References

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In *ICML'04*, pages 1–8, 2004. ISBN 1-58113-828-5. S. Amari. Natural gradient works efficiently in learning. *Neural Computation*, 10(2): 251–276, 1998.

Christian Igel and Michael Hüsken. Improving the Rprop learning algorithm. In *ICSC/NC 2000*, pages 115–121, 2000.

A.Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In *ICML-2000*, pages 663–670, 2000. N.D. Ratliff, J.A. Bagnell, and M. Zinkevich. Maximum margin planning. In *ICML'06*, pages 729–736, 2006.

9: $MDP \leftarrow (MDP \backslash r) \cup \phi_j$ 10: $(\psi_{\theta_s})_j \leftarrow \textbf{find-Q}(MDP, \pi_{\theta_s})$ 11: end for 12: $\nabla J \leftarrow$ calculate-grad- $\mathbf{J}(\psi_{\theta}, \pi_{\theta}, \pi_{E}, \mu_{T})$ 13: $\Delta\theta \leftarrow \text{compute-step}(\nabla J, \nabla \pi_{\theta_s})$ 14: $\theta_{s+1} \leftarrow \theta_s - \Delta\theta$ 15: end for 16: return *r*

The function **compute-step** may involve natural gradient computation or RPROP step size selection (Igel and Hüsken 2000).

Improved generalization capabilities, policy matched on a great portion of \mathcal{X} :

Algorithm

1: function IRL(*MDP* $\langle r, \phi, \pi_{E,T}, \mu_T \rangle$

- 2: $\theta_0 \leftarrow 0$
- 3: **for** $s = 0$ to *iteration-limit* **do**
- 4: $r \leftarrow r_{\theta_s}$
- $MDP \leftarrow (MDP \backslash r) \cup r$
- 6: Q^* ← find-optimal- $Q(MDP)$
- 7: $\pi_{\theta_s} \leftarrow G(Q^*)$
- for $j = 1$ to d do

• Answer: find the reward function explaining $\pi_{E,T}$!

Experimental results

The gradient can be computed \rightarrow natural gradient search (Amari 1998) can be used to eliminate dependence on the scaling of the features!

Expert trajectories

Low error region

Need the gradient $\nabla J(\pi_{\theta}) = J'(\pi_{\theta})\pi'_{\theta}$ θ

• Calculating $J'(\pi_{\theta})$ is trivial • Main question: $\pi'_\theta = ?$

Problem: greedy policies are not differentiable! (because a "max" function is involved) **Solution:** use a smooth mapping $G: Q \mapsto \pi$

> Performance vs. number of samples (results for the algorithm of Abbeel and Ng (2004) also shown):

Proposition. Assume that the reward function r_θ is differ*entiable w.r.t.* θ *with uniformly bounded derivatives:* $\sup_{(\boldsymbol{\theta},\boldsymbol{x},a)\in\mathbb{R}^d\times\mathcal{X}\times\mathcal{A}}\|r'_\boldsymbol{\theta}$ $\mathcal{L}_{\theta}(x,a)$ || < + ∞ *. The following statements hold:*

 $(1) Q^*_{0}$ θ *is uniformly Lipschitz-continuous as a function of* θ in the sense that for any (x, a) pair, $\theta, \theta' \in \mathbb{R}^d$, $|Q^*_{\theta}$ $\overset{*}{\theta}(x,a)$ — *Q* ∗ $\mathcal{L}_{\theta'}(x,a)| \leq L'||\theta - \theta'||$ with some $L' > 0$;

(2) *Except on a set of measure zero, the gradient,* $\nabla_{\theta}Q_{\theta}^*$ θ *, is given by the solution of the following fixed-point equation:*

> $\Psi_{\theta}(x,a) = (r'_{\theta})$ $\int_{0}^{t} (x, a) d^{T}$ $+\gamma \sum_{y \in \mathcal{X}} P(y|x, a) \sum_{b \in \mathcal{A}} \pi(b|y) \psi_{\theta}(y, b),$

where π *is any policy that is greedy with respect to* Q_{θ} *.*

The results are shown for using original features, linearly transformed features and noise-perturbed features, respectively.

New approach – IRL as an optimization task:

- Choose a parametric family of rewards $(r_{\theta})_{\theta \in \Theta}$ not necessarily linear!
- Define a loss function, e.g.

