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Abstract

Up to this point there did not exist any collection of benchmarks for comparing
different tools in the graph transformation area. The aim ofthis paper is to bridge
this gap and to provide a description of a basic set of benchmark examples together
with scenarios for which the benchmarks can be used. Moreover, our initiative in-
cludes a quantitative comparison of the performance of graph transformation tools
by defining certain parameter settings and optimization possibilities for different
test cases that are requested to be implemented by tool providers.

1 Introduction

Benchmarking has a key role in decision making processes when a choice has to be
made between several alternatives. In order to fill this role, system designers should get
a proper view on the system, which means that characteristics of the system have to be
measured under different circumstances (i.e., by using several parameter combinations
for measurements).

Graph transformation [4, 11] provides a pattern and rule based manipulation of
graph models. Since there is a couple of fields where graph based models can be used,
graph transformation can be considered as a widely applicable approach. However,
despite the large variety of graph transformation tools (AGG [5], Fujaba [6], Great
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[1], Groove [10], Progres [13], Viatra [17]), up to this point there did not exist any
collection of benchmarks for comparing such tools.

Objectives. The aim of this paper is to bridge this gap and to provide a description
of a basic set of benchmark examples together with scenariosfor which the bench-
marks can be used. Moreover, our initiative includes a quantitative comparison of the
performance of graph transformation tools by defining certain parameter settings and
optimization possibilities for different test cases that are requested to be implemented
by tool providers.

In case of graph transformation benchmarks the sole measurable feature, which
composes the base of comparison in turn, is the execution time of pattern matching and
updating phases. (Note that the time needed for generating the initial models does not
take part in measurements, and thus, this topic is not discussed in this paper.) Execution
times are measured for several tools and on different test sets, while the underlying
hardware remains the same for all benchmarks.

Related work. Benchmarking is a well-known approach from different fieldsof com-
puter science.

• In [18], we proposed a relational database solution for performing graph trans-
formation. Since other tools use different techniques, database benchmarks are
irrelevant, nevertheless there exist several benchmarks [2,7,14] in this field.

• There are already some benchmarks created for rule-based expert systems (for
details see [3]). They include the following problems.

– Manners handles the problem of finding an acceptable seatingarrangement
for guests at a dinner party.

– Waltz is a diagram labeling problem and it analyzes the linesof a 2-
dimensional drawing, and labels them as if they were edges ina 3-
dimensional object.

– Aeronautical Route Planner (ARP) plots a course over a giventerrain from
point 1 to point 2, for a plane or missile.

– The Weaver program is an expert system, which is composed of many other
expert systems that communicate through a common black board. It is used
to do VLSI routing for channels and boxes, and with over six hundred rules
it is the largest benchmark among the above-mentioned benchmarks.

As these benchmarks have been created for rule-based expertsystems, no graph-
ical rule and model description is possible. Moreover, according to the bench-
mark descriptions, the largest test set (i.e., the Weaver program) has about 600
rules, 1900 model elements and the transformation sequenceconsists of only 100
activations. However, the biggest problem with these benchmarks is that they do
not cover the typical application areas of graph transformation. In their present
form, they are unusable for graph transformation, and theiradaptation would be
cumbersome.
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We have already launched our research in graph transformation benchmarking in
[18], but that paper mentioned only one test set without any details, while our current
aim is to provide complete and detailed descriptions for several benchmarks.

Overview of terminology. Themetamodeldescribes the abstract syntax of a model-
ing language. Formally, it can be represented by a type graph. Nodes of the type graph
are calledclasses. A class may have attributes that define some kind of properties of
the specific class.Inheritancemay be defined between classes, which means that the
inherited class has all the properties its parent has, but itmay further contain some extra
attributes. Finally,associationsdefine connections between classes.

The instance model(or, formally, an instance graph) describes concrete systems
defined in a modeling language and it is a well-formed instance of the metamodel.
Nodes and edges are calledobjectsand links, respectively. Objects and links are the
instances of metamodel level classes and associations, respectively. Attributes in the
metamodel appear asslots in the instance model. Inheritance in the instance model
imposes that instances of the subclass can be used in every situation, where instances
of the superclass are required.

Example. In order to present our concepts, the metamodel of the mutualexclusion
problem (depicted in Fig. 1(a)) can be examined. It has only two classes, which are
called Process and Resource. These classes are connected by edges of typenext,
request, held by, release, token, andblocked, which correspond to associations in turn.
This metamodel does not define any attributes. Similarly, noinheritance is specified in
the figure.

A well-formed instance model of this domain is shown e.g., inFig. 3(a). It has two
processes (p1 andp2) and two links (n1 andn2) of typenext.

A graph transformation ruler = (LHS, RHS, NAC) contains a left-hand side graph
LHS, a right-hand side graphRHS, and negative application condition graphsNAC.

The applicationof a rule r to a host (instance) modelM replaces a matching of
theLHS in M by an image of theRHS. This is performed by (i) finding a matching of
LHS in M (by graph pattern matching), (ii) checking the negative application conditions
NAC (which prohibit the presence of certain objects and links) (iii) removing a part of
the modelM that can be mapped toLHS but not toRHS yielding to the context model,
and (iv) gluing the context model with an image of theRHS by adding new objects and
links (that can be mapped to theRHS but not to theLHS) obtaining thederived model
M’. A graph transformationis a sequence of rule applications from an initial modelMI .

