
Estimating 1/𝑎𝑖

Kanade, McMahan & Bryan (2009):
• devote first 𝐾 steps for exploration!

• use samples to construct 𝑎𝑖 s.t. 𝐄 𝑎𝑖 = 𝑎𝑖!

Feedback assumptions
• Full: ℓ𝑡

• Restricted: ℓ𝑡,𝑖𝟏 component 𝑖 is available in round 𝑡

• Semi-bandit: ℓ𝑡,𝑖𝑉𝑡,𝑖

Online Combinatorial Optimization
with Stochastic Decision Sets and Adversarial Losses

Gergely Neu
gergely.neu@gmail.com

The learning problem

Michal Valko
michal.valko@inria.fr

For each time step 𝑡 = 1,2, … , 𝑇
• Environment chooses decision set 𝑆𝑡 ⊆ 𝑆
• Learner chooses action 𝑽𝑡 ∈ 𝑆 ⊆ 0,1 𝑑

• Environment chooses loss vector ℓ𝑡 ∈ [0,1]𝑑

• Learner suffers loss 𝑽𝑡
⊤ℓ𝑡

• Learner observes feedback based on 𝑽𝑡 and ℓ𝑡

Decision set:

𝑆 = 𝒗𝑖 𝑖=1
𝑁 ⊆ 0,1 𝑑

𝒗𝑖 1 ≤ 𝑚

Example: sequential routing

𝑅𝑇 = max
𝜋∈Π

𝐄

𝑡=1

𝑇

𝑽𝑡 − 𝜋 𝑆𝑡
⊤
ℓ𝑡

Regret definition

Loss estimation by Counting Asleep-Times (CAT)

Restricted feedback

Define

• 𝐴𝑡,𝑖 = 𝟏 component 𝑖 is available in round 𝑡

• 𝑎𝑖 = 𝐄𝑡 𝐴𝑡,𝑖 , and

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑎𝑖
𝐴𝑡,𝑖

… but how do we compute 𝑎𝑖?

Semi-bandit feedback
Define 𝑞𝑡,𝑖

∗ = 𝐄𝑡[𝑉𝑡,𝑖] and

 ℓ𝑡,𝑖
∗ =

ℓ𝑡,𝑖

𝑞𝑡,𝑖
∗ 𝑉𝑡,𝑖

… but this requires perfect knowledge of 𝑃!

Another idea: define 𝑞𝑡,𝑖 = 𝐄𝑡 𝑉𝑡,𝑖 𝑆𝑡 and

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑞𝑡,𝑖𝑎𝑖
𝑉𝑡,𝑖

… but that needs 𝑎𝑖 again.

The magic trick: Counting Asleep-Times

Expected downtime:

𝐄 𝑁𝑡,𝑖 = 1/𝑎𝑖

…

Results

Full info Restricted info Semi-bandit

Kanade et al. 2009
(𝑚 = 1 only)

𝑇 log 𝑑
???

(𝑇3/4 conjectured)
(𝑑𝑇)4/5log 𝑇

SleepingCAT
general bound

𝑚3/2 𝐿𝑇
∗ log 𝑑

𝑚 𝑑𝑇 log 𝑑 𝑚𝑑𝑇 2/3 log 𝑑 1/3

SleepingCAT

when 𝑎𝑖 ≥ 𝛽 𝑚
𝑇 log 𝑑

𝛽
𝑚𝑇 2/3

𝑑 log 𝑑

𝛽

1/3

• Define independent copies 𝑆 ∼ 𝑃 and 𝒁 ∼ 𝒁1
• Define hypothetical forecaster

 𝑽𝑡 = argmin
𝑣∈ 𝑆

𝑣⊤ 𝑳𝑡 − 𝒁

so 𝑽𝑡 ∼ 𝑽𝑡+1 given history up to round 𝑡
• Then,

𝐄𝑡
 𝑽𝑡−1

⊤ ℓ𝑡 = 𝐄𝑡 𝑽𝑡
⊤ℓ𝑡

𝐄𝑡 𝜋 𝑆
⊤ ℓ𝑡 = 𝐄𝑡 𝜋 𝑆𝑡

⊤ℓ𝑡

Experiments

Setup follows Kanade et al. (2009):
• 5 arms, available independently of each other w.p. 𝑝
• Losses are symmetric random walks truncated to 0,1

Scaling with grid size in a shortest-path problem:

𝑤

Algorithm: SleepingCAT (FPL)

Parameter: learning rate 𝜂 > 0, 𝑳0 = 0
For each time step 𝑡 = 1,2, … , 𝑇
• Draw perturbation vector 𝒁𝑡 with

𝑍𝑡,𝑖 ∼ Exp 𝜂 i.i.d. for all 𝑖 ∈
1,2, … , 𝑑

• Play

𝑽𝑡 = argmin
𝑣∈𝑆𝑡

𝑣⊤ 𝑳𝑡−1 − 𝒁𝑡

• Compute ℓ𝑡 and let 𝑳𝑡 = 𝑳𝑡−1 + ℓ𝑡

Efficient whenever the optimization
min
𝒗∈𝐷

𝒗⊤ℓ

can be solved efficiently for all 𝐷 ∈ 𝑆

Usual goal: minimize regret against 𝑆

Comparator might not be available!

A sensible comparator class:

Our goal: minimize regret against Π

𝑅𝑇 = max
𝒗∈𝑆

𝐄

𝑡=1

𝑇

𝑽𝑡 − 𝒗 ⊤ℓ𝑡

The set of policies Π = {𝜋: 2𝑆 → 𝑆 } s.t.

𝜋 𝑆 ∈ 𝑆 ⊆ 𝑆

Restricted
 ℓ𝑡,𝑖 = ℓ𝑡,𝑖𝐴𝑡,𝑖𝑁𝑡,𝑖

𝑖 𝑖

𝑡 𝑡 + 1 𝑡 + 2 𝑡 + 𝑁𝑡,𝑖

IID availability:
𝑆𝑡 ∼ 𝑃

Semi-bandit
 ℓ𝑡,𝑖 = ℓ𝑡,𝑖𝑉𝑡,𝑖𝑁𝑡,𝑖𝐾𝑡,𝑖

𝑢
𝑤𝑢

𝑤𝑢

𝑤𝑢

SequeL team
INRIA Lille – Nord Europe
France

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑎𝑖
𝐴𝑡,𝑖

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑎𝑖𝑞𝑡,𝑖
𝐴𝑡,𝑖

𝐄𝑡 𝐾𝑡,𝑖 = 1/𝑞𝑡,𝑖

Computing 𝐾𝑡,𝑖:

• use Geometric Resampling (Neu &
Bartók, 2013)

• requires 𝑑 calls to oracle on average

Lemma 1: for any policy 𝜋 ∈ Π,

𝐄

𝑡=1

𝑇

 𝑽𝑡 − 𝜋 𝑆
⊤

 ℓ𝑡 ≤
𝑚 log 𝑑 + 1

𝜂

Analysis idea

Lemma 2: for any ℓ𝑡 ≽ 0,

𝐄𝑡
 𝑽𝑡−1 − 𝑽𝑡

⊤ ℓ𝑡 ≤ 𝐄𝑡
 𝑽𝑡−1

⊤ ℓ𝑡

2

3 × 3 10 × 10