- Actions: A
- Transitions: $P(x'|x, a)$
- Rewards: $r(x, a)$

$$
J_T(\pi) = \sum_{x \in \mathcal{X}, a \in \mathcal{A}} \mu_T(x) (\pi(a|x) - \hat{\pi}_{E,T}(a|x))^2,
$$

 μ ^{*T*}: empirical estimate of stationary distribution • Find θ minimizing $J_T(\pi_\theta)$! (π_θ optimal for r_θ)

 $Q^*(x, a) = r(x, a) + γ ∑_1^2$ *y*∈X $P(y|x,a)$ max *b*∈A *Q* ∗ (*y*,*b*)

• Optimal policy: π^* maximizing Q for all state-action pairs

Calculating the Gradients

IRL problem: find *r* that π_E is optimal for! (Ng and Russell 2000)

- Advantage: better generalization
- Difficulty: ill-posed problem

Previous work on IRL: "maximum margin" algorithm of Abbeel and Ng (2004)

• Linearly parametrized rewards: $r_{\theta}(x, a) = \sum_{i=1}^{d} \theta_i \phi_i(x, a)$

• Boltzmann-policies:

• Problem: Solution is highly variant to the scaling of the features!

$$
G(Q)(a|x) = \frac{\exp[\beta Q(x, a)]}{\sum_{b \in \mathcal{A}} \exp[\beta Q(x, b)]}
$$

Gergely Neu^{∗†} Csaba Szepesvári^{*‡} neu.gergely@gmail.com szepesva@cs.ualberta.ca

• . . . and their derivatives:

 $\partial \pi_{\theta}$ ∂θ*^k* $(a|x) = \pi_{\theta}(a|x)$ $\partial \ln[\pi_\theta(a|x)]$ ∂θ*^k* $=\pi_{\theta}(a|x)\beta$ $\bigg)$ ∂*Q* ∗ $\overset{*}{\theta}(x,a)$ ∂θ*^k* [−] ∑ *b*∈A $\pi_{\theta}(b|x)$ ∂*Q* ∗ $\overset{*}{\theta}(x,b)$ ∂θ*^k* \setminus

Main result about calculating the subgradient of Q^*_{θ} $\overset{*}{\theta}$:

Fixed-point equation analogous to the Bellman-equation:

 $r_{\theta}(x,a) \leftrightarrow (r'_{\theta})$ $\mathcal{Q}_{\theta}(x, a))^T$, $\mathcal{Q}_{\theta}(x, a) \leftrightarrow \psi_{\theta}(x, a)$

 \rightarrow known RL methods can be used to find the derivatives!

Apprenticeship learning in MDPs

- Assumption: \exists expert following an optimal policy π_E
- Samples from the expert: $(X_t, A_t)_{0 \le t \le T}$
- Empirical estimate of π_E :

$$
\hat{\pi}_{E,T}(a|x) = \sum_{t=0}^{T} \mathbb{I}_{\{X_t = x, A_t = a\}} / \sum_{t=0}^{T} \mathbb{I}_{\{X_t = x\}}
$$

• Goal: find π best maching π_E

• Question: how to generalize to unknown states?

Markovian Decision Problems

MDPs: Making decisions in a stochastic world with a longterm goal.

• States: X

Policies and value functions

• Policy: $\pi : \mathcal{A} \times \mathcal{X} \rightarrow [0,1],$ $\sum_{a \in \mathcal{A}} \pi(a|x) = 1, \forall x \in \mathcal{X}$

• Set of all policies: Π

• Action-values under policy π :

$$
Q^{\pi}(x,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(X_t, A_t) \middle| X_0 = x, A_0 = a\right],
$$

where the sequence $(X_t, A_t)_{t \geq 0}$ is generated by π • Optimal action values: $Q^*(x, a) = \sup_{\pi} Q^{\pi}(x, a)$

• Bellman optimality equation for action values:

Inverse reinforcement learning

Reward function

• Aims to match the *feature expectations* of the expert:

$$
\Psi^{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \phi(X_{t}, A_{t}) \middle| X_{0} \sim D\right],
$$

where the trajectory is generated by π and *D* is some distribution over X

† Budapest University of Technology and Economics, Hungary ‡ Department of Computing Science, University of Alberta, Canada [∗] Machine Learning Research Group, Computer and Automation Research Institute, Hungarian Academy of Sciences, Hungary

Apprenticeship Learning using Inverse Reinforcement Learning and Gradient Methods