Example. The mutual exclusion algorithm can be described by 13 graph transfor-
mation rules as it is presented in Fig. 2. By choosingnewRule (Fig. 2(a)) as our running
example, we may state that in itsLHS a link of typenext connects two processes, while
in its RHS the same processes (p1 andp2) also appear, but now there is also a third pro-
cessp, which is placed betweenp1 andp2. ThenewRule does not have any negative
application conditions.

This rule can be applied on the model that has been presented in Fig. 3(a). Ifp1
and p2 of the newRule are mapped top1 and p2 of the model, respectively, in the
pattern matching phase then the definition of rule application prescribes the deletion
of n2 followed by the insertion ofp3, n3 andn4. If the same rule is applied again but
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now with an inverse mapping (p1 of newRule is mapped top2 and vice versa), then the
model of Fig. 3(b) is resulted.

The structure of the paper. In Sec. 2 an overview is given on the most common
scenarios in graph transformation. Then we present in a tabular form which benchmark
can be used for which scenarios. In this table benchmarks whose implementation is
requested from tool providers are also marked. In the rest ofthe paper benchmarks are
presented on a section by section basis. Section 3 introduces a benchmark example,
which is typical for checking the specification of a system that is defined in a visual
language with dynamic semantics. The benchmark of Sec. 4 is amodel transformation
example. In Sec. 5 a special test set is presented which is appropriate for testing only
the pattern matching phase, but with different model and pattern sizes.

2 Benchmark features

Benchmarks can be characterized by different features including the size of the pat-
terns, the maximum degree of nodes (fan-out) in the model, the number of successful
matchings of a rule, and the length of the transformation sequence executed during the
test. Thesegeneric featuresare fully determined by rule and model descriptions of the
benchmark, so they are not influenced at all by optimization features of different tools.

On the other hand, based on the application order of rules in aspecific test case,
tools may perform different optimizations. Features, which are affected by optimiza-
tions, are calledtool-dependent. Four tool-dependent features are identified initially.

• In case ofparallel rule execution, all the matchings of a rule are calculated in the
pattern matching phase, and then updates are performed in a transaction block on
the collected matchings without re-evaluating valid matchings during the trans-
action.

• ’As long as possible’ rule applicationmeans an iterative execution of the selected
rule for which the termination of the iteration is declared and guaranteed by the
system designer.

A standard graph rewriting step (with a pattern matching andan updating phase)
is performed in each iteration. Thus, in order to avoid infinite loops, it must
be ensured that the number of matching patterns always decreases, which, in
addition, forms a sufficient guarantee for termination.

• The termmultiplicity based optimizationis used, when a tool employs a different
(and usually simplified) strategy in order to find matching model elements for an
edge with bounded multiplicity.

• Tools may provide aparameter passingpossibility between consecutive rule ap-
plications. By passing model elements as parameters, pattern matching may be
facilitated in the subsequent rewriting steps, since passed elements can be reused
directly without performing any recalculation in these later steps.
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The above-mentioned enumeration cannot be complete, sinceit does not contain
any heuristics that is going to be discovered in the future and it further ignores features
that are specific only for a single tool. In case of these heuristics tool providers are
asked to prepare both an optimized and an unoptimized version of the system for the
benchmark where the effects of the optimization are the mostrecognizable.

OR mapping

Short Long ALAP Simple Several No

TS TS execution model matchings matching

large - - - + PD PD

small + + + - PD PD

large PD - - - - -

small PD + + + + +

many PD PD PD - + -

few PD PD PD + - +

long - + - - - -

medium - - + - - -

short + - - + + +

Mutex Comb

LHS size

fan-out

Generic features

matchings

transformation 

sequence 

length

OR mapping

Short Long ALAP Simple Several No

TS TS execution model matchings matching

REQ + - - - -

REQ + + + + +

+ + REQ + - -

- + + + - -

Tool-dependent 

optimization

Mutex Comb

parameter passing

0..1 multiplicities

parallel execution

as long as possible

Table 1: Feature matrices of test cases and scenarios

Table 1 presents a feature matrix describing what purpose a certain test case can be
useful for. Upper and lower parts of Table 1 show generic and tool-dependent features,
respectively. If the given feature is characteristic for the test case then it is denoted by a
plus sign (+). A minus sign (–) represents the case when the feature is not characteristic
for the test set. If the characteristics of a feature dependson the concrete parameter
settings, then it is called parameter dependent (marked by lettersPD).

In case of tool-dependent features a plus sign has an additional meaning. It still
denotes a feature of the test case for which optimization canbe done, but in order to
minimize coding efforts only one (in general the unoptimized) version of the solution is
needed for the tool comparison. NotationREQ again denotes a characteristic feature;
but in this case both optimized and unoptimized versions arerequired in order to be
able to compare the effects of optimization. Detailed requirements for comparison are
discussed at the end of test set descriptions (seeOptimization possibilities). In the
tool-dependent group minus signs (–) still represent non-characteristic features, so in
these cases it is totally meaningless to use heuristics.

3 Distributed mutual exclusion algorithm

This benchmark is a distributed mutual exclusion algorithmwhose full specification
can be found in [8]. The algorithm is defined in a visual language with dynamic se-
mantics. The scenario can be characterized by a nearly static graph structure, where
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only tokens are passed around, and by short rewriting sequences that are respected for a
long time. These rule application sequences (which are defined for test cases) describe
possible behaviours of the system in different situations.

