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THE BANDIT PROBLEM

Play for 𝑇 rounds attempting to 
maximize rewards

minimize losses

Need to balance 
exploration and exploitation

Motivation:
advertising, clinical trials, …



EASINESS IN BANDITS – A TUTORIAL

Hardness in bandits
 Worst-case upper & lower bounds

Easiness in bandits
 Higher order bounds
 Stochastic bandits and the best of both worlds
 Prior-dependent bounds



NON-STOCHASTIC BANDITS

Parameters: 
number of arms 𝐾, number of rounds 𝑇
Interaction:
For each round 𝑡 = 1,2,… , 𝑇
• Learner chooses action 𝐼𝑡 ∈ 𝐾
• Environment chooses losses ℓ𝑡,𝑖 ∈ 0,1 for all 𝑖
• Learner incurs and observes loss ℓ𝑡,𝐼𝑡



NON-STOCHASTIC BANDITS

Parameters: 
number of arms 𝐾, number of rounds 𝑇
Interaction:
For each round 𝑡 = 1,2,… , 𝑇
• Learner chooses action 𝐼𝑡 ∈ 𝐾
• Environment chooses losses ℓ𝑡,𝑖 ∈ 0,1 for all 𝑖
• Learner incurs and observes loss ℓ𝑡,𝐼𝑡

Goal: minimize expected regret

 𝑅𝑇 =  

𝑡=1

𝑇

ℓ𝑡,𝐼𝑡 − min
𝑖∈ 𝐾

 

𝑡=1

𝑇

ℓ𝑡,𝑖



NON-STOCHASTIC BANDITS: 
LOWER BOUNDS

This result also holds for stochastic bandits, as the 
counterexample is stochastic

Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002):

In the worst case, any algorithm will suffer a 
regret of Ω 𝐾𝑇
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LOWER BOUNDS

This result also holds for stochastic bandits, as the 
counterexample is stochastic

Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002):

In the worst case, any algorithm will suffer a 
regret of Ω 𝐾𝑇

This talk: 
how to go beyond this



NON-STOCHASTIC BANDITS: 
UPPER BOUNDS

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)

Parameter: 𝜂 > 0.
Initialization: For all 𝑖, set 𝑤1,𝑖 = 1.
For each round 𝑡 = 1,2,… , 𝑇
• For all 𝑖, let

𝑝𝑡,𝑖 =
𝑤𝑡,𝑖

 𝑗 𝑤𝑡,𝑗
.

• Draw 𝐼𝑡 ∼ 𝒑𝑡.
• For all 𝑖, let

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖
𝟏 𝐼𝑡=𝑖 .

• For all 𝑖, update weight as
𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝑒

−𝜂 ℓ𝑡,𝑖



THE REGRET OF EXP3

Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002):

The regret of EXP3 satisfies
 𝑅𝑇 ≤ 2𝐾𝑇 log 𝐾
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“Proof”:

 𝑅𝑇 ≤
log 𝐾
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Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002):

The regret of EXP3 satisfies
 𝑅𝑇 ≤ 2𝐾𝑇 log 𝐾

𝜂 =
2 log 𝐾

𝐾𝑇
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A minimax algorithm: PolyINF
𝑝𝑡 = arg min

𝑝∈Δ𝐾

𝜂𝑝⊤  𝐿𝑡−1 + 𝑆𝛼 𝑝

where 𝑆𝛼 𝑝 is the Tsallis entropy: 
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1
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the log 𝐾 (Audibert, Bubeck and Lugosi, 2014)

A minimax algorithm: PolyINF
𝑝𝑡 = arg min

𝑝∈Δ𝐾

𝜂𝑝⊤  𝐿𝑡−1 + 𝑆𝛼 𝑝

where 𝑆𝛼 𝑝 is the Tsallis entropy: 

𝑆𝛼 𝑝 =
1

1−𝛼
1 −  𝑖=1

𝐾 𝑝𝛼

Theorem (Audibert and Bubeck, 2009, Audibert, Bubeck and Lugosi, 
2014, Abernethy, Lee and Tewari, 2015):

