EO EO
|PE CE
p KRF CF UF
‘ Attribute ‘ ‘ General ‘ FKey H Column H PKey ‘
UML [Repp | —Y®

Figure 8: An extended metamodel for the object relationgipivag

edges. Generalization connects superclasses to sulslagseh should also be ex-
pressed in the UML metamodel. This is achievedchiyd element (CE) and parent
element (PE) edges. Line thickness does not have any additional meattiegynly
role of thick lines is to make figures of instance models ¢tjea@mranged.

The target language describes the schema of relationddakss. In this simpli-
fied metamodel, which conforms to CWM [8fhemas may contairtables, and tables
may consist ofrimary key andforeign key definitions. Containing relation is again
expressed bglement ownership (EO) edges. Columns constituteclassifier features
(CF) of tables. Foreign keys express key relationships betweleimms with and with-
out primary keys by usingnique key relationship (UKR) andkey relationship features
(KFR), respectively. Finally, primary keys constituteique features (UF) of columns.

Furthermore, in order to facilitate the execution of a carteansformation, source
and target model nodes should be connected by referencs,edgeh are marked by
dashed lines in figures. Note that in order to get perspidiguses references are not
shown when presenting the metamodel.

The whole transformation can be described by 6 rules, whielslaown in Fig. 9.

1. SchemaRule (Fig. 9(a)) simply generates a database schema for a UMLaggck

2. ClassRule searches for a class in the package, for which there doesisbtae
corresponding table in the database schema, and creaimsrtesponding table
that has a single coluntid, for which a primary keypk is defined.

3. AssociationRule creates a new table in the database, if there has not been any
table assigned yet. This new table has again a single cotigmvith a primary
key rpk.

4. TheAssocEndRule selects an unhandled association end, and generates an ad-
ditional columnrelid in the tablet_rel that has been created for the association
itself. Moreover, a foreign key constraint is added totthe table, which refers
to the primary keypk of the tablet_c that is associated with the class.

5. The inheritance relation in the UML model is handled byrappiate foreign key
constraints in the database schema. This is expressed BgtlaealizationRule,
which creates a foreign key constraint on the identifier eolsubid of the sub-
class table_sub for any unhandled generalization node. The constraintrefidr
to the primary keysuppk of the superclass tabtesup.

16

p:Package p:Package
&]

SchemaR

(a) SchemaRule

[pPackage |00 cCiass |

[pPackage |°'5°] cClass |
H T

re |

N o
v v v v
[sschema | [wpde | |[sischema o250 tTaple |
e03:EQ
e

[classR]

| B
(b) ClassRule

s:SFT. |ef1:CF
l—{ ae:AssocEnd

SFT. f1:CF

©03EQ T
——0 ¢ cfCF

[relpkPKey }T{ relid:Column |

e1EQ

=
(c) AssociationRule

copkiPKey

1:EO0 1:EQ

[pPackage 2] ratassoc | [pPackage |50 rerAssoc |

H T H T

| riRet ey,wx [2Ref | ‘ c:Class ‘ 1 ‘rel:Assoc‘ c:Class ‘ ‘rel.Assoc‘

] v . v R S Coret | omet T rzret

202:EQ v

hema_| npGle [sischema Jo-=2%0 [tTable |

[Ls:schema [| s:Schema able ‘Lc:Table‘ v ‘Lre\:Tab\e‘ ‘chTab\e‘ ‘Lrel:Table‘
EO
ance

e1:EQ

rel2dir:FKey relid:Column

opkPKey =

KKRF

[2SO |
(d) AssocEndRule

U
R Kenrer _goret | rrwe]
t_sup:Table ; t_sub:Table ‘
t_sup:Table

(oD | arer
UKR
©o1:E0 subid:Column—, || e E‘{“

U [subpk:PKey | |[suppkPKey |

ol cocE e coce atce ancE
” " [oCass P aatibme | || cClss oM aatribute |
T arer i : ! i
[sup:Ciass]| [sub:Cass] supClass| | [sub:Class] et | rnret X et | oRer
€03EQ | r2Ref v v v ok v
: [tTabe | [conpomn] | [tTable col-Column |

AttributeR

[suppk:PKey |

=

(e) GeneralizationRule

[
(f) AttributeRule

Figure 9: Rules describing the object relational mapping

17

6. Finally, a new column is created in the table assigneddclass that includes
the unhandled attribute. This is performed by #ugibuteRule.

These rules have some special features.

¢ Note that all the above-mentioned rules have a structutedibables their re-
execution on the same matching (context). This observairlds an 'as long
as possible’ style rule application.

e Moreover, application order of a rule on different matclsifgirrelevant, so the
specific rule can be applied in parallel.

e The transformation process together with the rules canlasexpressed in a
more declarative way by using triple graph grammars [12].

