

EASINESS IN BANDITS

Gergely Neu
Pompeu Fabra University

EASINESS IN BANDITS

Gergely Neu
Pompeu Fabra University

THE BANDIT PROBLEM

Play for T rounds attempting to maximize rewards minimize losses

Need to balance exploration and exploitation

Motivation:

 advertising, clinical trials, ...
EASINESS IN BANDITS - A TUTORIAL

Hardness in bandits

- Worst-case upper \& lower bounds

Easiness in bandits

- Higher order bounds
- Stochastic bandits and the best of both worlds
- Prior-dependent bounds

NON-STOCHASTIC BANDITS

Parameters:
 number of arms K, number of rounds T
 Interaction:
 For each round $t=1,2, \ldots, T$
 - Learner chooses action $I_{t} \in[K]$
 - Environment chooses losses $\ell_{t, i} \in[0,1]$ for all i
 - Learner incurs and observes loss $\ell_{t, I_{t}}$

NON-STOCHASTIC BANDITS

Parameters:
 number of arms K, number of rounds T
 Interaction:
 For each round $t=1,2, \ldots, T$
 - Learner chooses action $I_{t} \in[K]$
 - Environment chooses losses $\ell_{t, i} \in[0,1]$ for all i
 - Learner incurs and observes loss $\ell_{t, I_{t}}$

Goal: minimize expected regret

$$
\hat{R}_{T}=\sum_{t=1}^{T} \ell_{t, I_{t}}-\min _{i \in[K]} \sum_{t=1}^{T} \ell_{t, i}
$$

NON-STOCHASTIC BANDITS: LOWER BOUNDS

Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002): In the worst case, any algorithm will suffer a

$$
\text { regret of } \Omega(\sqrt{K T})
$$

This result also holds for stochastic bandits, as the counterexample is stochastic

NON-STOCHASTIC BANDITS: LOWER BOUNDS

Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002): In the worst case, any algorithm will suffer a regret of $\Omega(\sqrt{K T})$

This result also holds for stochastic bandits, as the counterexample is stochastic

This talk:
 how to go beyond this

NON-STOCHASTIC BANDITS: UPPER BOUNDS

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)
Parameter: $\eta>0$.
Initialization: For all i, set $w_{1, i}=1$.
For each round $t=1,2, \ldots, T$

- For all i, let

$$
p_{t, i}=\frac{w_{t, i}}{\sum_{j} w_{t, j}} .
$$

- Draw $I_{t} \sim \boldsymbol{p}_{t}$.
- For all i, let

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{p_{t, i}} \mathbf{1}_{\left\{I_{t}=i\right\}} .
$$

- For all i, update weight as

$$
w_{t+1, i}=w_{t, i} e^{-\eta \hat{t}_{t, i}}
$$

THE REGRET OF EXP3

Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002): The regret of EXP3 satisfies

$$
\hat{R}_{T} \leq \sqrt{2 K T \log K}
$$

THE REGRET OF EXP3

Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002): The regret of EXP3 satisfies

$$
\hat{R}_{T} \leq \sqrt{2 K T \log K}
$$

"Proof":

$$
\begin{aligned}
\hat{R}_{T} & \leq \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t, i} \hat{e}_{t, i}^{2}\right] \\
& =\frac{\log K}{\eta}+\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{K} \ell_{t, i}^{2} \leq \frac{\log K}{\eta}+\frac{\eta K T}{2}
\end{aligned}
$$

THE REGRET OF EXP3

Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002): The regret of EXP3 satisfies

$$
\hat{R}_{T} \leq \sqrt{2 K T \log K}
$$

"Proof":

$$
\begin{aligned}
\hat{R}_{T} & \leq \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t, i} \hat{\ell}_{t, i}^{2}\right] \quad \eta=\sqrt{\frac{2 \log K}{K T}} \\
& =\frac{\log K}{\eta}+\frac{\eta}{2} \sum_{t=1}^{L} \sum_{i=1}^{K} \ell_{t, i}^{2} \leq \frac{\log K}{\eta}+\frac{\eta K T}{2}
\end{aligned}
$$

HEY, BUT THAT'S NOT MINIMAX!

Exp3 is strictly suboptimal: you can't remove the $\sqrt{\log K}$ (Audibert, Bubeck and Lugosi, 2014)

HEY, BUT THAT'S NOT MINIMAX!

Exp3 is strictly suboptimal: you can't remove the $\sqrt{\log K}$ (Audibert, Bubeck and Lugosi, 2014)
A minimax algorithm: PolyINF

$$
p_{t}=\arg \min _{p \in \Delta_{K}}\left(\eta p^{\top} \hat{L}_{t-1}+S_{\alpha}(p)\right)
$$

where $S_{\alpha}(p)$ is the Tsallis entropy:

$$
S_{\alpha}(p)=\frac{1}{1-\alpha}\left(1-\sum_{i=1}^{K} p^{\alpha}\right)
$$

HEY, BUT THAT'S NOT MINIMAX!

Exp3 is strictly suboptimal: you can't remove the $\sqrt{\log K}$ (Audibert, Bubeck and Lugosi, 2014)
A minimax algorithm: PolyINF

$$
p_{t}=\arg \min _{p \in \Delta_{K}}\left(\eta p^{\top} \hat{L}_{t-1}+S_{\alpha}(p)\right)
$$

where $S_{\alpha}(p)$ is the Tsallis entropy:

$$
S_{\alpha}(p)=\frac{1}{1-\alpha}\left(1-\sum_{i=1}^{K} p^{\alpha}\right)
$$

Theorem (Audibert and Bubeck, 2009, Audibert, Bubeck and Lugosi, 2014, Abernethy, Lee and Tewari, 2015):
The regret of PolyINF satisfies $\widehat{R}_{T} \leq 2 \sqrt{K T}$

