Better algorithms for sleeping
experts & bandits
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Prediction with expert advice
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Prediction with sleeping experts
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More formally...

Parameters: set of N experts

Ineachroundt =1,2,..., T
Environment chooses losses £, ; € [0,1] for
all experts

Environment chooses the set of available
experts S; € {1,2, ..., N}

Learner picks distribution p; on available
experts

Learner suffers loss p; 1,




Regret definition

Usual notion of regret:
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Regret definition

Usual notion of regret:

T T
R = 2 Pl - ie?{‘i“mz bei
=1 A=

We should actually compete with policies of
the form 1: 21V - N such that (S) € S



Regret definition

Regret against policy class H

T
R = Z p.l; mlnz Ut (s,
t=1



Previous results

Kleinberg et al. (2008):
IID losses (that’s kind of trivial) Ry = 0({/TNIlogN)
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Adversarial losses
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The cheat — now formally

Kanade et al. assume that £ ; is observed
foralli € [N]!



The cheat — now formally

Kanade et al. assume that £ ; is observed
foralli € [N]
A more realistic assumption:

Observe £, ; only fori €

S; € |[N]




Algorlthm Follow the Perturbed Leader

Initialization: let L, ; = Oforalli € [N]
Forallroundst =1,2,...,T:

* QObserve S; € [N]

* Draw perturbations Z;; ~ Exp(n) foralli € S;
* Play expert

I, = arg min(Lt_lll- — Zt’i)

iES,
e QObserve feedback andsetforalli € N

l Lt,i — Lt—l,i + ft,i
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Initialization: let = 0 foralli € [N]
Forallroundst =1,2,...,T:

* QObserve S; € [N]

* Draw perturbations Z;; ~ Exp(n) foralli € S;
* Play expert

I, = arg min( — Zt’i)

iES,
e QObserve feedback andsetforalli € N

.




Loss estimation

Assume IID availability:

Se~Q vt=12,..,T
Then we canset q; = P|i € S;| foralli € [N]
Losses can be estimated as

2
Cei =19 q;
\ 0, otherwise

if i is observed
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Loss estimation

Assume IID availability:
Se ~Q vt=12,..,T

Then we canset q; = P|i € S;|foralli € [N]
Losses can be est But the g;'s are
({ unknown!!
t,i .
- — if i is observed

otherwise

Unbiased:
E[ft,i] =14




Loss estimation — the bad way




Loss estimation — the bad way

Bad news:

» Regret becomes 0(T3/%)
 Canfail horribly for large action sets




Loss estimation — the right way

Observe that the downtime is a geometric RV!
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Loss estimation — the right way

Observe that the downtime is a geometric RV!
t t+1  t+2 t+K




Loss estimation — the right way

Observe thatths

Estimate losses as
- {ft,il{t,i, if i is observed j

£, = _
Lt 0, otherwise




Main result

Theorem 1
Assuming IID expert availability, the expected
regret of FPL fed with loss estimates {?t,i}

satisfies
Ry = 0(\/TNlogN)
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Main result

Theorem 1
Assuming IID expert availability, the expected
regret of FPL fed with loss estimates {?t,i}

satisfies
Ry = 0(\/TNlogN)

This is worse by a factor of VN than the bound of
Kanade et al. (2009)...

...but we didn't cheat!




Lower bound

Theorem 1: Ry = O(TN log N)

Theorem 2
Assuming IID expert availability, no algorithm can
achieve better regret than

Ry = Q(VTN)




Extensions: large action spaces

Assume that

= each experti € |[N] is associated with a binary
vector v(i) € {0,1}¢

= losses are described by a loss vector 1, € [0,1]¢
= loss of expertiinroundtisgivenasv(i)'l, <m



Extensions: large action spaces

Assume that

= each experti € [N]is associated with a binary
vector v(i) € {0,1}¢

= losses are described by a loss vector 1, € [0,1]¢
= loss of expert i inround tis givenasv(i)'l, <m

Theorem 3
Assuming IID expert availability, the expected

regret of the combinatorial extension of FPL is

R = O(de log d)




Extensions: bandit feedback

So far: assume we observe £, ; forall i € S;
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Extensions: bandit feedback

So far: assume we observe £, ; forall i € S;
Now: assume we only observe the loss #; |,
Using a simple extension of FPL, we prove

Theorem 4

Assuming IID expert availability, the expected
regret of the bandit extension of FPL satisfies

Ry = 0(T?/3)

Best previous result was O(T*/5)




Experiments

sleepmg bandits, 5 arms, varying availabity, average over 20 runs

—— BSFPL
—— Sleepiﬂgcat “1-‘.-].
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Experiments

sleepmg semi-bandits, shortest path, 3 x 3 grid, average over 20 runs

CombinatorialBSFPL
=== CombinatorialSleepingCat
- =me CombinatorialRandomGuess




Experiments

sleepmg semi-bandits, shortest path, 10 x 10 grid, average over 20 runs

CombinatorialBESFPL
=== CombinatorialSleepingCat
=== CombinatorialRandomGuess

—— a1 R R e Ll -



Future work

Prove Ry = 0(\/7) for sleeping bandits?
= Problem: knowing the g;’s is not enough
Extend results to more complicated
availability assumptions:

= Markovian arms
= Mortal arms