Fig. 1(a) presents the unoptimized metamodel of the domain,in which all edge mul-
tiplicities are of zero-to-many kind. Tools performing multiplicity based optimization
heuristics may use the optimized metamodel (depicted in Fig. 1(b)) for this benchmark.

Process

Resource

next

blocked

Mutex

held_by releasetoken

request

*

*

*

*

*

***

**

*

*

(a) Metamodel with zero-to-many multiplicities
on all edges

Process

Resource

next

blocked

Mutex

held_by releasetoken

request

*

1

*

1

*

111

**

*

*

(b) Metamodel with some edge multiplicities op-
timized

Figure 1: Metamodels for the mutual exclusion problem

Processes try to access sharedresources. One requirement of the algorithm is to
give access to each resource by at most one process at a time. This is achieved by
using a token ring, which consists of processes connected byedges of typenext. In the
consecutive phases of the algorithm, (i) a process may issuea request on a resource, (ii)
the resource may eventually beheld by a process and finally (iii) a process mayrelease
the resource. The right to access a resource is modeled by atoken. The algorithm
also contains a deadlock detection procedure, which has to track the processes that are
blocked.

The algorithm can be described by 13 graph transformation rules as presented in
Fig. 2. The most complex rule (blockedRule in Fig.2(j)) has 4 nodes and 3 edges.

3.1 Short transformation sequences

This test case can be characterized by small LHS graphs and short transformation se-
quences. The number of fan-outs of model nodes and of matchings are parameter
dependent, so they are not distinguishing features of this test case.

Initial instance graphs in this test set only contain twoprocess nodes and two edges
of typenext linking the process nodes in both directions (as it is presented in Fig. 3(a)).
The test set has one parameterN , which denotes the maximum number of processes
appearing in the instance model during a specific test.

The transformation sequence can be described as follows.

1. ThenewRule (Fig. 2(a)) is applied firstN–2 times in an arbitrary order. Since
each application ofnewRule adds a process to the token ring, after this step the
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p1:Process

NewRule

n1:next

p2:Process

p1:Process

p:Process

p2:Process

n:next

n2:next

(a) newRule

p1:Process

KillRule

n1:next

p2:Process

p1:Process

p:Process

p2:Process

n:next

n2:next

(b) killRule

p:Process p:Process

r:Resource

MountRule

t:token

(c) mountRule

p:Processp:Process

r:Resource

UnmountRule

t:token

(d) unmountRule

p1:Process

r:Resource

PassRule

req:request

n:next
p2:Process

t:token

p1:Process

r:Resource

n:next
p2:Process

t:token

(e) passRule

r:Resource

p:Process

r:Resource

RequestRule

hb:held_by

reqn:request
req:request

rn:Resourcep:Process

(f) requestRule

p:Process p:Process

r:Resource

TakeRule

t:token

r:Resource

req:request hb:held_by

(g) takeRule

r:Resource

p:Process

r:Resource

ReleaseRule

hb:held_by

reqn:request
rel:release

rn:Resourcep:Process

(h) releaseRule

p1:Process

r:Resource

GiveRule

n:next
p2:Process

rel:release

p1:Process

r:Resource

n:next
p2:Process

t:token

(i) giveRule

p1:Process

BlockedRule

req:request

p2:Process

p1:Process

r:Resource

p2:Process

hb:held_by

r:Resource

req:request

hb:held_by

b:blocked

(j) blockedRule

p2:Processp1:Process

r2:Resource

WaitingRule

r1:Resource

p2:Processp1:Process

r2:Resource

r1:Resourcehb:held_by hb:held_byreq:request req:request

bn:blockedb:blocked

r1 z r2

(k) waitingRule

r:Resource

p:Process

r:Resource

IgnoreRule

b:blocked

hbn:held_by

rn:Resourcep:Process

(l) ignoreRule

p:Process p:Process

r:Resource

UnlockRule

hb:held_by

r:Resource

b:blocked rel:release

(m) unlockRule

Figure 2: Rules describing the mutual exclusion algorithm
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p1:Process p2:Process

STS Init

n1:next

n2:next

(a) Initial model

p1:Process p2:Process

STS Step 1

n5:next

n3:next
p3:Process

p4:Process
n6:next

n4:next

(b) Model after the 1st step

p1:Process p2:Process

STS Step 2

n5:next

n3:next
p3:Process

p4:Process
n6:next

n4:next

r:Resource

t1:token

(c) Model after the 2nd step

p1:Process p2:Process

STS Step 3

n5:next

n3:next
p3:Process

p4:Process
n6:next

n4:next

r:Resource

t1:token

rq2:request

rq1:request

rq3:request

rq4:request

(d) Model after the 3rd step

p1:Process p2:Process

STS Loop

n5:next

n3:next
p3:Process

p4:Process
n6:next

n4:next

r:Resource

t2:tokenrq1:request

rq3:request

rq4:request

(e) Model after the first loop execution

p1:Process p2:Process

STS Step 4

n5:next

n3:next
p3:Process

p4:Process
n6:next

n4:next

r:Resource

t5:token

(f) Model after the 4th step

Figure 3: Models in different phases of short transformation sequence
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instance model will have a ring structure consisting of exactly N process nodes
that are linked byN edges of typenext as shown in Fig. 3(b).

2. The second step is to create a singleresource by performing themountRule
(Fig. 2(c)) once. This rule also gives access rights to one ofthe processes, which
is modeled by a newly createdtoken edge. The instance model is shown in
Fig. 3(c).