BEYOND MINIMAX \#1: HIGHER-ORDER BOUNDS

HIGHER-ORDER BOUNDS

Full information

Bandit

$$
R_{T}=O\left(\sqrt{L_{T, i} \cdot \log K}\right)
$$

$L_{T, i}=\sum_{t} \ell_{t, i}$

$$
R_{T}=O(\sqrt{K T})
$$

$R_{T}=O\left(\sqrt{S_{t, i} \log K}\right)$
Cesa-Bianchi, Mansour, Stoltz (2005)
variance
$V_{T, i}=\sum_{t}\left(\ell_{t, i}-m\right)^{2}$

$$
R_{T}=O\left(\sqrt{V_{T, i^{*}} \log K}\right)
$$

Hazan and Kale (2010)
second-order
$S_{T, i}=\sum_{t} \ell_{t, i}^{2}$

HIGHER-ORDER BOUNDS

Full information

Bandit

minimax

$$
R_{T}=O(\sqrt{T \log K})
$$

$$
R_{T}=O(\sqrt{K T})
$$

$R_{T}=O\left(\sqrt{L_{T, i} \cdot \log K}\right)$

$$
R_{T}=O\left(\sqrt{S_{t, i} \log K}\right)
$$

Cesa-Bianchi, Mansour, Stoltz (2005)

$$
R_{T}=O\left(\sqrt{V_{T, i^{*}} \log K}\right)
$$

Hazan and Kale (2010)
with a little cheating

SECOND-ORDER BOUNDS

The Exp3 "proof":

$$
\begin{aligned}
\hat{R}_{T} & \leq \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t, i} \hat{i}_{t, i}^{2}\right] \\
& =\frac{\log K}{\eta}+\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{K} e_{t, i}^{2} \leq \frac{\log K}{\eta}+\frac{\eta K T}{2}
\end{aligned}
$$

SECOND-ORDER BOUNDS

The Exp3 "proof":

$$
\begin{aligned}
\hat{R}_{T} & \leq \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t, i} \hat{\ell}_{t, i}^{2}\right] \\
& =\frac{\log K}{\eta}+\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{K} \ell_{t, i}^{2}
\end{aligned}
$$

SECOND-ORDER BOUNDS

The Exp3 "proof":

$$
\begin{aligned}
\hat{R}_{T} & \leq \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t, i} \hat{\ell}_{t, i}^{2}\right] \\
& =\frac{\log K}{\eta}+\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{K} \ell_{t, i}^{2}
\end{aligned}
$$

Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002):
The regret of EXP3 satisfies

$$
\hat{R}_{T} \leq \sqrt{2 \log K \sum_{t=1}^{T} \sum_{i=1}^{K} \ell_{t, i}^{2}}
$$

HIGHER-ORDER BOUNDS

Full information

Bandit

minimax

$$
R_{T}=O(\sqrt{T \log K})
$$

$$
R_{T}=O(\sqrt{K T})
$$

$R_{T}=O\left(\sqrt{L_{T, i} \cdot \log K}\right)$

$$
R_{T}=O\left(\sqrt{S_{t, i} \log K}\right)
$$

Cesa-Bianchi, Mansour, Stoltz (2005)

$$
R_{T}=O\left(\sqrt{V_{T, i^{*}} \log K}\right)
$$

Hazan and Kale (2010)
with a little cheating

HIGHER-ORDER BOUNDS

Full information

Bandit

minimax

$$
R_{T}=O(\sqrt{T \log K})
$$

$$
R_{T}=O(\sqrt{K T})
$$

$R_{T}=O\left(\sqrt{L_{T, i} \cdot \log K}\right)$
$L_{T, i}=\sum_{t} \ell_{t, i}$
second-order
$S_{T, i}=\sum_{t} \ell_{t, i}^{2}$
$R_{T}=O\left(\sqrt{S_{t, i} \log K}\right)$
$R_{T}=\tilde{o}\left(\sqrt{\sum_{i} S_{t, i}}\right)$
Cesa-Bianchi, Mansour, Stoltz (2005)
Auer et al. (2002) + some hacking

HIGHER-ORDER BOUNDS

Auer et al. (2002) + some hacking

Hazan and Kale (2010)

Full information

Bandit

minimax

$$
R_{T}=O(\sqrt{T \log K})
$$

$$
R_{T}=O(\sqrt{K T})
$$

$R_{T}=O\left(\sqrt{L_{T, i} \cdot \log K}\right)$

$$
R_{T}=O\left(\sqrt{S_{t, i^{*}} \log K}\right)
$$

Cesa-Bianchi, Mansour, Stoltz (2005)
$R_{T}=O\left(\sqrt{V_{T, i} \log K}\right)$
first-order
$L_{T, i}=\sum_{t} \ell_{t, i}$
second-order

$$
R_{T}=\tilde{o}\left(\sqrt{\sum_{i} S_{t, i}}\right)
$$

$$
S_{T, i}=\sum_{t} \ell_{t, i}^{2}
$$

variance
$V_{T, i}=\sum_{t}\left(\ell_{t, i}-m\right)^{2}$

VARIANCE BOUNDS

not so easy

Need to replace $\sum_{t} \sum_{i} \ell_{t, i}^{2}$ by $\sum_{t} \sum_{i}\left(\ell_{t, i}-\mu_{T, i}\right)^{2}$, where $\mu_{T, i}=\frac{1}{T} \sum_{t} \ell_{t, i}$

VARIANCE BOUNDS

not so easy

Need to replace $\sum_{t} \sum_{i} \ell_{t, i}^{2}$ by $\sum_{t} \sum_{i}\left(\ell_{t, i}-\mu_{T, i}\right)^{2}$, where $\mu_{T, i}=\frac{1}{T} \sum_{t} \ell_{t, i}$
Hazan and Kale (2011), heavily paraphrased:

- Replace $\mu_{T, i}$ by $\mu_{t, i}$ (easy)
- Estimate $\mu_{t, i}$ by an appropriate $\tilde{\mu}_{t, i}$: reservoir sampling in exploration rounds
- Use Exp3 with loss estimates

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}-\tilde{\mu}_{t, i}}{p_{t, i}}+\tilde{\mu}_{t, i}
$$

VARIANCE BOUNDS

not so easy

Need to replace $\sum_{t} \sum_{i} \ell_{t, i}^{2}$ by $\sum_{t} \sum_{i}\left(\ell_{t, i}-\mu_{T, i}\right)^{2}$, where $\mu_{T, i}=\frac{1}{T} \sum_{t} \ell_{t, i}$
Hazan and Kd

- Replace $\mu_{T, i}$ b
- Estimate $\mu_{t, i}$

But that doesn't

 work!

