Apprenticeship Learning using Inverse Reinforcement Learning and Gradient Methods

Gergely Neu^{*†} neu.gergely@gmail.com

Csaba Szepesvári^{*‡} szepesva@cs.ualberta.ca

[†] Budapest University of Technology and Economics, Hungary [‡] Department of Computing Science, University of Alberta, Canada * Machine Learning Research Group, Computer and Automation Research Institute, Hungarian Academy of Sciences, Hungary

Apprenticeship learning in MDPs

- Assumption: \exists expert following an optimal policy π_E
- Samples from the expert: $(X_t, A_t)_{0 \le t \le T}$
- Empirical estimate of π_E :

$$\hat{\pi}_{E,T}(a|x) = \sum_{t=0}^{T} \mathbb{I}_{\{X_t = x, A_t = a\}} / \sum_{t=0}^{T} \mathbb{I}_{\{X_t = x\}}$$

- Goal: find π best maching π_E
- Question: how to generalize to unknown states?

New approach – IRL as an optimization task:

- Choose a parametric family of rewards $(r_{\theta})_{\theta \in \Theta}$ not necessarily linear!
- Define a loss function, e.g.

$$J_T(\pi) = \sum_{x \in \mathcal{X}, a \in \mathcal{A}} \mu_T(x) (\pi(a|x) - \hat{\pi}_{E,T}(a|x))^2,$$

 μ_T : empirical estimate of stationary distribution • Find θ minimizing $J_T(\pi_{\theta})!$ (π_{θ} optimal for r_{θ})

Algorithm

1: function **IRL**(*MDP*\ $r, \phi, \pi_{E,T}, \mu_T$)

- 2: $\theta_0 \leftarrow 0$
- 3: for s = 0 to *iteration-limit* do
- $r \leftarrow r_{\theta_s}$ 4:
- $MDP \leftarrow (MDP \setminus r) \cup r$
- $Q^* \leftarrow \text{find-optimal-}\mathbf{Q}(MDP)$
- $\pi_{\theta_s} \leftarrow G(Q^*)$
- for j = 1 to d do 8:

• Answer: find the reward function explaining $\pi_{E,T}$!

Markovian Decision Problems

MDPs: Making decisions in a stochastic world with a longterm goal.

• States: \mathcal{X}

• Actions: \mathcal{A}

• Transitions: P(x'|x,a)

• Rewards: r(x, a)

Policies and value functions

• Policy: $\pi : \mathcal{A} \times \mathcal{X} \rightarrow [0, 1]$, $\sum_{a \in \mathcal{A}} \pi(a|x) = 1, \forall x \in \mathcal{X}$

• Set of all policies: Π

• Action-values under policy π :

$$Q^{\pi}(x,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(X_{t},A_{t}) \middle| X_{0} = x, A_{0} = a\right],$$

where the sequence $(X_t, A_t)_{t>0}$ is generated by π • Optimal action values: $Q^*(x,a) = \sup_{\pi} Q^{\pi}(x,a)$

The gradient can be computed \rightarrow natural gradient search (Amari 1998) can be used to eliminate dependence on the scaling of the features!

Calculating the Gradients

Need the gradient $\nabla J(\pi_{\theta}) = J'(\pi_{\theta})\pi'_{\theta}$

• Calculating $J'(\pi_{\theta})$ is trivial • Main question: $\pi'_{\Theta} = ?$

Problem: greedy policies are not differentiable! (because a "max" function is involved) Solution: use a smooth mapping $G: Q \mapsto \pi$

• Boltzmann-policies:

$$G(Q)(a|x) = \frac{\exp[\beta Q(x,a)]}{\sum_{b \in \mathcal{A}} \exp[\beta Q(x,b)]}$$

• ... and their derivatives:

 $\frac{\partial \pi_{\theta}}{\partial \theta_k}(a|x) = \pi_{\theta}(a|x) \frac{\partial \ln[\pi_{\theta}(a|x)]}{\partial \theta_k}$ $= \pi_{\theta}(a|x)\beta\left(\frac{\partial Q_{\theta}^{*}(x,a)}{\partial \theta_{k}} - \sum_{b \in \mathcal{A}} \pi_{\theta}(b|x)\frac{\partial Q_{\theta}^{*}(x,b)}{\partial \theta_{k}}\right)$