3. In the third step, each process issues arequest for the single resource, which
means the execution ofrequestRule (Fig. 2(f)) for N times. Regardless of the
execution order, the final instance model will be the one thatis presented in
Fig. 3(d). (So it is possible to applyrequestRule in parallel.)

4. The final step handles the requests that have been issued inthe previous step.
To handle a single request rulestakeRule, releaseRule andgiveRule have to be
applied in this specific order. In order to speed up pattern matching,parameter
passingis possible among the rules that belong to the same loop.

TakeRule (Fig. 2(g)) assigns the process with the token to the resource by creat-
ing aheld by edge. ThenreleaseRule (Fig. 2(h)) lets the resource to be released
by the process. Finally, the resource is released and the token is propagated to
the next process in the token ring by the execution ofgiveRule (Fig. 2(i)). The
instance model we have at this point is shown in Fig. 3(e).

Since all theN processes have already requested the resource, the above-
mentioned 3 rules have to be executed in a loop forN times, which results in
a rule execution sequence of length 3N . (Note that there exists only a single
matching to which the subsequent rule can be applied at the time when the rule
application is scheduled, so the rule execution order of thefourth step is fully
deterministic.) In the end, the instance model will be the one that is depicted in
Fig. 3(f).

The transformation sequence consists of 5N–1 rule applications altogether. The
largest instance graph that appears during the rule application phase hasN+1 nodes
and 2N+1 edges (see Fig. 3(d)).N was chosen as 5, 100, and 1000 in our different ex-
periments resulting in models of size 17, 302, and 3002, and transformation sequences
of length 24, 499, and 4999, respectively.

Optimization possibilities and requirements.

• Instead of having zero-to-many multiplicities on all association ends, it is possi-
ble to restrict some of them to zero-to-one, as it is presented in Fig.1. Since the
model contains only a singleresource, knowing and using this fact may cause
performance improvements for some tools, since pattern matching can be started
at this well-defined node.

• As it was already mentioned in the test case description, the3 rules in the loop
of the fourth step may be applied in such way that the selectedprocess and
resource nodes can be passed to consecutive rules as parameters, which may
speed up pattern matching.
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In order to perform a wide range comparison tool providers are asked to prepare
both an optimized and an unoptimized version of their solution for this test case. Since
there are two independent optimization possibilities, this results in at most 4 different
rule sets. (The possibility to set parameterN should also be provided as well.)

Despite the fact that parallel rule application is also possible in the third step, tool
providers are asked to generate only an unoptimized version, where rewriting is exe-
cuted sequentially.

The widest range comparison could certainly be achieved by performing isolated
measurements for each combination of optimization possibilities, but it would unnec-
essarily increase the required efforts, and thus, it is avoided by measuring the effects
of a given optimization heuristics only in a single test where its influence on perfor-
mance is really representative. This effort minimization is the reason for using only
one version. The unoptimized, sequential version is selected from the two alternatives,
because it is surely supported by all tools.

3.2 Long transformation sequences

This test case can be characterized by small LHS graphs, small number of fan-outs of
model nodes and long transformation sequences. The number of matchings is again
parameter dependent, so it is not a distinguishing feature of this test case.

For this test set, we modified two rules (namely,requestRule and releaseRule of
[8]) in order to restrict their applicability in certain situations and to get a deterministic
transformation sequence. The modified rules are referred toas requestStarRule and
releaseStarRule and are depicted in Fig. 4(a) and in Fig. 4(b), respectively,

r1:Resource

RequestStarRule

n:next
p2:Process

h1:held_by

p1:Process

r2:Resource

n:next
p2:Process

r2:Resource r1:Resource

h2:held_by

h1:held_by

h2:held_by

rqn:request rq:request

p1:Process

(a) requestStarRule

r1:Resource

ReleaseStarRule

p2:Process

rq:request

p1:Process

r2:Resource

p2:Process

r2:Resource r1:Resource

h2:held_by

h1:held_by

h2:held_by

p1:Process

rq:request

rl:release

(b) releaseStarRule

Figure 4: Extra rules for the long transformation sequence

In this case, we have two parameters (namely,N andR). N denotes the number
of processes and resources in the initial instance model, and it influences both the
model size and the length of the transformation sequence. Werefer to a transformation
sequence asa basic execution unit, if (i) instance graphs before and after execution are
isomorphic, and (ii) the sequence can be executed several times in a loop. The role of
R is to determine how many times a basic execution unit is executed during the test.
As a consequence,R has influence only on the length of the transformation sequence.

The initial instance model now consists of 2N nodes (N processes andN re-
sources) and 2N edges.N edges are of typenext and they are used to organize process
nodes into a token ring. The otherN edges mark processes holding resources in such
a way that noheld by edges have common ends (i.e., each resource is held by at most
one process and each process reserves at most one resource).A sample initial instance
model is presented in Fig. 5(a) for theN = 4 case.
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p1:Process p3:Process