- Use Exp3 with loss estimates

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}-\tilde{\mu}_{t, i}}{p_{t, i}}+\tilde{\mu}_{t, i}
$$

THE RIGHT WAY TO GET VARIANCE BOUNDS

Instead of Exp3, use SCRiBLe:

$$
p_{t}=\arg \min _{p \in \Delta_{K}}\left(p^{\top} \hat{L}_{t-1}+\Psi(p)\right)
$$

with $\hat{L}_{t-1, i}=\sum_{s=1}^{t-1}\left(\hat{c}_{t, i}+\tilde{\mu}_{t, i}\right)$

THE RIGHT WAY TO GET VARIANCE BOUNDS
 "self-concordant regularizer"

Instead of Exp3, use SCRiBLe:

$$
p_{t}=\arg \min _{p \in \Delta_{K}}\left(p^{\top} \hat{L}_{t-1}+\Psi(p)\right)
$$

with $\hat{L}_{t-1, i}=\sum_{s=1}^{t-1}\left(\hat{c}_{t, i}+\tilde{\mu}_{t, i}\right)$

THE RIGHT WAY TO GET VARIANCE BOUNDS
 "self-concordant regularizer"

Instead of Exp3, use SCRiBLe:

$$
p_{t}=\arg \min _{p \in \Delta_{K}}\left(p^{\top} \hat{L}_{t-1}+\Psi(p)\right)
$$

with $\hat{L}_{t-1, i}=\sum_{s=1}^{t-1}\left(\hat{c}_{t, i}+\tilde{\mu}_{t, i}\right)$
$\hat{c}_{t, i} \approx$ appropriate unbiased
estimate of $\ell_{t, i}-\tilde{\mu}_{t, i}$

THE RIGHT WAY TO GET VARIANCE BOUNDS
 "self-concordant regularizer"

Instead of Exp3, use SCRiBLe:

$$
p_{t}=\arg \min _{p \in \Delta_{K}}\left(p^{\top} \hat{L}_{t-1}+\Psi(p)\right)
$$

with $\hat{L}_{t-1, i}=\sum_{s=1}^{t-1}\left(\hat{c}_{t, i}+\tilde{\mu}_{t, i}\right)$
$\hat{c}_{t, i} \approx$ appropriate unbiased
Theorem (Hazan and Kale, 2011):
The regret of the above algorithm satisfies

$$
\hat{R}_{T}=\tilde{O}\left(K^{2} \sqrt{\sum_{t=1}^{T} \sum_{i=1}^{K}\left(\ell_{t, i}^{2}-\mu_{T, i}\right)^{2}}\right)
$$

HIGHER-ORDER BOUNDS

Auer et al. (2002) + some hacking

Hazan and Kale (2010)

Full information

Bandit

minimax

$$
R_{T}=O(\sqrt{T \log K})
$$

$$
R_{T}=O(\sqrt{K T})
$$

$R_{T}=O\left(\sqrt{L_{T, i} \cdot \log K}\right)$

$$
R_{T}=O\left(\sqrt{S_{t, i^{*}} \log K}\right)
$$

Cesa-Bianchi, Mansour, Stoltz (2005)
$R_{T}=O\left(\sqrt{V_{T, i} \log K}\right)$
first-order
$L_{T, i}=\sum_{t} \ell_{t, i}$
second-order

$$
R_{T}=\tilde{o}\left(\sqrt{\sum_{i} S_{t, i}}\right)
$$

$$
S_{T, i}=\sum_{t} \ell_{t, i}^{2}
$$

variance
$V_{T, i}=\sum_{t}\left(\ell_{t, i}-m\right)^{2}$

HIGHER-ORDER BOUNDS

Full information

Bandit

minimax

$$
R_{T}=O(\sqrt{T \log K})
$$

$$
R_{T}=O(\sqrt{K T})
$$

$R_{T}=O\left(\sqrt{L_{T, i} \cdot \log K}\right)$
$L_{T, i}=\sum_{t} \ell_{t, i}$
second-order
$S_{T, i}=\sum_{t} \ell_{t, i}^{2}$
$R_{T}=O\left(\sqrt{S_{t, i} \cdot \log K}\right)$
$R_{T}=\tilde{o}\left(\sqrt{\sum_{i} S_{t, i}}\right)$
Cesa-Bianchi, Mansour, Stoltz (2005)
Auer et al. (2002) + some hacking

Hazan and Kale (2010)

$$
R_{T}=\tilde{o}\left(K^{2} \sqrt{\sum_{i} V_{t, i}}\right)
$$

Hazan and Kale (2011)
with a little cheating

HIGHER-ORDER BOUNDS

Full information

Bandit

minimax

$$
R_{T}=O(\sqrt{T \log K})
$$

$$
R_{T}=O(\sqrt{K T})
$$

$R_{T}=O\left(\sqrt{L_{T, i} \log K}\right)$
should be easy?
second-order
$S_{T, i}=\sum_{t} \ell_{t, i}^{2}$
$R_{T}=O\left(\sqrt{S_{t, i^{*}} \log K}\right)$
$R_{T}=\tilde{O}\left(\sqrt{\sum_{i} S_{t, i}}\right)$
Cesa-Bianchi, Mansour, Stoltz (2005)
Auer et al. (2002) + some hacking
$R_{T}=O\left(\sqrt{V_{T, i^{*}} \log K}\right)$
Hazan and Kale (2010)

$$
R_{T}=\tilde{O}\left(K^{2} \sqrt{\sum_{i} V_{t, i}}\right)
$$

Hazan and Kale (2011)
with a little cheating

FIRST-ORDER BOUNDS

should be easy?

"Small-gain" bounds:

- Consider the gain game with $g_{t, i}=1-\ell_{t, i}$
- Auer, Cesa-Bianchi, Freund and Schapire (2002):

$$
R_{T}=O\left(\sqrt{K G_{T, i^{*}} \log K}\right)
$$

FIRST-ORDER BOUNDS

should be easy?

"Small-gain" bounds:

- Consider the gain game with $g_{t, i}=1-\ell_{t, i}$
- Auer, Cesa-Bianchi, Freund and Schapire (2002):

$$
R_{T}=O\left(\sqrt{K G_{T, i^{*}} \log K}\right)
$$

$$
G_{T, i}=\sum_{t} g_{t, i}
$$

Problem:

only good if best expert is bad!

FIRST-ORDER BOUNDS

should be easy?

"Small-gain" bounds: $\quad R_{T}=O\left(\sqrt{K G_{T, i^{*}} \log K}\right)$
A little trickier analysis gives

$$
R_{T}=O\left(\sqrt{\sum_{t} \sum_{i} g_{t, i} \log K}\right) \quad \text { or } \quad R_{T}=O\left(\sqrt{\sum_{t} \sum_{i} \ell_{t, i} \log K}\right)
$$

FIRST-ORDER BOUNDS

should be easy?
"Small-gain" bounds: $\quad R_{T}=O\left(\sqrt{K G_{T, i^{*}} \log K}\right)$
A little trickier analysis gives
$R_{T}=O\left(\sqrt{\sum_{t} \sum_{i} g_{t, i} \log K}\right) \quad$ or $\quad R_{T}=O\left(\sqrt{\sum_{t} \sum_{i} \ell_{t, i} \log K}\right)$

Problem:

one misbehaving action ruins the bound!