The regret of PolyINF satisfies  𝑅𝑇 ≤ 2 𝐾𝑇



BEYOND MINIMAX #1: 
HIGHER-ORDER BOUNDS



HIGHER-ORDER BOUNDS

𝑅𝑇 = 𝑂 𝐾𝑇𝑅𝑇 = 𝑂 𝑇 log 𝐾

Full information Bandit

minimax

first-order
𝐿𝑇,𝑖 =  𝑡 ℓ𝑡,𝑖

𝑅𝑇 = 𝑂 𝐿𝑇,𝑖∗ log𝐾

second-order
𝑆𝑇,𝑖 =  𝑡 ℓ𝑡,𝑖

2

𝑅𝑇 = 𝑂 𝑆𝑡,𝑖∗ log 𝐾

variance
𝑉𝑇,𝑖 =  𝑡 ℓ𝑡,𝑖 − 𝑚

2 𝑅𝑇 = 𝑂 𝑉𝑇,𝑖∗ log𝐾

Cesa-Bianchi, Mansour, Stoltz (2005)

Hazan and Kale (2010)

with a little cheating
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Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002):

The regret of EXP3 satisfies

 𝑅𝑇 ≤ 2 log 𝐾  𝑡=1
𝑇  𝑖=1

𝐾 ℓ𝑡,𝑖
2

Easy! 
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Hazan and Kale (2011), heavily paraphrased:
 Replace 𝜇𝑇,𝑖 by 𝜇𝑡,𝑖 (easy)
 Estimate 𝜇𝑡,𝑖 by an appropriate  𝜇𝑡,𝑖: reservoir 

sampling in exploration rounds
 Use Exp3 with loss estimates
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THE RIGHT WAY TO GET VARIANCE 
BOUNDS

Instead of Exp3, use SCRiBLe:
𝑝𝑡 = arg min

𝑝∈Δ𝐾

𝑝⊤  𝐿𝑡−1 + Ψ 𝑝

with  𝐿𝑡−1,𝑖 =  𝑠=1
𝑡−1  𝑐𝑡,𝑖 +  𝜇𝑡,𝑖
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“Small-gain” bounds:

A little trickier analysis gives

𝑅𝑇 = 𝑂 𝐾𝐺𝑇,𝑖∗ log 𝐾

𝑅𝑇 = 𝑂  𝑡  𝑖 𝑔𝑡,𝑖 log 𝐾 𝑅𝑇 = 𝑂  𝑡  𝑖 ℓ𝑡,𝑖 log 𝐾or

should be easy?



FIRST-ORDER BOUNDS

“Small-gain” bounds:

A little trickier analysis gives

𝑅𝑇 = 𝑂 𝐾𝐺𝑇,𝑖∗ log 𝐾

𝑅𝑇 = 𝑂  𝑡  𝑖 𝑔𝑡,𝑖 log 𝐾 𝑅𝑇 = 𝑂  𝑡  𝑖 ℓ𝑡,𝑖 log 𝐾or

Problem:
one misbehaving action ruins the bound!

should be easy?



FIRST-ORDER BOUNDS

“Small-gain” bounds:

A little trickier analysis gives

Actual first-order bounds:
› Stoltz (2005): 𝐾 𝐿𝑇

∗

› Allenberg, Auer, Györfi and Ottucsák (2006): 𝐾𝐿𝑇
∗

› Rakhlin and Sridharan (2013): 𝐾3/2 𝐿𝑇
∗

𝑅𝑇 = 𝑂 𝐾𝐺𝑇,𝑖∗ log 𝐾

𝑅𝑇 = 𝑂  𝑡  𝑖 ℓ𝑡,𝑖 log 𝐾

should be easy?