LTS Init

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

(a) Initial model with parameterN = 4

p1:Process p3:Process

LTS Step 1

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

rq1:request

rq2:request

rq4:request

rq3:request

(b) Model after the 1st step

p1:Process p3:Process

LTS Step 2

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

rq1:request

rq2:request

rq4:request

rq3:request

b1:blocked

(c) Model after the 2nd step

p1:Process p3:Process

LTS Step 3

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

rq1:request

rq2:request

rq4:request

rq3:request
b4:blocked

(d) Model after the 3rd step

p1:Process p3:Process

LTS Step 4

p2:Process

p4:Processr4:Resource

rl1:release

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

rq1:request

rq2:request

rq4:request

rq3:request

(e) Model after the 4th step

p1:Process p3:Process

LTS Step 5

p2:Process

p4:Processr4:Resource

rl1:release

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

rq1:request

rq2:request

rq4:request

rq3:request

b5:blocked

(f) Model after the 5th step

p1:Process p3:Process

LTS Step 6

p2:Process

p4:Processr4:Resource

rl1:release

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

rq1:request

rq2:request

rq4:request

rq3:request

b6:blocked

(g) Model after the 6th step

p1:Process p3:Process

LTS Step 7

p2:Process

p4:Processr4:Resource

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

rl2:release

h3:held_by

h4:held_by

rq1:request

h5:held_by

rq4:request

rq3:request

n3:next

(h) Model after the 7th step

p1:Process p3:Process

LTS Step 8

p2:Process

p4:Processr4:Resource

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

rl4:release

rq1:request

h5:held_by

h7:held_by

h6:held_by

n3:next

(i) Model after the 8th step

p1:Process p3:Process

LTS Step 9

p2:Process

p4:Processr4:Resource

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

t4:tokenrq1:request

h5:held_by

h7:held_by

h6:held_by

n3:next

(j) Model after the 9th step

p1:Process p3:Process

LTS Step 10

p2:Process

p4:Processr4:Resource

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

h8:held_by

h5:held_by

h7:held_by

h6:held_by

n3:next

(k) Model after the 10th step

Figure 5: Models in different phases of long transformationsequence
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The transformation sequence inside the basic execution unit is defined as follows.

1. As a first step,requestStarRule (Fig. 4(a)) is appliedN times.RequestStarRule
selects two neighboring processes holding each at least oneresource, and the one
that is ahead in the token ring, issues a request on the resource that is held by
the other process, if it has not issued any requests yet on thesame resource. The
resulting instance model (see Fig. 5(b)) should be identical after any sequence
of rule applications during the first step, so this set of rules can be applied in
parallel.

2. This step is a single execution of ablockedRule (Fig. 2(j)), which initiates the
deadlock detection algorithm by introducing a new blocked edge. There areN
matchings for this rule before its application, so the graphtransformation engine
can choose freely on which matching the concrete rule is applied. The result of
the rule application is something similar to Fig. 5(c).

3. ThewaitingRule (Fig. 2(k)) is executed nowN–1 times. Since the model contains
only a singleblocked edge, this sequence is fully deterministic. Moreover, it
describes how theblocked edge is propagated in the token ring of processes in
the same direction that is marked by the set ofnext edges. After this step, the
blocked edge makes a whole round in the token ring as it is depicted in Fig. 5(d).

4. Now a single execution of theunlockRule (Fig. 2(m)) follows, which can be done
only on a single matching. This breaks the circular blockingsituation that causes
deadlock, by forcing a process to release its resource. The result will be a model
that is shown in Fig. 5(e).

5. In the fifth step, theblockedRule (Fig. 2(j)) is executed once again, generating a
newblocked edge. In this case, the rule can be applied on possibleN–1 match-
ings. Since this is a nondeterministic choice, the result will be something similar
to Fig. 5(f).

6. Now thewaitingRule (Fig. 2(k)) is applied at mostN–1 times. There exists only
a single matching on which next rule application can be performed until the
point, when theblocked edge points to the same process as therelease edge (see
Fig. 5(g)). From that point, no matchings can be found. The ratio of successful
and unsuccessful rule application steps depends on the context on which the
previousblockedRule was executed.

7. TheignoreRule (Fig. 2(l)) is executed once to restore the instance model that we
had after the fourth step (Fig. 5(e)) by deleting theblocked edge.

8. The eighth step is an execution of a loop that containsgiveRule, takeRule and
releaseStarRule in this specific order. The first execution of the loop cycle yields
the model of Fig. 5(h). In order to accelerate pattern matching parts of successful
matches can be passed as parameters to the successive rule ofthe loop cycle.

GiveRule (Fig. 2(i)) releases a resource that was held by a process, and gives
the token to the next process in the ring. During the execution of a takeRule
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(Fig. 2(g)), the process that has a token for a requested resource, reserves it
by introducing aheld by edge between them. ThereleaseStarRule handles the
release of a resource in a special context to ensure a deterministic execution
order.

The loop is executedN–1 times altogether. Note that the cardinality of match-
ings of giveRule is decreased by one after each loop execution. The resulting
model we get after the eighth step is presented in Fig. 5(i).

9. In the ninth stepgiveRule is performed once on the single matching that still
exists, resulting in a model that is depicted in Fig. 5(j).

10. The final step is a singletakeRule application again on the only possible match-
ing, and the result (shown in Fig. 5(k)) will be isomorphic with Fig. 5(a). The
single difference is that now each resource is held by the process that is one
step ahead of the one that reserved the resource before the basic execution unit
started.

A basic execution unit contains a transformation sequence of length 6N+1. During
the execution of such a basic unit the instance graph had exactly 2N nodes and at
most 3N+1 edges as can be seen in Fig. 5(c). This unit was executedR times in our
experiments resulting in the same upper bound for the model size and a transformation
sequence of length ofR(6N+1).

Concrete values of parameters wereN = 4 andR = 100 in one case, resulting in a
model with 8 nodes and 13 edges and a transformation sequenceof length 2500. In the
other caseN had a value 1000, andR was equal to 1, which yielded a model of size
5001 and a transformation sequence of length 60001.