FIRST-ORDER BOUNDS

should be easy?

"Small-gain" bounds: $R_{T}=O\left(\sqrt{K G_{T, i} \log K}\right)$ A little trickier analysis gives $R_{T}=O\left(\sqrt{\sum_{t} \Sigma_{i} \ell_{t, i} \log K}\right)$ Actual first-order bounds:
, Stoltz (2005): $K \sqrt{L_{T}^{*}}$
> Allenberg, Auer, Györfi and Ottucsák (2006): $\sqrt{K L_{T}^{*}}$
> Rakhlin and Sridharan (2013): $K^{3 / 2} \sqrt{L_{T}^{*}}$

FIRST-ORDER BOUNDS

should be easy?

"Small-gain" bounds: $R_{T}=O\left(\sqrt{K G_{T, i} \log K}\right)$ A little trickier analysis gives $R_{T}=O\left(\sqrt{L_{t} \sum_{i} \ell_{t, i} \log K}\right)$
Actual first-order bounds:
, Stoltz (2005): $K \sqrt{L_{T}^{*}}$
> Allenberg, Auer, Györfi and Ottucsák (2006): $\sqrt{K L_{T}^{*}}$
> Rakhlin and Sridharan (2013): $K^{3 / 2} \sqrt{L_{T}^{*}}$

THE GREEN ALGORITHM (allenberg et al., 2006)

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)
Parameter: $\eta>0$.
Initialization: For all i, set $w_{1, i}=1$.
For each round $t=1,2, \ldots, T$

- For all i, let

$$
p_{t, i}=\frac{w_{t, i}}{\sum_{j} w_{t, j}} .
$$

- Draw $I_{t} \sim \boldsymbol{p}_{t}$.
- For all i, let

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{p_{t, i}} \boldsymbol{1}_{\left\{I_{t}=i\right\}} .
$$

- For all i, update weight as

$$
w_{t+1, i}=w_{t, i} e^{-\eta \hat{t}_{t, i}}
$$

THE GREEN ALGORITHM (allenberg et al., 2006)

Green (Allenberg, Auer, Györfi and Ottucsák, 2006)
Parameters: $\eta>0, \gamma \in(0,1)$.
Initialization: For all i, set $w_{1, i}=1$.
For each round $t=1,2, \ldots, T$

- For all i, let

$$
p_{t, i}=\frac{w_{t, i}}{\sum_{j} w_{t, j}} \text { and let } \tilde{p}_{t, i}=0 \text { if } p_{t, i} \leq \gamma
$$

- Draw $I_{t} \sim \widetilde{p}_{t}$.
- For all i, let

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{\tilde{p}_{t, i}} \mathbf{1}_{\left\{I_{t}=i\right\}} .
$$

- For all i, update weight as

$$
w_{t+1, i}=w_{t, i} e^{-\eta \hat{\ell}_{t, i}}
$$

THE GREEN ALGORITHM (allenberg et al., 2006)

Analysis idea:

- As long as $p_{t, i} \geq \gamma$ for an i, we have

$$
\hat{L}_{t-1, i} \leq \hat{L}_{t-1, j}+\tilde{O}(\log (1 / \gamma) / \eta)
$$

THE GREEN ALGORITHM (allenberg et al., 2006)

Analysis idea:

- As long as $p_{t, i} \geq \gamma$ for an i, we have

$$
\begin{gathered}
\hat{L}_{t-1, i} \leq \hat{L}_{t-1, j}+\tilde{O}(\log (1 / \gamma) / \eta) \\
\text { "the loss estimates are } \\
\text { not too far apart" }
\end{gathered}
$$

THE GREEN ALGORITHM (allenberg et al., 2006)

Analysis idea:

- As long as $p_{t, i} \geq \gamma$ for an i, we have

$$
\hat{L}_{t-1, i} \leq \hat{L}_{t-1, j}+\tilde{O}(\log (1 / \gamma) / \eta)
$$

"the loss estimates are not too far apart"

- Once $p_{t, i} \leq \gamma$ occurs, $\hat{L}_{t, i}$ stops growing, so

$$
\hat{L}_{T, i} \leq \hat{L}_{T, j}+\tilde{O}(\log (1 / \gamma) / \eta)+\tilde{O}(1 / \gamma)
$$

THE GREEN ALGORITHM (allenberg et al., 2006)

Getting back to the Exp3 proof:

$$
\hat{R}_{T} \leq \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t, i} \hat{\ell}_{t, i}^{2}\right]
$$

THE GREEN ALGORITHM (allenberg et al., 2006)

Getting back to the Exp3 proof:

$$
\begin{aligned}
\hat{R}_{T} & \leq \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t, i} \hat{\ell}_{t, i}^{2}\right] \\
& \leq \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[\sum_{i=1}^{K} \hat{L}_{T, i}\right]
\end{aligned}
$$

THE GREEN ALGORITHM (allenberg et al., 2006)

Getting back to the Exp3 proof:

$$
\begin{aligned}
\hat{R}_{T} & \leq \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t, i} \hat{\ell}_{t, i}^{2}\right] \\
& \leq \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[\sum_{i=1}^{K} \hat{L}_{T, i}\right] \\
& \leq \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[K \hat{L}_{T, i^{*}}\right]+\tilde{O}(K)
\end{aligned}
$$

THE GREEN ALGORITHM (allenberg et al., 2006)

Getting back to the Exp3 proof:

$$
\begin{aligned}
\hat{R}_{T} & \leq \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t, i} \hat{e}_{t, i}^{2}\right] \\
& \leq \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[\sum_{i=1}^{K} \hat{L}_{T, i}\right] \\
& \leq \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[K \hat{L}_{T, i^{*}}\right]+\tilde{O}(K) \\
& \leq \frac{\log K}{\eta}+\frac{\eta}{2} K L_{T, i^{*}}+\tilde{O}(K)
\end{aligned}
$$

THE GREEN ALGORITHM (allenberg et al., 2006)