FIRST-ORDER BOUNDS

“Small-gain” bounds:

A little trickier analysis gives

Actual first-order bounds:
› Stoltz (2005): 𝐾 𝐿𝑇

∗

› Allenberg, Auer, Györfi and Ottucsák (2006): 𝐾𝐿𝑇
∗

› Rakhlin and Sridharan (2013): 𝐾3/2 𝐿𝑇
∗

𝑅𝑇 = 𝑂 𝐾𝐺𝑇,𝑖∗ log 𝐾

𝑅𝑇 = 𝑂  𝑡  𝑖 ℓ𝑡,𝑖 log 𝐾

should be easy?



THE GREEN ALGORITHM (ALLENBERG ET AL., 2006)

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)

Parameter: 𝜂 > 0.
Initialization: For all 𝑖, set 𝑤1,𝑖 = 1.
For each round 𝑡 = 1,2,… , 𝑇
• For all 𝑖, let

𝑝𝑡,𝑖 =
𝑤𝑡,𝑖

 𝑗 𝑤𝑡,𝑗
.

• Draw 𝐼𝑡 ∼ 𝒑𝑡.
• For all 𝑖, let

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖
𝟏 𝐼𝑡=𝑖 .

• For all 𝑖, update weight as
𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝑒

−𝜂 ℓ𝑡,𝑖



THE GREEN ALGORITHM (ALLENBERG ET AL., 2006)

Green (Allenberg, Auer, Györfi and Ottucsák, 2006)

Parameters: 𝜂 > 0, 𝛾 ∈ 0,1 .
Initialization: For all 𝑖, set 𝑤1,𝑖 = 1.
For each round 𝑡 = 1,2,… , 𝑇
• For all 𝑖, let

𝑝𝑡,𝑖 =
𝑤𝑡,𝑖

 𝑗 𝑤𝑡,𝑗
and let  𝑝𝑡,𝑖 = 0 if 𝑝𝑡,𝑖 ≤ 𝛾.

• Draw 𝐼𝑡 ∼  𝒑𝑡.
• For all 𝑖, let

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

 𝑝𝑡,𝑖
𝟏 𝐼𝑡=𝑖 .

• For all 𝑖, update weight as
𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝑒

−𝜂 ℓ𝑡,𝑖



Analysis idea:
 As long as 𝑝𝑡,𝑖 ≥ 𝛾 for an 𝑖, we have

 𝐿𝑡−1,𝑖 ≤  𝐿𝑡−1,𝑗 +  𝑂(log 1/𝛾 /𝜂)

THE GREEN ALGORITHM (ALLENBERG ET AL., 2006)



Analysis idea:
 As long as 𝑝𝑡,𝑖 ≥ 𝛾 for an 𝑖, we have

 𝐿𝑡−1,𝑖 ≤  𝐿𝑡−1,𝑗 +  𝑂(log 1/𝛾 /𝜂)

THE GREEN ALGORITHM (ALLENBERG ET AL., 2006)

“the loss estimates are 
not too far apart”



Analysis idea:
 As long as 𝑝𝑡,𝑖 ≥ 𝛾 for an 𝑖, we have

 𝐿𝑡−1,𝑖 ≤  𝐿𝑡−1,𝑗 +  𝑂(log 1/𝛾 /𝜂)

 Once 𝑝𝑡,𝑖 ≤ 𝛾 occurs,  𝐿𝑡,𝑖 stops growing, so
 𝐿𝑇,𝑖 ≤  𝐿𝑇,𝑗 +  𝑂 log 1/𝛾 /𝜂 +  𝑂 1/𝛾

THE GREEN ALGORITHM (ALLENBERG ET AL., 2006)

“the loss estimates are 
not too far apart”



Getting back to the Exp3 proof:

 𝑅𝑇 ≤
log 𝐾

𝜂
+

𝜂

2
𝐄  

𝑡=1

𝑇

 

𝑖=1

𝐾

𝑝𝑡,𝑖
 ℓ𝑡,𝑖
2

 𝑅𝑇 ≤
log 𝐾

𝜂
+

𝜂

2
𝐄  

𝑖=1

𝐾

 𝐿𝑇,𝑖

 𝑅𝑇 ≤
log 𝐾

𝜂
+

𝜂

2
𝐄 𝐾 𝐿𝑇,𝑖∗ +  𝑂 𝐾

 𝑅𝑇 ≤
log 𝐾

𝜂
+

𝜂

2
𝐾𝐿𝑇,𝑖∗ +  𝑂 𝐾

THE GREEN ALGORITHM (ALLENBERG ET AL., 2006)
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Getting back to the Exp3 proof:
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Getting back to the Exp3 proof:

 𝑅𝑇 ≤
log 𝐾

𝜂
+

𝜂

2
𝐄  

𝑡=1

𝑇

 

𝑖=1

𝐾

𝑝𝑡,𝑖
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2

 𝑅𝑇 ≤
log 𝐾
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+

𝜂
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𝐾

 𝐿𝑇,𝑖

 𝑅𝑇 ≤
log 𝐾

𝜂
+

𝜂

2
𝐄 𝐾 𝐿𝑇,𝑖∗ +  𝑂 𝐾

 𝑅𝑇 ≤
log 𝐾

𝜂
+

𝜂

2
𝐾𝐿𝑇,𝑖∗ +  𝑂 𝐾

THE GREEN ALGORITHM (ALLENBERG ET AL., 2006)

Theorem (Allenberg et al., 2006):

The regret of Green satisfies
 𝑅𝑇 =  𝑂 𝐾𝐿𝑇

∗ + 𝐾



A SIMPLER ALGORITHM: EXP3-IX

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)

Parameter: 𝜂 > 0.
Initialization: For all 𝑖, set 𝑤1,𝑖 = 1.
For each round 𝑡 = 1,2,… , 𝑇
• For all 𝑖, let

𝑝𝑡,𝑖 =
𝑤𝑡,𝑖

 𝑗 𝑤𝑡,𝑗
.

• Draw 𝐼𝑡 ∼ 𝒑𝑡.
• For all 𝑖, let

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖
𝟏 𝐼𝑡=𝑖 .

• For all 𝑖, update weight as
𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝑒

−𝜂 ℓ𝑡,𝑖



A SIMPLER ALGORITHM: EXP3-IX

EXP3-IX (Kocák et al., 2014, Neu 2015a, Neu 2015b)

Parameter: 𝜂 > 0, 𝛾 > 0.
Initialization: For all 𝑖, set 𝑤1,𝑖 = 1.
For each round 𝑡 = 1,2,… , 𝑇
• For all 𝑖, let

𝑝𝑡,𝑖 =
𝑤𝑡,𝑖

 𝑗 𝑤𝑡,𝑗
.

• Draw 𝐼𝑡 ∼ 𝒑𝑡.
• For all 𝑖, let

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖
𝟏 𝐼𝑡=𝑖 .

• For all 𝑖, update weight as
𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝑒

−𝜂 ℓ𝑡,𝑖

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾
𝟏 𝐼𝑡=𝑖



A SIMPLER ALGORITHM: EXP3-IX

EXP3-IX (Kocák et al., 2014, Neu 2015a, Neu 2015b)

Parameter: 𝜂 > 0.
Initialization: For all 𝑖, set 𝑤1,𝑖 = 1.
For each round 𝑡 = 1,2,… , 𝑇
• For all 𝑖, let

𝑝𝑡,𝑖 =
𝑤𝑡,𝑖

 𝑗 𝑤𝑡,𝑗
.

• Draw 𝐼𝑡 ∼ 𝒑𝑡.
• For all 𝑖, let

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖
𝟏 𝐼𝑡=𝑖 .

• For all 𝑖, update weight as
𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝑒

−𝜂 ℓ𝑡,𝑖

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾
𝟏 𝐼𝑡=𝑖

Theorem (Neu, 2015):