Optimization possibilities. There are test case specific optimization possibilities in
the first and eighth step, but again, in order to minimize efforts, tool providers are
asked to prepare only the unoptimized version (based on the metamodel presented in
Fig. 1(a), using no parallelism and parameter passing) of their solution.

3.3 As long as possible rule application

This test case can be characterized by small LHS graphs, small number of fan-outs of
model nodes and transformation sequences of medium length.The number of match-
ings is again parameter dependent, so it is not a distinguishing feature of this test case.

RequestRule has to be slightly modified again to ensure the appropriate behavior
during the execution of this test set. The modifiedrequestRule will be referred to as
requestSimpleRule and is depicted in Fig. 6.

This test set usesN as its single parameter and it determines both the model size
and the length of the transformation sequence. More precisely, N denotes both the
number of processes and resources in the system.

The initial instance model consists of 2N nodes (N processes andN resources) and
2N edges again.N edges are of typenext and they are used to organize process nodes
into a token ring. The otherN edges denote processes holding resources in such a way
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p:Process

RequestSimpleRule

t:token

r:Resource

reqn:request

p:Process

t:token

r:Resource

req:request

Figure 6: Simplified version ofrequestRule

that noheld by edges have common ends (i.e., each resource is reserved by atmost one
process and each process holds at most one resource). A sample initial instance model
is presented in Fig. 7(a) for theN = 4 case.

p1:Process p3:Process

ALAP Init

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

(a) Initial model with parameterN = 4

p1:Process p3:Process

ALAP Step 1

p2:Process

p4:Processr4:Resource

rl1:release

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

rl2:release

rl3:release

rl4:release

(b) Model after the 1st step

p1:Process p3:Process

ALAP Step 2

p2:Process

p4:Processr4:Resource

t1:token

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

t2:token

t3:token

t4:token

(c) Model after the 2nd step

p1:Process p3:Process

ALAP Step 3

p2:Process

p4:Processr4:Resource

t1:token

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

t2:token

t3:tokent4:token

rq1:request

rq4:request

rq3:request

rq2:request

(d) Model after the 3rd step

p1:Process p3:Process

ALAP Step 4

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

(e) Model after the 4th step

Figure 7: Models in different phases of ’as long as possible’rule execution

The test sequence consists of 4 major steps.

1. During the first step,releaseRule is executedN times, resulting in a model (see
Fig. 7(b)) where all the resources are now linked to their corresponding processes
via arelease edge.

2. Then the execution ofgiveRule follows, which is performedN times. This rule
application enables the next process in the ring to reserve the resource by giving
the token to the process. The model looks like the one in Fig. 7(c) after this step.

3. The third step consists ofN requestSimpleRule applications, which initiates a
process to issue a request on the resource for which the process already has a
token. As a result, we get the model of Fig. 7(d).
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4. Finally, takeRule is executedN times. This rule makes the assignment of a pro-
cess to a resource, if the process has already a token for the requested resource.
The final instance model is again isomorphic to the initial model. The only dif-
ference is that in the final model, a certain resource is held by a process that is
one step forward in the token ring (see Fig. 7(e)).

This test sequence has two special properties.

• Since the order of rule applications in a major step is irrelevant, the specific rule
can be applied concurrently (in parallel) on different processes.

• Moreover, each rule application of a major step (i) disablesthe execution of the
same rule on the same process, (ii) it leaves the enablednessof the same rule
on other processes unchanged, and finally, (iii) it enables the execution of the
following rule on the same process. These observations yield an ’as long as
possible’ style application of rules appearing in the same major step.

This test sequence produced models of size 5N , which were 50, 150, 250, 500, and
1000 in the concrete runs.

Optimization possibilities and requirements. Tool providers are asked to create
two versions of their solution. In the first (optimized) version parallel rule application
is required in all situations where parallel execution is possible. In the other (unop-
timized) version, no parallelism is allowed. This test set was selected to explore the
effects of parallel execution, because it has the largest model size among the bench-
marks, for which parallelism appears as a feature.

For all other features the preparation of only the unoptimized version (based on
the metamodel presented in Fig. 1(a), without performing any possible optimization
techniques for ’as long as possible’ style rule application) is required.

4 Object to Schema Mapping

Now a typical model transformation example is presented. Inthis case, an algorithm is
defined by means of graph transformation and it generates a relational database schema
from a UML class diagram. The algorithm used in this benchmark performs a standard
mapping that can be found in any database textbook (e.g., in [16]).

In order to be able to modify both the source and the target model with graph
transformation, a metamodel should be defined that containsthe metamodel of both
the UML language and the relational database schema. Such anextended metamodel
is presented in Fig. 8.

The part of the metamodel that describes the structure of class diagrams is a portion
of the standard UML metamodel [15]. Apackage may consist ofclasses, associations,
and nodes expressinggeneralization relations. This kind of containment is expressed
by element ownership (EO) edges. Classes and associations may haveattributes and
association ends, respectively, as theirclassifier features (CF). At the same time, the
same set of association ends are connected to classes bystructural feature type (SFT)
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Figure 8: An extended metamodel for the object relational mapping

edges. Generalization connects superclasses to subclasses, which should also be ex-
pressed in the UML metamodel. This is achieved bychild element (CE) andparent
element (PE) edges. Line thickness does not have any additional meaning,the only
role of thick lines is to make figures of instance models clearly arranged.