Getting back to the Exp3 proof:
Theorem (Allenberg et al., 2006): The regret of Green satisfies

$$
\begin{aligned}
& \hat{R}_{T}=\tilde{O}\left(\sqrt{K L_{T}^{*}}+K\right) \\
\leq & \frac{\log K}{\eta}+\frac{\eta}{2} \mathbf{E}\left[K \hat{L}_{T, i^{*}}\right]+\tilde{O}(K) \\
\leq & \frac{\log K}{\eta}+\frac{\eta}{2} K L_{T, i^{*}}+\tilde{O}(K)
\end{aligned}
$$

A SIMPLER ALGORITHM: EXP3-IX

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)
Parameter: $\eta>0$.
Initialization: For all i, set $w_{1, i}=1$.
For each round $t=1,2, \ldots, T$

- For all i, let

$$
p_{t, i}=\frac{w_{t, i}}{\sum_{j} w_{t, j}}
$$

- Draw $I_{t} \sim \boldsymbol{p}_{t}$.
- For all i, let

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{p_{t, i}} \boldsymbol{1}_{\left\{I_{t}=i\right\}} .
$$

- For all i, update weight as

$$
w_{t+1, i}=w_{t, i} e^{-\eta \hat{\ell}_{t, i}}
$$

A SIMPLER ALGORITHM: EXP3-IX

EXP3-IX (Kocák et al., 2014, Neu 2015a, Neu 2015b)
Parameter: $\eta>0, \gamma>0$.
Initialization: For all i, set $w_{1, i}=1$.
For each round $t=1,2, \ldots, T$

- For all i, let

$$
p_{t, i}=\frac{w_{t, i}}{\sum_{j} w_{t, j}}
$$

- Draw $I_{t} \sim \boldsymbol{p}_{t}$.
- For all i, let

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{p_{t, i}+\gamma} \mathbf{1}_{\left\{I_{t}=i\right\}}
$$

- For all i, update weight as

$$
w_{t+1, i}=w_{t, i} e^{-\eta \hat{\ell}_{t, i}}
$$

A SIMPLER ALGORITHM: EXP3-IX

EXP3-IX (Kocák et al., 2014, Neu 2015a, Neu 2015b)
Theorem (Neu, 2015):
The regret of Exp3-IX satisfies

$$
\underset{{ }^{2} t, l}{\hat{R}_{T}}=\underset{\sum_{j} w_{t, j}}{\tilde{O}\left(\sqrt{K L_{T}^{*}}+K\right)}
$$

- Draw $I_{t} \sim p_{t}$.
- For all i, let

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{p_{t, i}+\gamma} \mathbf{1}_{\left\{I_{t}=i\right\}}
$$

- For all i, update weight as

$$
w_{t+1, i}=w_{t, i} e^{-\eta \hat{t}_{t, i}}
$$

IMPLICIT EXPLORATION IN ACTION

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{p_{t, i}+\gamma} \mathbf{1}_{\left\{I_{t}=i\right\}}
$$

IMPLICIT EXPLORATION IN ACTION

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{p_{t, i}+\gamma} \mathbf{1}_{\left\{I_{t}=i\right\}}
$$

IMPLICIT EXPLORATION IN ACTION

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{p_{t, i}+\gamma} \mathbf{1}_{\left\{I_{t}=i\right\}}
$$

IMPLICIT EXPLORATION IN ACTION

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{p_{t, i}+\gamma} \mathbf{1}_{\left\{I_{t}=i\right\}}
$$

IMPLICIT EXPLORATION IN ACTION

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{p_{t, i}+\gamma} \mathbf{1}_{\left\{I_{t}=i\right\}}
$$

HIGHER-ORDER BOUNDS

Full information

Bandit

minimax

$$
R_{T}=O(\sqrt{T \log K})
$$

$$
R_{T}=O(\sqrt{K T})
$$

$R_{T}=O\left(\sqrt{L_{T, i} \log K}\right)$
should be easy?
second-order
$S_{T, i}=\sum_{t} \ell_{t, i}^{2}$
$R_{T}=O\left(\sqrt{S_{t, i^{*}} \log K}\right)$
$R_{T}=\tilde{O}\left(\sqrt{\sum_{i} S_{t, i}}\right)$
Cesa-Bianchi, Mansour, Stoltz (2005)
Auer et al. (2002) + some hacking
$R_{T}=O\left(\sqrt{V_{T, i^{*}} \log K}\right)$
Hazan and Kale (2010)

$$
R_{T}=\tilde{O}\left(K^{2} \sqrt{\sum_{i} V_{t, i}}\right)
$$

Hazan and Kale (2011)
with a little cheating

HIGHER-ORDER BOUNDS

Full information

Bandit

minimax

$$
R_{T}=O(\sqrt{T \log K})
$$

$$
R_{T}=O(\sqrt{K T})
$$

first-order
$L_{T, i}=\sum_{t} \ell_{t, i}$
second-order
$S_{T, i}=\sum_{t} \ell_{t, i}^{2}$
$R_{T}=O\left(\sqrt{S_{t, i^{*}} \log K}\right)$
Cesa-Bianchi, Mansour, Stoltz (2005)
Auer et al. (2002) + some hacking
$R_{T}=O\left(\sqrt{V_{T, i^{*}} \log K}\right)$
Hazan and Kale (2010)
$R_{T}=O\left(\sqrt{L_{T, i^{*}} \log K}\right)$

$$
R_{T}=\tilde{O}\left(\sqrt{K L_{T, i^{*}}}\right)
$$

$$
R_{T}=\tilde{O}\left(\sqrt{\sum_{i} S_{t, i}}\right)
$$

$$
R_{T}=\tilde{O}\left(K^{2} \sqrt{\sum_{i} V_{t, i}}\right)
$$

Hazan and Kale (2011)
\star with a little cheating

HIGHER-ORDER LOWER BOUNDS

Gerchinovitz and Lattimore (2016), heavily paraphrased:

HIGHER-ORDER LOWER BOUNDS

Gerchinovitz and Lattimore (2016), heavily paraphrased:

Theorem:

No algorithm can do better than

$$
\hat{R}_{T}=\Omega\left(\sqrt{L_{T}^{*} K}\right)
$$

Theorem:

"No algorithm can do better than

$$
\hat{R}_{T}=\Omega\left(\sqrt{\sum_{i} V_{t, i}}\right)^{\prime \prime}
$$

BEYOND MINIMAX \#2: STOCHASTIC LOSSES AND THE "BEST OF BOTH WORLDS"