4.1 Transformation of a simple class diagram.

This is only an introductory test set that transforms the Utiiss diagram of the din-
ing philosophers’ problem to a corresponding databasensahéts most distinguish-
ing characteristics is the relatively large size of LHS dr@pSince the initial model
consists of only a few elements the transformation sequisngieort. The number of
matchings also depends on the structure of initial modekhwields only few match-
ings for each rule. The number of fan-outs are node depenitheistnodes with either
small or large number of incident edges can be found.

This test set is without parameter, so the initial instanoelehis exactly the one
that is presented in Fig. 10.

The structures of rules allow 'as long as possible’ style rabplication, which
yields the following transformation sequence.

1. We executachemaRule as long as possible. In this specific case with having
only one package in our initial model, it means a single rypliaation. The
resulting model after this step is depicted in Fig. 11.

2. Since the model contains two classeassRule is executed twice yielding the
situation that is shown in Fig. 12.

3. The class diagram has 3 associations, so the applicdtizaariationRule yields
an execution sequence of length 3, and to a model presenkeégl. ih3.

4. There are 6 association ends to be transformedssmEndRule must be exe-
cuted 6 times. When this step has been finished, the situattieiy. 14 arises.

5. No inheritance relation appears in the instance modedeseralizationRule is
not applied at all in this test set.

6. Finally, the single status attribute is transformed biygishe attributeRule as
long as possible, which means once in our specific case. Asudt,rere get an
instance model (depicted in Fig. 15) that comprises botlinitial UML source
model and the corresponding target database schema.

18

p:Package \

46 ¢ ¢
’ ael:AE @ left:Assoc &CF ae2:AE ‘

F/7 T W=

ae3:AE OF rlght:Assoch;{ aed:AE ‘

I VAR RN

’ ae5:AE ’&O{hold:Assocﬁ ae6:AE ‘

SFT SFT
SFT SFT

phil:Class ‘ | fork:Class

*

CF
status:Attribute

Figure 10: Initial model

p:Package \

46 ¢ ¢
’ ael:AE @ left:Assoc &CF ae2:AE ‘

F/7 T W=

ae3:AE OF right:Assoc] aed:AE ‘

1/ T 1 _\[]

’ ae5:AE ’&O{hold:Assocﬁ ae6:AE ‘

SFT SFT
SFT SFT

phil:Class ‘ | fork:Class

*

CF
status:Attribute

Figure 11: Model after the 1st step

19

p:Package

49 ¢ %6 \
ael:AE oF left:Assoc oF ae2:AE ‘
/7 THE AN
ae3:AE right:Assoc] aed:AE ‘

1/ T 1T _\[]

’ ae5:AE ’&O{hold:Assocﬁ ae6:AE ‘

SFT

SFT
SFT SFT
. \ [. i]
phil:Class fork:Class ||| tp:Table thT
0 (e e [arae

CF
status:Attribute

\{ ppk:PK \] fok:PK V

able

e |

p:Package

49 ¢ %6 \
-tI:T bl
ael:AE S left:Assoc oF ae2:AE ‘ CF
/7 T SN
’ ae3:AE right:Assoc] aed:AE
AR R I N (S —
2oAE |shownssods] aeoag | |
[sesne Joshorsmssech] seene |
SFT o
SFT : ser| ST
— T [torcCtass [toTable |
m‘c’laﬂ lfork.f)lass‘ ’ t?p.T‘abIe ‘

\{ ppk:PK \] fok:PK V

tf:Ta:b‘Ie‘]

CF
status:Attribute

Figure 13: Model after the 3rd step

20

’ ael:AE left:Assoc

/7 L

’ ae3:AE OF rlght:Assoch;{

[—— A —

’ ae5‘:AE oF hold:Assoc o

T
______________ G
|

’ ael:AE left:Assoc

/7 L

’ ae3:AE OF rlght:Assoch;{

[—— A —

’ ae5‘:AE oF hold:Assoc oF

T
______________ G
|

SFT
SFT

phil:Class ‘

L 3

status:Attribute

Figure 15: Model after the 5th step

21

The length of the transformation sequence is fully deteemtiby the number of
nodes in the initial model. In our case this is a transforaratiequence of length 13.
The upper bound for the model size is 124, since the final moaledains that many
nodes and edges altogether.

Optimization possibilities. Though several optimization techniques can be per-
formed for this test case, benchmark tests are intended ¢admited on unoptimized
solutions (supposing zero-to-many multiplicities on afes, applying rules one after
the other exactly as it was described without parallel asdidag as possible’ style rule
execution).

Despite the fact that rules can be frequently applied inlf@hia this benchmark,
the third test set of the mutual exclusion algorithm (see S&) has been favoured for
examining the effects of parallel execution, since thiteldtas larger model size. As a
consequence, only the sequential, unoptimized versiom®benchmark is required.