Main result about calculating the subgradient of Q_{θ}^* :

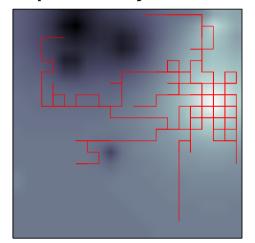
 $MDP \leftarrow (MDP \setminus r) \cup \phi_i$ 9: $(\Psi_{\theta_s})_i \leftarrow \mathbf{find} \cdot \mathbf{Q}(MDP, \pi_{\theta_s})$ 10: end for 11: $\nabla J \leftarrow \text{calculate-grad-J}(\psi_{\theta}, \pi_{\theta}, \pi_{E}, \mu_{T})$ $\Delta \theta \leftarrow \text{compute-step}(\nabla J, \nabla \pi_{\theta_s})$ 13: $\theta_{s+1} \leftarrow \theta_s - \Delta \theta$ 14: 15: **end for** 16: return r

The function **compute-step** may involve natural gradient computation or RPROP step size selection (Igel and Hüsken 2000).

Experimental results

Improved generalization capabilities, policy matched on a great portion of \mathcal{X} :

Expert trajectories



Low error region

• Bellman optimality equation for action values:

 $Q^*(x,a) = r(x,a) + \gamma \sum_{y \in \mathcal{X}} P(y|x,a) \max_{b \in \mathcal{A}} Q^*(y,b)$

• Optimal policy: π^* maximizing Q for all state-action pairs

Inverse reinforcement learning

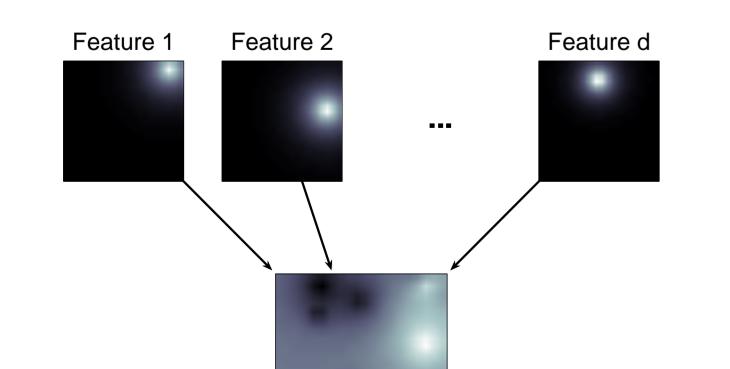
IRL problem: find *r* that π_E is optimal for! (Ng and Russell 2000)

• Advantage: better generalization

• Difficulty: ill-posed problem

Previous work on IRL: "maximum margin" algorithm of Abbeel and Ng (2004)

• Linearly parametrized rewards: $r_{\theta}(x, a) = \sum_{i=1}^{d} \theta_i \phi_i(x, a)$



Proposition. Assume that the reward function r_{θ} is differentiable w.r.t. θ with uniformly bounded derivatives: $\sup_{(\theta,x,a)\in\mathbb{R}^d\times\mathcal{X}\times\mathcal{A}} \|r'_{\theta}(x,a)\| < +\infty.$ The following statements hold:

(1) Q_{θ}^* is uniformly Lipschitz-continuous as a function of θ in the sense that for any (x,a) pair, $\theta, \theta' \in \mathbb{R}^d$, $|Q_{\theta}^*(x,a) - q_{\theta}^*(x,a)| = 0$ $|Q_{\theta'}^*(x,a)| \leq L' \|\theta - \theta'\|$ with some L' > 0;

(2) Except on a set of measure zero, the gradient, $\nabla_{\theta}Q_{\theta}^*$, is given by the solution of the following fixed-point equation:

> $\Psi_{\theta}(x,a) = (r'_{\theta}(x,a))^T$ $+\gamma \sum_{v \in \mathcal{X}} P(y|x,a) \sum_{b \in \mathcal{A}} \pi(b|y) \psi_{\theta}(y,b),$

