Online Learning in Episodic Markovian Decision Processes by Relative Entropy Policy Search
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Episodic loop-free MDP

MDP is a tuple {X, A, P}:

 X:finite known state space

e A: finite known action space

e P:X XX XA - [0,1]: transition function

Main assumption:

* Interaction goes in episodes, starts in Xy, ends in xp

e State space consists of layers, i.e. X = Uzx_o Xy, where
XpNX; = Qfork + j

* X, and X; are singletons, i.e. Xy = {xp} and X; = {x;}

* Transitions are possible only between layers, i.e. if
P(x'|x,a) > 0, then x" € X;..1 and x € X}, for some k
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Online learning in MDP

{:}:=1 7 —unknown sequence of losses
1, - policy to follow in episode t

In each of T episodes:
e Startin xy(t) = x,
Observe x; (t)
Choose a; (t) ~ ms (- |x (t))
Suffer loss €4 (x; (t), ai(t))
State changes to xj 1 (t) ~ P(- | x4 (t), ai(t))
* Until x;(t) = x; is reached
* Observe|whole € |or|[{£, (xx (t), ar(t))}k=0..L-1]
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L—-1
ct(m) = E th(xk(t), ay (t)) e
k=0
Minimize the regret:

T
Ry = mﬁlxz(ct(nt) — ¢ (1))
t=1
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Previous results

Neu et al. (2010):
* Full information: Ry = O(LZ\/Tlog(lAD)

2
+ Bandit: Ry = 0 (L VT4l log("")), a >0
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Reduction to linear optimization

Occupancy measure g™ of a policy m is a family of
distributions:

qn(x, a) = P(x’k x) = X, a’k(x) — a‘n')
[_(Eyer of x |

A - set of all such measures

Any g can be computed:

D awa) = ) D Pxlx,a)q"(x,a)

xlEXk(x)_l al
starting from q™(xy, a) = m(al|xy)

Given g™ we can extract m:

w(al) =19 g

Why are they helpful?
ce(m) = ) qT(xa)e(x,a) £ (g7, €,)
X,a

Instance of online linear optimization:

qeA

- i
Rr = max E z<Qt —q, )
t=1
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Online Relative Entropy Policy Search

Start with uniform policy ; (a|x) = I%I and set g; = g™

After episode t:

q:+1(x, a) = argmin{n{(q, £;) + D(qlq.)}

qeA

Where D is the unnormalized Kullback—Leibler divergence:

N q(x,a)
D(ql") = 2 q(x,@)log o= <

)

Estimator of losses

History of interaction:
u; = {oxp (8), ar (£), €1 (xpc (), ax (t))}=1.1-1

The unbiased estimator is
~ i(x,a)
Li(x,a) =

qt(x' Cl)

I{(x,a) € u;}

And 7 is a parameter of the algorithm
N

D (atr,0) - q'(x0))

)

Implementation

Forany v: X — R and loss £: X X A = R define

xreX
Then q;,1 can be computed as:

qt(x) a)eé‘(x,a|ﬁt,?t)
Zt (9t' k(X))

qei1(x,a) =

Where

0(x,alv,f) = —nf(x,a) — z v(x")P(x'|x,a) + v(x)

L
Dy = argmin z Z:(v, k)
Y k=0
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Zt(v, k) = Z Z qt(x, a)e5(x»a|”:2’t)
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Full information
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