Lai-Robbins 186 phoremerid
Asymptotics:

$$
\varepsilon=\left\{\nu \mid \nu=\left(N(N,)_{1}, N, N\left(n_{k}, 1, \mu_{i}, \mu_{n} \in R\right\}\right.\right.
$$

$$
I=\left\{T\left\{, t p \in \varepsilon, p>0, z_{n}(t, s)=0(n t)\right\}\right.
$$

(1) $\forall t \in$ Ji $\forall \nu \in \mathcal{E}$, Amint $\frac{R_{n}(-\nu)}{\omega_{0}(n)} \geqslant \sum_{\text {Litoso }}^{\operatorname{Lith}}=\tau(t)$

Lai-Robbins ' 86 -paraphrased
Asymptotics!

$$
\varepsilon=\left\{\nu \mid \nu=\left(N\left(\mu_{1}, 1\right), \ldots, N\left(\mu_{k} 1\right), \mu_{1}, \ldots, \mu_{k} \in \mathbb{R}\right\}\right.
$$

Gaussian enrironments

$$
\Pi=\left\{\pi \mid \quad \forall \nu \in \varepsilon_{1}, p>0: R_{n}(\pi, \nu)=O(n p)\right\}
$$

"consistent policies" Instance optimality
(1.) $\forall \pi \in \Pi, \forall \nu \in E:$ fiminf $\frac{R_{n}(\pi, \nu)}{\log (n)} \geqslant \sum_{i: \Delta_{1}(0)>0} \frac{2}{\Delta_{i}(\nu)} \geqslant c^{x}(\nu)$
(2.) $\exists \pi \in \Pi$ s.t. $\forall \nu \in \mathcal{E}: \limsup _{n \rightarrow \infty} \frac{R_{n}(\pi, \nu)}{\log (n)}=C^{*}(\nu)$.

Lai- Robbins ' 86 -paraphrased
Asymptotics!

$$
\begin{gathered}
\varepsilon=\left\{\nu \mid \nu=\left(N\left(\mu_{\mu}, 1\right), \ldots, N\left(\mu_{k_{1}} 1\right), \mu_{1}, \ldots, \mu_{k} \in \mathbb{R}\right\}\right. \\
\operatorname{TL;DR:} \\
\left.\Pi=\quad \hat{R}_{T}=O(C(\nu) \log T)=O(n p)\right\}
\end{gathered}
$$

"co is achievable for i.i.d. losses
(1.) $\forall \pi \in I I, T \nu \in C$. $u m\left(n \notin \frac{l}{\log (n)} \sum_{i: \Delta_{i}(\nu)>0} \frac{2}{\Delta_{i}(\nu)} \pm c^{(\nu}\right)$
(2.) $\exists \pi \in \Pi$ s.t. $\forall \nu \in \mathcal{E}: \operatorname{limsimp}_{n \rightarrow \infty} \frac{R_{n}(\pi, \nu)}{\log (n)}=C^{*}(\nu)$.

THE BEST OF BOTH WORLDS

Is it possible to come up with an algorithm with

$$
\hat{R}_{T}=\tilde{O}(\sqrt{K T})
$$

for non-stochastic losses and

$$
\hat{R}_{T}=O(C(v) \log T)
$$

for stochastic losses?

THE BEST OF BOTH WORLDS

Is it possible to come up with an algorithm with

$$
\hat{R}_{T}=\tilde{O}(\sqrt{K T})
$$

for non-stochastic losses and

$$
\hat{R}_{T}=O(C(v) \log T)
$$

for stochastic losses?

> YES*!!
*almost

THE BEST OF BOTH WORLDS: ALGORITHMS

Bubeck and Slivkins (2012):

- Assume that environment is stochastic, act aggressively
- If the losses fail on a stochasticity test, then fall back to Exp3
- Regret: $\tilde{O}(\sqrt{K T})$ on adversarial, $O\left(\log ^{2} T\right)$ on stochastic

THE BEST OF BOTH WORLDS: ALGORITHMS

Bubeck and Slivkins (2012):

- Assume that environment is stochastic, act aggressively
- If the losses fail on a stochasticity test, then fall back to Exp3
- Regret: $\tilde{O}(\sqrt{K T})$ on adversarial, $O\left(\log ^{2} T\right)$ on stochastic

Auer and Chiang (2016), see Peter's talk tomorrow:

- Better test, better algorithm for stochastic losses
- Regret: $O(\sqrt{K T \log K})$ on adversarial, $O(\tilde{C}(v) \log T)$ on stochastic

A SIMPLE ALGORITHM:
 EXP3 + + (sEldin and slivkins, 2014)

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)
Parameter: $\eta>0$.
Initialization: For all i, set $w_{1, i}=1$.
For each round $t=1,2, \ldots, T$

- For all i, let

$$
p_{t, i}=\frac{w_{t, i}}{\sum_{j} w_{t, j}}
$$

- Draw $I_{t} \sim \boldsymbol{p}_{t}$.
- For all i, let

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{p_{t, i}} \boldsymbol{1}_{\left\{I_{t}=i\right\}} .
$$

- For all i, update weight as

$$
w_{t+1, i}=w_{t, i} e^{-\eta \hat{t}_{t, i}}
$$

A SIMPLE ALGORITHM:
 EXP3 + + (seldin and slivkins, 2014), paraphrased

EXP3++(ss, 2014)
Parameters: $\left(\eta_{t}\right)_{t}>0$, (++).
Initialization: For all i, set $w_{1, i}=1$.
For each round $t=1,2, \ldots, T$

- For all i, let

$$
p_{t, i}=\left(1-\sum_{j} \varepsilon_{t, j}\right) \frac{w_{t, i}}{\sum_{j} w_{t, j}}+\varepsilon_{t, i} .
$$

- Draw $I_{t} \sim \boldsymbol{p}_{t}$.
- For all i, let

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{p_{t, i}} \mathbf{1}_{\left\{I_{t}=i\right\}} .
$$

- For all i, update weight as

$$
w_{t+1, i}=\exp \left(-\eta_{t} \widehat{L}_{t, i}\right)
$$

EXP3 + + ANALYSIS (heavily paraphrased)

Theorem (SS, 2014):
The regret of Exp3++ satisfies

$$
\hat{R}_{T} \leq 4 \sqrt{T K \log K}
$$

EXP3+ + ANALYSIS (heavily paraphrased)