The target language describes the schema of relational databases. In this simpli-
fied metamodel, which conforms to CWM [9],schemas may containtables, and tables
may consist ofprimary key and foreign key definitions. Containing relation is again
expressed byelement ownership (EO) edges. Columns constituteclassifier features
(CF) of tables. Foreign keys express key relationships between columns with and with-
out primary keys by usingunique key relationship (UKR) andkey relationship features
(KFR), respectively. Finally, primary keys constituteunique features (UF) of columns.

Furthermore, in order to facilitate the execution of a correct transformation, source
and target model nodes should be connected by reference edges, which are marked by
dashed lines in figures. Note that in order to get perspiciousfigures references are not
shown when presenting the metamodel.

The whole transformation can be described by 6 rules, which are shown in Fig. 9.

1. SchemaRule (Fig. 9(a)) simply generates a database schema for a UML package.

2. ClassRule searches for a class in the package, for which there does not exist a
corresponding table in the database schema, and creates thecorresponding table
that has a single columntid, for which a primary keytpk is defined.

3. AssociationRule creates a new table in the database, if there has not been any
table assigned yet. This new table has again a single columnrid with a primary
key rpk.

4. TheAssocEndRule selects an unhandled association end, and generates an ad-
ditional columnrelid in the tablet rel that has been created for the association
itself. Moreover, a foreign key constraint is added to thet rel table, which refers
to the primary keycpk of the tablet c that is associated with the class.

5. The inheritance relation in the UML model is handled by appropriate foreign key
constraints in the database schema. This is expressed by theGeneralizationRule,
which creates a foreign key constraint on the identifier columnsubid of the sub-
class tablet sub for any unhandled generalization node. The constraint willrefer
to the primary keysuppk of the superclass tablet sup.
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(e) GeneralizationRule
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AttributeR

cf1:CFcf1:CF
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(f) AttributeRule

Figure 9: Rules describing the object relational mapping
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6. Finally, a new column is created in the table assigned to the class that includes
the unhandled attribute. This is performed by theAttributeRule.

These rules have some special features.

• Note that all the above-mentioned rules have a structure that disables their re-
execution on the same matching (context). This observationyields an ’as long
as possible’ style rule application.

• Moreover, application order of a rule on different matchings is irrelevant, so the
specific rule can be applied in parallel.

• The transformation process together with the rules can alsobe expressed in a
more declarative way by using triple graph grammars [12].

4.1 Transformation of a simple class diagram.

This is only an introductory test set that transforms the UMLclass diagram of the din-
ing philosophers’ problem to a corresponding database schema. Its most distinguish-
ing characteristics is the relatively large size of LHS graphs. Since the initial model
consists of only a few elements the transformation sequenceis short. The number of
matchings also depends on the structure of initial model, which yields only few match-
ings for each rule. The number of fan-outs are node dependent, thus nodes with either
small or large number of incident edges can be found.

This test set is without parameter, so the initial instance model is exactly the one
that is presented in Fig. 10.

The structures of rules allow ’as long as possible’ style rule application, which
yields the following transformation sequence.

1. We executeschemaRule as long as possible. In this specific case with having
only one package in our initial model, it means a single rule application. The
resulting model after this step is depicted in Fig. 11.

2. Since the model contains two classes,classRule is executed twice yielding the
situation that is shown in Fig. 12.

3. The class diagram has 3 associations, so the application of associationRule yields
an execution sequence of length 3, and to a model presented inFig. 13.

4. There are 6 association ends to be transformed, soassocEndRule must be exe-
cuted 6 times. When this step has been finished, the situationof Fig. 14 arises.

5. No inheritance relation appears in the instance model, sogeneralizationRule is
not applied at all in this test set.

6. Finally, the single status attribute is transformed by using theattributeRule as
long as possible, which means once in our specific case. As a result, we get an
instance model (depicted in Fig. 15) that comprises both theinitial UML source
model and the corresponding target database schema.
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Figure 10: Initial model
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Figure 11: Model after the 1st step
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Figure 12: Model after the 2nd step
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Figure 13: Model after the 3rd step
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Figure 14: Model after the 4th step
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Figure 15: Model after the 5th step
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The length of the transformation sequence is fully determined by the number of
nodes in the initial model. In our case this is a transformation sequence of length 13.
The upper bound for the model size is 124, since the final modelcontains that many
nodes and edges altogether.

Optimization possibilities. Though several optimization techniques can be per-
formed for this test case, benchmark tests are intended to beexecuted on unoptimized
solutions (supposing zero-to-many multiplicities on all edges, applying rules one after
the other exactly as it was described without parallel and ’as long as possible’ style rule
execution).

Despite the fact that rules can be frequently applied in parallel in this benchmark,
the third test set of the mutual exclusion algorithm (see Sec. 3.3) has been favoured for
examining the effects of parallel execution, since this latter has larger model size. As a
consequence, only the sequential, unoptimized version of this benchmark is required.

5 Comb structure

This is a special benchmark, since the left-hand side (LHS) and the right-hand side
(RHS) are identical, and as a consequence, performing measurements for the updating
phase is meaningless as nothing changes in the model graph. However, this benchmark
is perfect for measuring the time needed by the tools to find the first matching or any
further matchings of a pattern or to determine that no valid matchings exist. Note
that despite all these time values originate from the pattern matching phase, they may
significantly differ from each other as tools use diverse strategies in this phase. This
benchmark is really appropriate for performing the above-mentioned measurements,
since it can be characterized by having a wide range of settings both for model and
pattern size and by allowing these size values to be set independently.

hor

Comb

1

1

Node
ver

1

1

(a) Metamodel

Pattern

(b) The comb
pattern

Figure 16: Metamodel and the comb pattern forM = 3

The metamodel that is depicted in Fig. 16(a) is quite simple now, since it contains
only a single node type (node) and two edge types. These edge types are for horizontal
(hor) and vertical (ver) edges.