5 Comb structure

This is a special benchmark, since the left-hand side (LHf8)tae right-hand side

(RHS) are identical, and as a consequence, performing mexasuts for the updating

phase is meaningless as nothing changes in the model graplevdr, this benchmark
is perfect for measuring the time needed by the tools to fieditkt matching or any

further matchings of a pattern or to determine that no valatamings exist. Note

that despite all these time values originate from the patieaitching phase, they may
significantly differ from each other as tools use diversatetyies in this phase. This
benchmark is really appropriate for performing the abowstioned measurements,
since it can be characterized by having a wide range of gsttioth for model and

pattern size and by allowing these size values to be set amtiemtly.

1 oo
P i
L

Comb (b) The comb

pattern
(a) Metamodel

Figure 16: Metamodel and the comb patternfér= 3

The metamodel that is depicted in Fig. 16(a) is quite simple,since it contains
only a single node typenfde) and two edge types. These edge types are for horizontal
(hor) and vertical yer) edges.

The benchmark hak/ andN as its parameters and they influence the rule size and
the model size, respectively. This benchmark has only desinde with identical LHS
and RHS, therefore the rule is free from any side effects, (nething is modified).
The LHS (as shown in Fig. 16(b) for the = 3 case) has a comb-like structure with

22

having 2/ nodes arranged in 2 rows aidd columns. Nodes belonging to the same
column are linked by vertical edges in top-down directioanrtkermore, nodes in the
upper row are linked by horizontal edges in left to right diren. The parametei/
obviously influences the size of the pattern.

Several Matching No Matching

(a) Model with several matchings (b) Model without matchings

Figure 17: Instance models of si2é = 6 of the comb benchmark

5.1 Several matchings

This test case can be characterized by a large number of ezavéithe pattern and by
a small number of fan-outs of model nodes. Since there arelles applied in this
case, the transformation sequence is short. Model andiraé@lepend on parameters.
The test set is applicable for measuring the time neededaloulating the first and
the other consecutive matchings of the same rule. (A grapistormation engine may
have significant difference in the calculation time needagdlife first matching and for
the other matchings.)

The initial instance model (depicted in Fig. 17(a) for tNe= 6 case) is a grid
of N x N nodes, where neighbouring nodes in horizontal and verticattion are
connected byor andver edges, respectively. (Horizontal edges always go fromdeft
right, while vertical edges always point downwards.)

The transformation sequence consists of the above-mewt&ingle rule, for which
all the matchings have to be found.

We may state that the pattern size i8/41 (2M nodes,M vertical edges and
M-1 horizontal edges) and the model siz&¢2-2N, which comprisesV? nodes,
N(N — 1) vertical edges and/ (N — 1) horizontal edges. The number of matchings
is(N—M+1)(N —1).

Model and pattern size values and the numbers of matchinghdo4 parameter
combinations used in our experiments can be found in Table 2.

23

Grid Comb Pattern Model No of
size width size size matches

N M # # #

100 10 39 29800 9009

100 20 79 29800 8019
30 30 119 2640 29
50 50 199 7400 49

Table 2: Parameter summary

Optimization possibilities. Since setting parametedéand M influences model and
rule sizes, the test set already provides a wide range ofureraent possibilities, and
thus, no optimization is necessitated from tool providers.

5.2 No matching

This test case has no matchings and it can be characterizedtgll number of fan-
outs of model nodes. No rules are applied again, so the tranation sequence is
short. Model and rule sizes are again parameter dependantest set can be used for
measuring the time needed for a graph transformation enigidetermine that a rule
is not applicable in a certain situation.

The initial instance model (depicted in Fig. 17(b) for tNe= 6 case) is again aiy
by N grid of nodes, where neighbouring nodes in vertical dicectire connected by
vertical edges. But in this case, neighbouring nodes in horizontattion are linked
to each other if and only if the index of the target node hasrezeyo remainder after
a division by (\/-1). In practical terms, it means that eveiM{1)th connection is
missing in the horizontal direction resulting in a situatithat a comb of width\/
cannot be placed on this grid. (Horizontal edges alwaysamu feft to right again, and
similarly vertical edges always point downwards again.)

The transformation sequence consists of the above-meutigingle rule.

We may state that the pattern size i41 (2M/ nodesM vertical edges and/—-1

horizontal edges) and the model siz&i¢? — 2N — N {%J , Which comprisesv?

nodesN (NN — 1) vertical edges and/ (N —1- {%D horizontal edges. The rule
application should fail in this test set.

Model and pattern size values for the 4 parameter combimatieed in our exper-
iments can be found in Table 2.

Optimization possibilities. Since setting parametedéand M influences model and
rule sizes, the test set already provides a wide range ofureraent possibilities, and
thus, no optimization is expected from tool providers.