Theorem (sS, 2014):
The regret of Exp3++ satisfies

$$
\hat{R}_{T} \leq 4 \sqrt{T K \log K}
$$

Proof idea: the $\varepsilon_{t, i}$'s are small enough to not change the standard Exp3 analysis:

$$
\varepsilon_{t, i}=O(\sqrt{\log K / K T})
$$

EXP3 + + ANALYSIS (heavily paraphrased)

Theorem (SS, 2014):
The regret of Exp3++ satisfies

$$
\begin{aligned}
\hat{R}_{T} & =O\left(\tilde{C}(v) \log ^{3} T+C^{\prime}(v)\right) \\
& \text { in the stochastic case }
\end{aligned}
$$

EXP3+ + ANALYSIS (heavily paraphrased)

Proof ideas:

- Let $\Delta_{i}=\mu_{i}-\mu^{*}$

EXP3 + + ANALYSIS (heavily paraphrased)

Proof ideas:

- Let $\Delta_{i}=\mu_{i}-\mu^{*}$
- Wishful thinking: if we had full information, then

$$
p_{t, i} \approx \frac{e^{-t \eta_{t} \Delta_{i}}}{\sum_{j} e^{-t \eta_{t} \Delta_{j}}} \leq e^{-t \eta_{t} \Delta_{i}}
$$

holds for all suboptimal arms i

EXP3+ + ANALYSIS (heavily paraphrased)

Proof ideas:

- Let $\Delta_{i}=\mu_{i}-\mu^{*}$
- Wishful thinking: if we had full information, then

$$
p_{t, i} \approx \frac{e^{-t \eta_{t} \Delta_{i}}}{\sum_{j} e^{-t \eta_{t} \Delta_{j}}} \leq e^{-t \eta_{t} \Delta_{i}}
$$

holds for all suboptimal arms i

- Thus, the expected number of suboptimal draws is

$$
\sum_{t=1}^{T} p_{t, i} \leq \sum_{t=1}^{T} e^{-t \eta_{t} \Delta_{i}}=O\left(\frac{K}{\Delta_{i}^{2}}\right)
$$

EXP3 + + ANALYSIS (heavily paraphrased)

Proof ideas:

- Let $\Delta_{i}=\mu_{i}-\mu^{*}$

But we don't have full info :(

- Wishful thinking: if we had full information, then

$$
p_{t, i} \approx \frac{e^{-t \eta_{t} \Delta_{i}}}{\sum_{j} e^{-t \eta_{t} \Delta_{j}}} \leq e^{-t \eta_{t} \Delta_{i}}
$$

holds for all suboptimal arms i

- Thus, the expected number of suboptimal draws is

$$
\sum_{t=1}^{T} p_{t, i} \leq \sum_{t=1}^{T} e^{-t \eta_{t} \Delta_{i}}=O\left(\frac{K}{\Delta_{i}^{2}}\right)
$$

EXP3 + + ANALYSIS (heavily paraphrased)

- Idea: ensure that the estimated gap is "reasonable":

$$
t \widehat{\Delta}_{t, i} \stackrel{\text { def }}{=} \hat{L}_{t, i}-\hat{L}_{t}^{*} \geq t \Delta_{i}-o(t)
$$

EXP3++ ANALYSIS (heaviy paraphrased)

ensured by the exploration parameters $\varepsilon_{t, i}!!!$

- Idea: ensure that the estimated gap is "reasonable":

$$
t \widehat{\Delta}_{t, i} \stackrel{\text { def }}{=} \widehat{L}_{t, i}-\widehat{L}_{t}^{*} \geq t \Delta_{i}-o(t)
$$

EXP3 + + ANALYSIS (heavily paraphrased)

ensured by the exploration parameters $\varepsilon_{t, i}!!!$

- Idea: ensure that the estimated gap is "reasonable":

$$
t \widehat{\Delta}_{t, i} \stackrel{\text { def }}{=} \widehat{L}_{t, i}-\widehat{L}_{t}^{*} \geq t \Delta_{i}-o(t)
$$

- For large enough $t\left(t \geq t^{*}\right)$, we have $t \widehat{\Delta}_{t, i} \geq t \Delta_{i} / 2$

EXP3+ + ANALYSIS (heavily paraphrased)

ensured by the exploration

parameters $\varepsilon_{t, i}!!!$

- Idea: ensure that the estimated gap is "reasonable":

$$
t \widehat{\Delta}_{t, i} \stackrel{\text { def }}{=} \widehat{L}_{t, i}-\widehat{L}_{t}^{*} \geq t \Delta_{i}-o(t)
$$

- For large enough $t\left(t \geq t^{*}\right)$, we have $t \widehat{\Delta}_{t, i} \geq t \Delta_{i} / 2$
- This gives

$$
p_{t, i}=\frac{e^{-t \eta_{t} \widehat{\Delta}_{t, i}}}{\sum_{j} e^{-t \eta_{t} \widehat{\Delta}_{t, j}}} \leq e^{-t \eta_{t} \widehat{\Delta}_{t, i}} \leq e^{-t \eta_{t} \Delta_{i} / 2}
$$

for all suboptimal arms i

EXP3+ + ANALYSIS (heavily paraphrased)

ensured by the exploration

parameters $\varepsilon_{t, i}!!!$

- Idea: ensure that the estimated gap is "reasonable":

$$
t \widehat{\Delta}_{t, i} \stackrel{\text { def }}{=} \hat{L}_{t, i}-\widehat{L}_{t}^{*} \geq t \Delta_{i}-o(t)
$$

- For large enough $t\left(t \geq t^{*}\right)$, we have $t \widehat{\Delta}_{t, i} \geq t \Delta_{i} / 2$
- This gives

$$
p_{t, i}=\frac{e^{-t \eta_{t} \widehat{\Delta}_{t, i}}}{\sum_{j} e^{-t \eta_{t} \widehat{\Delta}_{t, j}}} \leq e^{-t \eta_{t} \widehat{\Delta}_{t, i}} \leq e^{-t \eta_{t} \Delta_{i} / 2}
$$

for all suboptimal arms i

- Thus,

$$
\sum_{t=1}^{T} p_{t, i} \leq t^{*}+\sum_{t=t^{*}}^{T} e^{-t \eta_{t} \Delta_{i} / 2}=t^{*}+O\left(\frac{K}{\Delta_{i}^{2}}\right)
$$

EXP3+ + ANALYSIS (heavily paraphrased)

ensured by the exploration

 parameters $\varepsilon_{t, i}!!!$" Idea: ensure that the estimated gap is "reasonable":

$$
t \widehat{\Delta}_{t, i} \stackrel{\text { def }}{=} \widehat{L}_{t, i}-\widehat{L}_{t}^{*} \geq t \Delta_{i}-o(t)
$$