The regret of Exp3-IX satisfies
 𝑅𝑇 =  𝑂 𝐾𝐿𝑇

∗ + 𝐾



IMPLICIT EXPLORATION IN ACTION

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾
𝟏 𝐼𝑡=𝑖



IMPLICIT EXPLORATION IN ACTION

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾
𝟏 𝐼𝑡=𝑖

True 
losses



IMPLICIT EXPLORATION IN ACTION

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾
𝟏 𝐼𝑡=𝑖

True 
losses

unbiased estimates



IMPLICIT EXPLORATION IN ACTION

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾
𝟏 𝐼𝑡=𝑖

True 
losses

unbiased estimates
+uniform 
exploration



IMPLICIT EXPLORATION IN ACTION

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾
𝟏 𝐼𝑡=𝑖

True 
losses

IX estimates



HIGHER-ORDER BOUNDS

𝑅𝑇 = 𝑂 𝐾𝑇𝑅𝑇 = 𝑂 𝑇 log 𝐾

Full information Bandit

minimax

first-order
𝐿𝑇,𝑖 =  𝑡 ℓ𝑡,𝑖

𝑅𝑇 = 𝑂 𝐿𝑇,𝑖∗ log𝐾

second-order
𝑆𝑇,𝑖 =  𝑡 ℓ𝑡,𝑖

2

𝑅𝑇 = 𝑂 𝑆𝑡,𝑖∗ log 𝐾

variance
𝑉𝑇,𝑖 =  𝑡 ℓ𝑡,𝑖 − 𝑚

2 𝑅𝑇 = 𝑂 𝑉𝑇,𝑖∗ log𝐾

Cesa-Bianchi, Mansour, Stoltz (2005)

Hazan and Kale (2010)

with a little cheating

𝑅𝑇 =  𝑂  𝑖 𝑆𝑡,𝑖

Auer et al. (2002) + some hacking

𝑅𝑇 =  𝑂 𝐾2  𝑖 𝑉𝑡,𝑖

Hazan and Kale (2011)

should be easy?



HIGHER-ORDER BOUNDS

𝑅𝑇 = 𝑂 𝐾𝑇𝑅𝑇 = 𝑂 𝑇 log 𝐾

Full information Bandit

minimax

first-order
𝐿𝑇,𝑖 =  𝑡 ℓ𝑡,𝑖

𝑅𝑇 = 𝑂 𝐿𝑇,𝑖∗ log𝐾

second-order
𝑆𝑇,𝑖 =  𝑡 ℓ𝑡,𝑖

2

𝑅𝑇 = 𝑂 𝑆𝑡,𝑖∗ log 𝐾

variance
𝑉𝑇,𝑖 =  𝑡 ℓ𝑡,𝑖 − 𝑚

2 𝑅𝑇 = 𝑂 𝑉𝑇,𝑖∗ log𝐾

Cesa-Bianchi, Mansour, Stoltz (2005)

Hazan and Kale (2010)

with a little cheating

𝑅𝑇 =  𝑂  𝑖 𝑆𝑡,𝑖

Auer et al. (2002) + some hacking

𝑅𝑇 =  𝑂 𝐾2  𝑖 𝑉𝑡,𝑖

Hazan and Kale (2011)

𝑅𝑇 =  𝑂 𝐾𝐿𝑇,𝑖∗



HIGHER-ORDER LOWER BOUNDS

Gerchinovitz and Lattimore (2016), heavily paraphrased:

Theorem:
No algorithm can do better than

 𝑅𝑇 = Ω 𝐿𝑇
∗ 𝐾



HIGHER-ORDER LOWER BOUNDS

Theorem:
No algorithm can do better than

 𝑅𝑇 = Ω 𝐿𝑇
∗ 𝐾

Theorem:
“No algorithm can do better than

 𝑅𝑇 = Ω  𝑖 𝑉𝑡,𝑖 ”

Gerchinovitz and Lattimore (2016), heavily paraphrased:



BEYOND MINIMAX #2: 
STOCHASTIC LOSSES AND THE 

“BEST OF BOTH WORLDS”







TL;DR:
 𝑅𝑇 = 𝑂 𝐶 𝜈 log 𝑇

is achievable for i.i.d. losses



THE BEST OF BOTH WORLDS

Is it possible to come up with an algorithm with
 𝑅𝑇 =  𝑂 𝐾𝑇

for non-stochastic losses and
 𝑅𝑇 = 𝑂 𝐶 𝜈 log 𝑇

for stochastic losses?



