
References
Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement

learning. In ICML’04, pages 1–8, 2004. ISBN 1-58113-828-5.
S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):

251–276, 1998.
Christian Igel and Michael Hüsken. Improving the Rprop learning algorithm. In

ICSC/NC 2000, pages 115–121, 2000.

A.Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In ICML-
2000, pages 663–670, 2000.

N.D. Ratliff, J.A. Bagnell, and M. Zinkevich. Maximum margin planning. In
ICML’06, pages 729–736, 2006.

Algorithm

1: function IRL(MDP\r,φ,πE,T ,µT)
2: θ0← 0
3: for s = 0 to iteration-limit do
4: r← rθs

5: MDP← (MDP\r)∪ r
6: Q∗← find-optimal-Q(MDP)
7: πθs← G(Q∗)
8: for j = 1 to d do
9: MDP← (MDP\r)∪φ j

10: (ψθs) j← find-Q(MDP,πθs)
11: end for
12: ∇J← calculate-grad-J(ψθ,πθ,πE,µT)
13: ∆θ← compute-step(∇J,∇πθs)
14: θs+1← θs−∆θ

15: end for
16: return r

The function compute-step may involve natural gradient
computation or RPROP step size selection (Igel and Hüsken
2000).

Experimental results
Improved generalization capabilities, policy matched on a
great portion of X :

Expert trajectories

Low error region

Direct policy imitation

Low error region

IRL

Performance vs. number of samples (results for the algo-
rithm of Abbeel and Ng (2004) also shown):

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

Number of training samples

J(
π θ)

Natural gradients

Rprop

Plain gradients

Maximum margin

Natural gradients RPROP Plain gradients Max margin
Mean Deviation Mean Deviation Mean Deviation Mean Deviation

Original 0.0051 0.0010 0.0130 0.0134 0.0011 0.0068 0.0473 0.1476
Transformed 0 0 0.0110 0.0076 0.0256 0.0237 0.0702 0.0228
Perturbed 0.0163 0.0165 0.0197 0.0179 0.1377 0.3428 0.2473 0.3007

The results are shown for using original features, linearly transformed features and noise-perturbed features, respec-
tively.

New approach – IRL as an optimization task:

•Choose a parametric family of rewards (rθ)θ∈Θ – not nec-
essarily linear!

•Define a loss function, e.g.

JT(π) = ∑
x∈X ,a∈A

µT(x)(π(a|x)− π̂E,T(a|x))2,

µT : empirical estimate of stationary distribution

• Find θ minimizing JT(πθ)! (πθ optimal for rθ)

The gradient can be computed → natural gradient search
(Amari 1998) can be used to eliminate dependence on the
scaling of the features!

Calculating the Gradients
Need the gradient ∇J(πθ) = J′(πθ)π′θ

•Calculating J′(πθ) is trivial

•Main question: π′
θ
=?

Problem: greedy policies are not differentiable! (because a
“max” function is involved)
Solution: use a smooth mapping G : Q 7→ π

•Boltzmann-policies:

G(Q)(a|x) =
exp[βQ(x,a)]

∑b∈Aexp[βQ(x,b)]

• . . . and their derivatives:

∂πθ

∂θk
(a|x) = πθ(a|x)

∂ ln[πθ(a|x)]
∂θk

= πθ(a|x)β

(
∂Q∗

θ
(x,a)

∂θk
− ∑

b∈A
πθ(b|x)

∂Q∗
θ
(x,b)

∂θk

)
Main result about calculating the subgradient of Q∗

θ
:

Proposition. Assume that the reward function rθ is differ-
entiable w.r.t. θ with uniformly bounded derivatives:
sup(θ,x,a)∈Rd×X×A‖r′θ(x,a)‖ < +∞. The following state-
ments hold:

(1) Q∗
θ

is uniformly Lipschitz-continuous as a function of θ

in the sense that for any (x,a) pair, θ,θ′ ∈Rd, |Q∗
θ
(x,a)−

Q∗
θ′(x,a)| ≤ L′‖θ−θ′‖ with some L′ > 0;

(2) Except on a set of measure zero, the gradient, ∇θQ∗
θ
, is

given by the solution of the following fixed-point equa-
tion:

ψθ(x,a) = (r′θ(x,a))T

+γ∑y∈X P(y|x,a)∑b∈Aπ(b|y)ψθ(y,b),

where π is any policy that is greedy with respect to Qθ.

Fixed-point equation analogous to the Bellman-equation:

rθ(x,a)↔ (r′θ(x,a))T ,Qθ(x,a)↔ ψθ(x,a)

→ known RL methods can be used to find the derivatives!

Apprenticeship learning in MDPs
•Assumption: ∃ expert following an optimal policy πE

• Samples from the expert: (Xt,At)0≤t≤T

•Empirical estimate of πE:

π̂E,T(a|x) =
T

∑
t=0

I{Xt=x,At=a}/
T

∑
t=0

I{Xt=x}

•Goal: find π best maching πE

•Question: how to generalize to unknown states?

•Answer: find the reward function explaining πE,T !

Markovian Decision Problems
MDPs: Making decisions in a stochastic world with a long-
term goal.

• States: X
•Actions: A
•Transitions: P(x′|x,a)
•Rewards: r(x,a)

Policies and value functions
• Policy: π :A×X → [0,1],

∑a∈Aπ(a|x) = 1,∀x ∈ X
• Set of all policies: Π

•Action-values under policy π:

Qπ(x,a) = E

[
∞

∑
t=0

γ
tr(Xt,At)

∣∣∣∣ X0 = x,A0 = a

]
,

where the sequence (Xt,At)t≥0 is generated by π

•Optimal action values: Q∗(x,a) = supπ Qπ(x,a)
•Bellman optimality equation for action values:

Q∗(x,a) = r(x,a)+ γ ∑
y∈X

P(y|x,a)max
b∈A

Q∗(y,b)

•Optimal policy: π∗maximizing Q for all state-action pairs

Inverse reinforcement learning
IRL problem: find r that πE is optimal for! (Ng and Russell
2000)

•Advantage: better generalization

•Difficulty: ill-posed problem

Previous work on IRL: “maximum margin” algorithm of
Abbeel and Ng (2004)

•Linearly parametrized rewards: rθ(x,a) = ∑
d
i=1 θiφi(x,a)

Feature 1 Feature 2 Feature d

Reward function

.........

•Aims to match the feature expectations of the expert:

ψ
π = E

[
∞

∑
t=0

γ
t
φ(Xt,At)

∣∣∣∣X0 ∼ D

]
,

where the trajectory is generated by π and D is some dis-
tribution over X
• Problem: Solution is highly variant to the scaling of the

features!

Gergely Neu∗† Csaba Szepesvári∗‡
neu.gergely@gmail.com szepesva@cs.ualberta.ca

† Budapest University of Technology and Economics, Hungary ‡ Department of Computing Science, University of Alberta, Canada

∗ Machine Learning Research Group, Computer and Automation Research Institute, Hungarian Academy of Sciences, Hungary

Apprenticeship Learning using Inverse Reinforcement Learning and
Gradient Methods