- For large enough $t\left(t \geq t^{*}\right)$, we have $t \widehat{\Delta}_{t, i} \geq t \Delta_{i} / 2$
- This gives

$$
p_{t, i}=\frac{e^{-t \eta_{t} \widehat{\Delta}_{t, i}}}{\sum_{j} e^{-t \eta_{t} \widehat{\Delta}_{t, j}}} \leq e^{-t \eta_{t} \widehat{\Delta}_{t, i}} \leq e^{-t \eta_{t} \Delta_{i} / 2}
$$

for all suboptimal arms i

- Thus,

The rest is grinding out the asymptotics...

$$
\sum_{t=1}^{T} p_{t, i} \leq t^{*}+\sum_{t=t^{*}}^{T} e^{-t \eta_{t} \Delta_{i} / 2}=t^{*}+O\left(\frac{K}{\Delta_{i}^{2}}\right)
$$

EXP3 + + ANALYSIS (heavily paraphrased)

> Bottom line: "if there is a linear gap between $L_{t, i}$ and L_{t}^{*}, this should be exposed in the estimated gap $t \widehat{\Delta}_{t, i}$

EXP3 + + ANALYSIS (heavily paraphrased)

> Bottom line:
> "if there is a linear gap between $L_{t, i}$ and L_{t}^{*}, this should be exposed in the estimated gap $t \widehat{\Delta}_{t, i}$

Corollaries: strong bounds whenever there is such a gap:

- "contaminated stochastic"
- "adversarial with a gap"

EXP3+ + ANALYSIS (heavily paraphrased)

Bottom line:

"if there is a linear gap between $L_{t, i}$ and L_{t}^{*}, this should be exposed in the estimated gap $t \widehat{\Delta}_{t, i} "$

That's the exact opposite of what we need for $1^{\text {st }}$ order bounds!

- "adversarial with a gap"

OPEN QUESTIONS

Is there a way to exploit gaps that are growing slower than linear?

Is there a way to improve asymptotics? (In SS'14, t^{*} is horribly big!)

OPEN QUESTIONS

Is there a way to exploit gaps that are growing slower than linear?

Is there a way to improve asymptotics? (In SS'14, t^{*} is horribly big!)

So far, all positive results hold only for oblivious adversaries-is it possible to extend these to adaptive ones?

OPEN QUESTIONS

Is there a way to exploit gaps that are growing slower than linear?

Is there a way to improve asymptotics? (In SS'14, t^{*} is horribly big!)

So far, all positive results hold only for oblivious adversaries-is it poscible tp extend these to adaptive ones?

BEYOND MINIMAX \#3: PRIOR-DEPENDENT BOUNDS

PRIOR-DEPENDENT BOUNDS FOR FULL INFO

Theorem

(Luo and Schapire, 2015, Koolen and Van Erven, 2015, Orabona and Pal, 2016)
There exist algorithms guaranteeing

$$
\hat{R}_{T}(\rho)=O(\sqrt{T(1+\operatorname{RE}(\rho \mid \pi))})
$$

for any fixed prior $\pi \in \Delta_{K}$ and any comparator $\rho \in \Delta_{K}$

Theorem

(Even-Dar et al., 2007, Sani et al., 2014)
There exist algorithms guaranteeing

$$
\hat{R}_{T}(i)=\text { const }
$$

for any fixed i, while also guaranteeing

$$
\hat{R}_{T}=\tilde{O}(\sqrt{T})
$$

PRIOR-DEPENDENT BOUNDS FOR FULL INFO

Theorem
(Luo and Schapire, 2015, Koolen and Van Erven, 2015, Orabona and Pal, 2016)
Anything similar daranteeing possible for $\mathrm{E}(\rho \mid \pi))$)
for an bandits??
/ comparator $\rho \in \Delta_{K}$

Theorem

(Even-Dar et al., 2007, Sani et al., 2014)
There exist algorithms guaranteeing

$$
\hat{R}_{T}(i)=\text { const }
$$

for any fixed i, while also guaranteeing

$$
\hat{R}_{T}=\tilde{O}(\sqrt{T})
$$

PRIOR-DEPENDENT BOUNDS FOR FULL INFO

Theorem

(Luo and Schapire, 2015, Koolen and Van Erven, 2015, Orabona and Pal, 2016)
Anything similar daranteeing possible for $E(\rho \mid \pi))$)
for an bandits??
/ comparator $\rho \in \Delta_{K}$
(Even-Dar ϵ
There exist a
\hat{R}

19
*not quite
for any fixed i, wirlte atsu yuardirteeing

$$
\hat{R}_{T}=\tilde{O}(\sqrt{T})
$$

PRIOR-DEPENDENT BOUNDS FOR BANDITS

Theorem (Lattimore, 2015) paraphrased The regrets $\hat{R}_{T}(i)$ need to satisfy

$$
\hat{R}_{T}(i) \geq \min \left\{T, \sum_{j \neq i} \frac{T}{\widehat{R}_{T}(j)}\right\} .
$$

In particular,

- $\hat{R}_{T}(i)=$ const implies $\hat{R}_{T}(j)=\Omega(T)$
- Fixing a prior π and getting a bound

$$
\hat{R}_{T}(\rho)=\tilde{O}\left(\sqrt{T \sum_{j}\left(\rho_{j} / \pi_{j}\right)}\right) \text { is not possible }
$$

PRIOR-DEPENDENT BOUNDS: "POSITIVE" RESULTS

Lattimore (2015):

- For any regret bound satisfying the condition, there exists an algorithm achieving it in the stochastic setting
- In particular, $\sum_{j} \frac{\rho_{j}}{\pi_{j}} \sqrt{T}$ is achievable (see also Rosin, 2011)

Neu (2016, made up on the flight here):

- For non-stochastic bandits, there is an algorithm with

$$
\hat{R}_{T}(i)=\tilde{O}\left(\sqrt{\frac{K T \operatorname{softmax}(\pi)}{\pi_{i}}}\right)
$$

BEYOND MINIMAX: CONCLUSIONS

CONCLUSIONS

Higher order bounds

- First-order bounds are possible like in full info
- Second order bounds: much weaker than full info

Best-of-both-world bounds

- Possible and strong against oblivious adversaries
- Only weak guarantees for adaptive adversaries

Prior dependent bounds

- Nothing fancy is possible