The benchmark hasM andN as its parameters and they influence the rule size and
the model size, respectively. This benchmark has only a single rule with identical LHS
and RHS, therefore the rule is free from any side effects (i.e., nothing is modified).
The LHS (as shown in Fig. 16(b) for theM = 3 case) has a comb-like structure with
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having 2M nodes arranged in 2 rows andM columns. Nodes belonging to the same
column are linked by vertical edges in top-down direction. Furthermore, nodes in the
upper row are linked by horizontal edges in left to right direction. The parameterM
obviously influences the size of the pattern.

Several Matching

(a) Model with several matchings

No Matching

(b) Model without matchings

Figure 17: Instance models of sizeN = 6 of the comb benchmark

5.1 Several matchings

This test case can be characterized by a large number of matches of the pattern and by
a small number of fan-outs of model nodes. Since there are no rules applied in this
case, the transformation sequence is short. Model and rule size depend on parameters.
The test set is applicable for measuring the time needed for calculating the first and
the other consecutive matchings of the same rule. (A graph transformation engine may
have significant difference in the calculation time needed for the first matching and for
the other matchings.)

The initial instance model (depicted in Fig. 17(a) for theN = 6 case) is a grid
of N × N nodes, where neighbouring nodes in horizontal and verticaldirection are
connected byhor andver edges, respectively. (Horizontal edges always go from leftto
right, while vertical edges always point downwards.)

The transformation sequence consists of the above-mentionedsingle rule, for which
all the matchings have to be found.

We may state that the pattern size is 4M–1 (2M nodes,M vertical edges and
M–1 horizontal edges) and the model size is3N2–2N , which comprisesN2 nodes,
N(N − 1) vertical edges andN(N − 1) horizontal edges. The number of matchings
is (N − M + 1)(N − 1).

Model and pattern size values and the numbers of matchings for the 4 parameter
combinations used in our experiments can be found in Table 2.
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Grid Comb Pattern Model No of

size width size size matches

N M # # #

100 10 39 29800 9009

100 20 79 29800 8019

30 30 119 2640 29

50 50 199 7400 49

Table 2: Parameter summary

Optimization possibilities. Since setting parametersN andM influences model and
rule sizes, the test set already provides a wide range of measurement possibilities, and
thus, no optimization is necessitated from tool providers.

5.2 No matching

This test case has no matchings and it can be characterized bya small number of fan-
outs of model nodes. No rules are applied again, so the transformation sequence is
short. Model and rule sizes are again parameter dependent. The test set can be used for
measuring the time needed for a graph transformation engineto determine that a rule
is not applicable in a certain situation.

The initial instance model (depicted in Fig. 17(b) for theN = 6 case) is again anN
by N grid of nodes, where neighbouring nodes in vertical direction are connected by
vertical edges. But in this case, neighbouring nodes in horizontal direction are linked
to each other if and only if the index of the target node has a non-zero remainder after
a division by (M–1). In practical terms, it means that every (M–1)th connection is
missing in the horizontal direction resulting in a situation that a comb of widthM
cannot be placed on this grid. (Horizontal edges always go from left to right again, and
similarly vertical edges always point downwards again.)

The transformation sequence consists of the above-mentioned single rule.
We may state that the pattern size is 4M–1 (2M nodes,M vertical edges andM–1

horizontal edges) and the model size is3N2
− 2N − N

⌊

N−1

M−1

⌋

, which comprisesN2

nodes,N(N −1) vertical edges andN
(

N − 1 −

⌊

N−1

M−1

⌋)

horizontal edges. The rule

application should fail in this test set.
Model and pattern size values for the 4 parameter combinations used in our exper-

iments can be found in Table 2.

Optimization possibilities. Since setting parametersN andM influences model and
rule sizes, the test set already provides a wide range of measurement possibilities, and
thus, no optimization is expected from tool providers.
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6 Conclusion

In the paper, we gave an overview on typical application scenarios of graph transfor-
mation together with their characteristic features. Afterwards, a sample problem was
selected for each scenario, and we described these benchmarks in details by presenting
their metamodel and the graph transformation rules, which represent the behaviour of
the system. Furthermore, we worked out several specifications of test sets, each con-
sisting of an initial model and a graph rewriting sequence, in order to cover as many
tool-specific optimization possibilities as possible, which allows a thorough analysis
on the effects of different optimization strategies.

Our main goal was to provide precise and general benchmarks,which support the
execution of repeatable measurements and which can be used on all the currently avail-
able graph transformation tools without modification.

Since these benchmarks never constitute a completed work, we plan to extend the
set of descriptions in several directions in the future.

1. A model analysis example is the most principal benchmark that is missing from
this paper.

2. The object relational mapping should also be extended by at least a test case, in
which models have a large number of outgoing edges.

3. Finally, an interesting example would be to have a loop as agraph rewriting
sequence, which consists of such rules of which only one can be fired at a time.

However, our upcoming tasks in the near future include (i) the implementation of
benchmarks on several tools, (ii) the execution of runtime measurements, and (iii) a
tool comparison, which is based on the results.
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