THE BEST OF BOTH WORLDS

Is it possible to come up with an algorithm with
 𝑅𝑇 =  𝑂 𝐾𝑇

for non-stochastic losses and
 𝑅𝑇 = 𝑂 𝐶 𝜈 log 𝑇

for stochastic losses?

YES*!!
*almost



THE BEST OF BOTH WORLDS: 
ALGORITHMS

Bubeck and Slivkins (2012):
 Assume that environment is stochastic, act aggressively
 If the losses fail on a stochasticity test, then fall back to 

Exp3
 Regret:  𝑂 𝐾𝑇 on adversarial, 𝑂(log2 𝑇) on stochastic

Auer and Chiang (2016), see Peter’s talk tomorrow:
Better test, better algorithm for stochastic losses
Regret: 𝑂 𝐾𝑇 log 𝐾 on adversarial, 𝑂  𝐶 𝜈 log 𝑇 on 
stochastic



THE BEST OF BOTH WORLDS: 
ALGORITHMS

Bubeck and Slivkins (2012):
 Assume that environment is stochastic, act aggressively
 If the losses fail on a stochasticity test, then fall back to 

Exp3
 Regret:  𝑂 𝐾𝑇 on adversarial, 𝑂(log2 𝑇) on stochastic

Auer and Chiang (2016), see Peter’s talk tomorrow:
 Better test, better algorithm for stochastic losses
 Regret: 𝑂 𝐾𝑇 log 𝐾 on adversarial, 𝑂  𝐶 𝜈 log 𝑇 on 

stochastic



A SIMPLE ALGORITHM: 
EXP3++ (SELDIN AND SLIVKINS, 2014)

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)

Parameter: 𝜂 > 0.
Initialization: For all 𝑖, set 𝑤1,𝑖 = 1.
For each round 𝑡 = 1,2,… , 𝑇
• For all 𝑖, let

𝑝𝑡,𝑖 =
𝑤𝑡,𝑖

 𝑗 𝑤𝑡,𝑗
.

• Draw 𝐼𝑡 ∼ 𝒑𝑡.
• For all 𝑖, let

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖
𝟏 𝐼𝑡=𝑖 .

• For all 𝑖, update weight as
𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝑒

−𝜂 ℓ𝑡,𝑖



A SIMPLE ALGORITHM: 
EXP3++ (SELDIN AND SLIVKINS, 2014), PARAPHRASED

EXP3++ (SS, 2014)

Parameters: 𝜂𝑡 𝑡 > 0, (++).
Initialization: For all 𝑖, set 𝑤1,𝑖 = 1.
For each round 𝑡 = 1,2,… , 𝑇
• For all 𝑖, let

𝑝𝑡,𝑖 = 1 −  𝑗 𝜀𝑡,𝑗
𝑤𝑡,𝑖

 𝑗 𝑤𝑡,𝑗
+ 𝜀𝑡,𝑖 .

• Draw 𝐼𝑡 ∼ 𝒑𝑡.
• For all 𝑖, let

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖
𝟏 𝐼𝑡=𝑖 .

• For all 𝑖, update weight as
𝑤𝑡+1,𝑖 = exp −𝜂𝑡

 𝐿𝑡,𝑖



EXP3++ ANALYSIS (HEAVILY PARAPHRASED)

Theorem (SS, 2014):

The regret of Exp3++ satisfies
 𝑅𝑇 ≤ 4 𝑇𝐾 log 𝐾



EXP3++ ANALYSIS (HEAVILY PARAPHRASED)

Proof idea: the 𝜀𝑡,𝑖’s are small enough to not 
change the standard Exp3 analysis:

𝜀𝑡,𝑖 = 𝑂 log 𝐾 /𝐾𝑇

Theorem (SS, 2014):

The regret of Exp3++ satisfies
 𝑅𝑇 ≤ 4 𝑇𝐾 log 𝐾



EXP3++ ANALYSIS (HEAVILY PARAPHRASED)