24

6 Conclusion

In the paper, we gave an overview on typical application ader of graph transfor-
mation together with their characteristic features. Aftards, a sample problem was
selected for each scenario, and we described these berchimdetails by presenting
their metamodel and the graph transformation rules, whephasent the behaviour of
the system. Furthermore, we worked out several specifitatid test sets, each con-
sisting of an initial model and a graph rewriting sequenceyrder to cover as many
tool-specific optimization possibilities as possible, g¢hallows a thorough analysis
on the effects of different optimization strategies.

Our main goal was to provide precise and general benchmatksh support the
execution of repeatable measurements and which can be nsdidive currently avail-
able graph transformation tools without modification.

Since these benchmarks never constitute a completed werklam to extend the
set of descriptions in several directions in the future.

1. A model analysis example is the most principal benchntakis missing from
this paper.

2. The object relational mapping should also be extended lpaat a test case, in
which models have a large number of outgoing edges.

3. Finally, an interesting example would be to have a loop gsaph rewriting
sequence, which consists of such rules of which only one edirdd at a time.

However, our upcoming tasks in the near future include @)ithplementation of
benchmarks on several tools, (ii) the execution of runtimeasurements, and (iii)) a
tool comparison, which is based on the results.

References

[1] Agrawal, A. and G. Karsaih UML-based graph transformation approach of im-
plementing domain-specific model transformatidnternational Journal on Soft-
ware and System Modeling (2003), submitted.

[2] Bitton, D., D. J. DeWitt and C. TurbyfillBenchmarking database systems: A
systematic approaglin: M. Schkolnick and C. Thanos, editoRoc. of the 9th
International Conference on Very Large Data Bases (VLQBB3), pp. 8-19.

[3] Brant, D. A., T. Grose, B. Lofaso and D. P. MirankEffects of database size on
rule system performance: Five case studies Proc. of the 17th International
Conference on Very Large Data Bases (VLDB)91, pp. 287-296.

[4] Ehrig, H., G. Engels, H.-J. Kreowski and G. Rozenbergtoed, “Handbook on
Graph Grammars and Computing by Graph Transformationnwel®: Applica-
tions, Languages and Tools,” World Scientific, 1999.

25

[5] Ermel, C., M. Rudolf and G. Taentzer, “In [4], chapter TR& G-Approach: Lan-
guage and Tool Environment,” World Scientific, 1999 pp. 5513-

[6] Fischer, T., J. Niere, L. Torunski and A. Zundo8tory diagrams: A new graph
rewrite language based on the Unified Modeling LangyageG. R. G. Engels,
editor, Proc. of the 6th International Workshop on Theory and Aglan of
Graph Transformation (TAGTLNCS 1764(1998).

[7] Gray, J., editor, “The Benchmark Handbook for Database Bransaction Sys-
tems (2nd Edition),” Morgan Kaufmann, 1993.

[8] Heckel, R.,Compositional verification of reactive systems specifiedytaph
transformation in: E. Astesiano, editof-undamental Approaches to Software
Engineering: First International Conference, FASENCS1382(1998), pp. 138—
153.

[9] Object Management Group, “CWM: Common Warehouse Metiehd
http://ww. ong. org.

[10] Rensink, A.,The GROOVE simulator: A tool for state space generation
J. Pfalz, M. Nagl and B. Bohlen, editoispplications of Graph Transformations
with Industrial Relevance (AGTIVE)ecture Notes in Computer Scien8662
(2004), pp. 479-485.

[11] Rozenberg, G., editor, “Handbook of Graph Grammars@oichputing by Graph
Transformation, volume 1: Foundations,” World Scientitie97.

[12] Schurr, A.,Specification of graph translators with triple graph gramsain:
Proc. of the 20th Intl. Workshop on Graph-Theoretic ConsépiComputer Sci-
ence (WG 1994) NCS903(1995), pp. 151-163.

[13] Schurr, A., A. Winter and A. Zundorf, “In [4], chapt®ROGRES: Language and
Environment,” World Scientific, 1999 .

[14] Transaction Processing Performance Council, “TPCcRarark C (Standard
Specification, Revision 5.3),” (2004t t p: / / www. t pc. or g/ t pcc/ .

[15] U2-Partners, “UML: Infrastructure v. 2.0 (Third reeid proposal),” (2003),
http://ww. u2-partners.org/artifacts. htm

[16] Uliman, J. D., J. Widom and H. Garcia-Molina, “Datab&yestems: The Com-
plete Book,” Prentice Hall, 2001.

[17] Varrd, D., G. Varrd and A. PatariczBesigning the automatic transformation of
visual languagesScience of Computer Programmiad (2002), pp. 205-227.

[18] Varrd, G., K. Friedl and D. Varr&Graph transformation in relational databases
in: T. Mens, A. Schirr and G. Taentzer, editdrg, Workshop on Graph-Based
Tools (GraBaTs)2004.

26