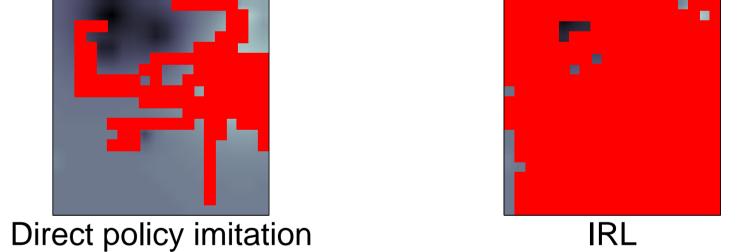
where π is any policy that is greedy with respect to Q_{θ} .

Fixed-point equation analogous to the Bellman-equation:

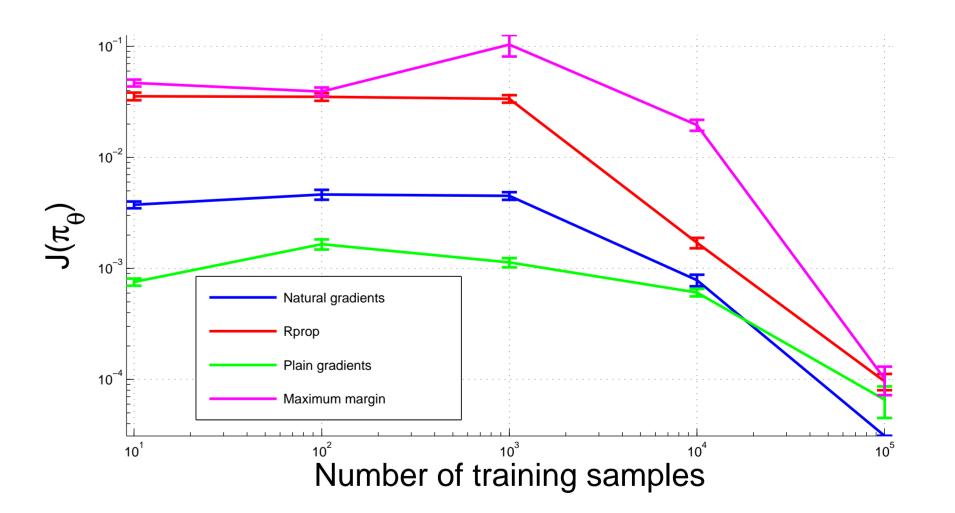
 $r_{\theta}(x,a) \leftrightarrow (r'_{\theta}(x,a))^T, Q_{\theta}(x,a) \leftrightarrow \Psi_{\theta}(x,a)$

 \rightarrow known RL methods can be used to find the derivatives!

ICSC/NC 2000, pages 115–121, 2000.



Performance vs. number of samples (results for the algorithm of Abbeel and Ng (2004) also shown):



	Natural gradients		RPROP		Plain gradients		Max margin	
	Mean	Deviation	Mean	Deviation	Mean	Deviation	Mean	Deviation
Original	0.0051	0.0010	0.0130	0.0134	0.0011	0.0068	0.0473	0.1476
Transformed	0	0	0.0110	0.0076	0.0256	0.0237	0.0702	0.0228
Perturbed	0.0163	0.0165	0.0197	0.0179	0.1377	0.3428	0.2473	0.3007

Reward function

• Aims to match the *feature expectations* of the expert:

$$\psi^{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \phi(X_{t}, A_{t}) \middle| X_{0} \sim D\right],$$

where the trajectory is generated by π and D is some distribution over \mathcal{X}

• Problem: Solution is highly variant to the scaling of the features!

The results are shown for using original features, linearly transformed features and noise-perturbed features, respectively.

References

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In ICML'04, pages 1-8, 2004. ISBN 1-58113-828-5. 2000, pages 663–670, 2000. S. Amari. Natural gradient works efficiently in learning. *Neural Computation*, 10(2): 251-276, 1998. *ICML'06*, pages 729–736, 2006. Christian Igel and Michael Hüsken. Improving the Rprop learning algorithm. In

A.Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In ICML-N.D. Ratliff, J.A. Bagnell, and M. Zinkevich. Maximum margin planning. In