Theorem (SS, 2014):
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in the stochastic case 
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 𝑗 𝑒−𝑡𝜂𝑡Δ𝑗
≤ 𝑒−𝑡𝜂𝑡Δ𝑖

holds for all suboptimal arms 𝑖
 Thus, the expected number of suboptimal draws is

 

𝑡=1

𝑇

𝑝𝑡,𝑖 ≤  

𝑡=1

𝑇

𝑒−𝑡𝜂𝑡Δ𝑖 = 𝑂
𝐾

Δ𝑖
2

But we don’t have 
full info :(
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∗ ≥ 𝑡Δ𝑖 − 𝑜(𝑡)

 For large enough 𝑡 (𝑡 ≥ 𝑡∗), we have 𝑡 Δ𝑡,𝑖 ≥ 𝑡Δ𝑖/2

 This gives 
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The rest is grinding out the 
asymptotics…

ensured by the exploration 
parameters 𝜀𝑡,𝑖!!!
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Bottom line:
“if there is a linear gap between 

𝐿𝑡,𝑖 and 𝐿𝑡
∗ , this should be exposed

in the estimated gap 𝑡 Δ𝑡,𝑖”

Corollaries: strong bounds 
whenever there is such a gap:
• “contaminated stochastic”
• “adversarial with a gap”

That’s the exact opposite of what 
we need for 1st order bounds!
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OPEN QUESTIONS

Is there a way to exploit gaps that are growing 
slower than linear?

Is there a way to improve asymptotics? (In SS’14, 
𝑡∗ is horribly big!)

So far, all positive results hold only for 
oblivious adversaries—is it possible to extend 
these to adaptive ones?

See Peter’s talk tomorrow!
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FOR FULL INFO

Theorem
(Luo and Schapire, 2015, Koolen and Van Erven, 2015, Orabona and Pal, 2016)

There exist algorithms guaranteeing

 𝑅𝑇 𝜌 = 𝑂 𝑇 1 + RE 𝜌 𝜋

for any fixed prior 𝜋 ∈ Δ𝐾 and any comparator 𝜌 ∈ Δ𝐾

Theorem
(Even-Dar et al., 2007, Sani et al., 2014)

There exist algorithms guaranteeing
 𝑅𝑇 𝑖 = 𝑐𝑜𝑛𝑠𝑡

for any fixed 𝑖, while also guaranteeing
 𝑅𝑇 =  𝑂 𝑇

Anything similar 
possible for 

bandits??

NO* :(
*not quite



PRIOR-DEPENDENT BOUNDS FOR BANDITS

In particular, 
  𝑅𝑇 𝑖 = 𝑐𝑜𝑛𝑠𝑡 implies  𝑅𝑇 𝑗 = Ω 𝑇

 Fixing a prior 𝜋 and getting a bound 

 𝑅𝑇 𝜌 =  𝑂 𝑇  𝑗(𝜌𝑗/𝜋𝑗) is not possible 

Theorem (Lattimore, 2015) paraphrased

The regrets  𝑅𝑇 𝑖 need to satisfy

 𝑅𝑇 𝑖 ≥ min 𝑇,  

𝑗≠𝑖

𝑇

 𝑅𝑇 𝑗
.



PRIOR-DEPENDENT BOUNDS: 
“POSITIVE” RESULTS

Lattimore (2015):
 For any regret bound satisfying the condition, there 

exists an algorithm achieving it in the stochastic 
setting

 In particular, 𝑗
𝜌𝑗

𝜋𝑗
𝑇 is achievable (see also Rosin, 2011)

Neu (2016, made up on the flight here):
 For non-stochastic bandits, there is an algorithm with

 𝑅𝑇(𝑖) =  𝑂
𝐾𝑇 softmax 𝜋

𝜋𝑖
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CONCLUSIONS

Higher order bounds
 First-order bounds are possible like in full info
 Second order bounds: much weaker than full info

Best-of-both-world bounds
 Possible and strong against oblivious adversaries
 Only weak guarantees for adaptive adversaries

Prior dependent bounds
 Nothing fancy is possible



THANKS!!!


