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Algorithm

1: function IRL(MDP\r,φ,πE,T ,µT )
2: θ0← 0
3: for s = 0 to iteration-limit do
4: r← rθs

5: MDP← (MDP\r)∪ r
6: Q∗← find-optimal-Q(MDP)
7: πθs← G(Q∗)
8: for j = 1 to d do
9: MDP← (MDP\r)∪φ j

10: (ψθs) j← find-Q(MDP,πθs)
11: end for
12: ∇J← calculate-grad-J(ψθ,πθ,πE,µT)
13: ∆θ← compute-step(∇J,∇πθs)
14: θs+1← θs−∆θ

15: end for
16: return r

The function compute-step may involve natural gradient
computation or RPROP step size selection (Igel and Hüsken
2000).

Experimental results
Improved generalization capabilities, policy matched on a
great portion of X :

Expert trajectories

Low error region

Direct policy imitation

Low error region

IRL

Performance vs. number of samples (results for the algo-
rithm of Abbeel and Ng (2004) also shown):
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Natural gradients RPROP Plain gradients Max margin
Mean Deviation Mean Deviation Mean Deviation Mean Deviation

Original 0.0051 0.0010 0.0130 0.0134 0.0011 0.0068 0.0473 0.1476
Transformed 0 0 0.0110 0.0076 0.0256 0.0237 0.0702 0.0228
Perturbed 0.0163 0.0165 0.0197 0.0179 0.1377 0.3428 0.2473 0.3007

The results are shown for using original features, linearly transformed features and noise-perturbed features, respec-
tively.

New approach – IRL as an optimization task:

•Choose a parametric family of rewards (rθ)θ∈Θ – not nec-
essarily linear!

•Define a loss function, e.g.

JT(π) = ∑
x∈X ,a∈A

µT(x)(π(a|x)− π̂E,T(a|x))2,

µT : empirical estimate of stationary distribution

• Find θ minimizing JT(πθ)! (πθ optimal for rθ)

The gradient can be computed → natural gradient search
(Amari 1998) can be used to eliminate dependence on the
scaling of the features!

Calculating the Gradients
Need the gradient ∇J(πθ) = J′(πθ)π′θ

•Calculating J′(πθ) is trivial

•Main question: π′
θ
=?

Problem: greedy policies are not differentiable! (because a
“max” function is involved)
Solution: use a smooth mapping G : Q 7→ π

•Boltzmann-policies:

G(Q)(a|x) =
exp[βQ(x,a)]

∑b∈Aexp[βQ(x,b)]

• . . . and their derivatives:

∂πθ

∂θk
(a|x) = πθ(a|x)

∂ ln[πθ(a|x)]
∂θk

= πθ(a|x)β

(
∂Q∗

θ
(x,a)

∂θk
− ∑

b∈A
πθ(b|x)

∂Q∗
θ
(x,b)

∂θk

)
Main result about calculating the subgradient of Q∗

θ
:

Proposition. Assume that the reward function rθ is differ-
entiable w.r.t. θ with uniformly bounded derivatives:
sup(θ,x,a)∈Rd×X×A‖r′θ(x,a)‖ < +∞. The following state-
ments hold:

(1) Q∗
θ

is uniformly Lipschitz-continuous as a function of θ

in the sense that for any (x,a) pair, θ,θ′ ∈Rd, |Q∗
θ
(x,a)−

Q∗
θ′(x,a)| ≤ L′‖θ−θ′‖ with some L′ > 0;

(2) Except on a set of measure zero, the gradient, ∇θQ∗
θ
, is

given by the solution of the following fixed-point equa-
tion:

ψθ(x,a) = (r′θ(x,a))T

+γ∑y∈X P(y|x,a)∑b∈Aπ(b|y)ψθ(y,b),

where π is any policy that is greedy with respect to Qθ.

Fixed-point equation analogous to the Bellman-equation:

rθ(x,a)↔ (r′θ(x,a))T ,Qθ(x,a)↔ ψθ(x,a)

→ known RL methods can be used to find the derivatives!

Apprenticeship learning in MDPs
•Assumption: ∃ expert following an optimal policy πE

• Samples from the expert: (Xt,At)0≤t≤T

•Empirical estimate of πE:

π̂E,T(a|x) =
T

∑
t=0

I{Xt=x,At=a}/
T

∑
t=0

I{Xt=x}

•Goal: find π best maching πE

•Question: how to generalize to unknown states?

•Answer: find the reward function explaining πE,T !

Markovian Decision Problems
MDPs: Making decisions in a stochastic world with a long-
term goal.

• States: X
•Actions: A
•Transitions: P(x′|x,a)
•Rewards: r(x,a)

Policies and value functions
• Policy: π :A×X → [0,1],

∑a∈Aπ(a|x) = 1,∀x ∈ X
• Set of all policies: Π

•Action-values under policy π:

Qπ(x,a) = E

[
∞

∑
t=0

γ
tr(Xt,At)

∣∣∣∣ X0 = x,A0 = a

]
,

where the sequence (Xt,At)t≥0 is generated by π

•Optimal action values: Q∗(x,a) = supπ Qπ(x,a)
•Bellman optimality equation for action values:

Q∗(x,a) = r(x,a)+ γ ∑
y∈X

P(y|x,a)max
b∈A

Q∗(y,b)

•Optimal policy: π∗maximizing Q for all state-action pairs

Inverse reinforcement learning
IRL problem: find r that πE is optimal for! (Ng and Russell
2000)

•Advantage: better generalization

•Difficulty: ill-posed problem

Previous work on IRL: “maximum margin” algorithm of
Abbeel and Ng (2004)

•Linearly parametrized rewards: rθ(x,a) = ∑
d
i=1 θiφi(x,a)

Feature 1 Feature 2 Feature d

Reward function

.........

•Aims to match the feature expectations of the expert:

ψ
π = E

[
∞

∑
t=0

γ
t
φ(Xt,At)

∣∣∣∣X0 ∼ D

]
,

where the trajectory is generated by π and D is some dis-
tribution over X
• Problem: Solution is highly variant to the scaling of the

features!

Gergely Neu∗† Csaba Szepesvári∗‡
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