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Apprenticeship learning in MDPs

e Assumption: d expert following an optimal policy Ttg
e Samples from the expert: (X;,A;)o</<7

e Empirical estimate of Tg:

T T
7ATE,T(CI\X) — ZH{Xt:x,At:a}/ ZH{Xt:x}
t=0 t=0

e Goal: find 1 best maching 7x
e Question: how to generalize to unknown states?

e Answer: find the reward tfunction explaining 7g 7!

Markovian Decision Problems

MDPs: Making decisions in a stochastic world with a long-
term goal.

e States: X

e Actions: A

e Transitions: P(x'|x,a)

e Rewards: r(x,a)

Policies and value functions

e Policy: m: Ax X — [0,1],
Y eaT(alx) =1,Vxe X
e Set of all policies: I1

e Action-values under policy T

Q"(x,a)=E|Y Yr(X,A)| Xo=x,A0=al,
t=0

where the sequence (X;,A;),>o is generated by T
e Optimal action values: Q*(x,a) = sup,.Q"(x,a)

e Bellman optimality equation for action values:

0" (x,a) = r(x,a) +7 Y. P(v]x,a)max0*(y,b)

yekX
e Optimal policy: T° maximizing Q for all state-action pairs
Inverse reinforcement learning

IRL problem: find r that 7t 1s optimal for! (Ng and Russell
2000)

e Advantage: better generalization

e Difficulty: ill-posed problem

Previous work on IRL: “maximum margin” algorithm of
Abbeel and Ng (2004)

e Linearly parametrized rewards: rg(x,a) = Y2, 0,0;(x,a)
Feature d

Feature 1 Feature 2

Reward function

e A1ms to match the feature expectations of the expert:

Y =E |} YO(X,A)|Xo~D]|.
y

where the trajectory 1s generated by 7 and D 1s some dis-
tribution over X

e Problem: Solution 1s highly variant to the scaling of the
features!
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Gradient Methods

New appr oach - IRL as an optimization task:

e Choose a parametric family of rewards (rg)gce — not nec-
essarily linear!

e Define a loss function, e.g.

Jr(m)= ), wr(x)(n(alx) —fer(alx))?,

xcX,acA
ur: empirical estimate of stationary distribution

e Find 6 minimizing Jr(7g)! (7g optimal for ry)

The gradient can be computed — natural gradient search
(Amar1 1998) can be used to eliminate dependence on the
scaling of the features!

Calculating the Gradients
Need the gradient VJ(mg) = J'(7g) Ty

e Calculating J'(7g) is trivial
e Main question: Ty =?
Problem: greedy policies are not differentiable! (because a

“max’”’ function 1s involved)
Solution: use a smooth mapping G: Q— 7

e Boltzmann-policies:

exp[BO(x,a)]

G(Q)(alx) = Y heAeXp[PO(x, b))

e ... and their derivatives:
dIn|mg(alx)]
00,

004 (x,a
ne(ax)ﬁ( -

Main result about calculating the subgradient of Qj:

871:9

o () = m(al)

d0g(x, D)
) mo(blx) 90, )

be A

Proposition. Assume that the reward function rg is differ-
entiable w.r.t. © with uniformly bounded derivatives:

SUP (g v.a)eRix ¥ x A ITo(X; @) || < 400.  The following state-
ments hold:

(1) Qg is uniformly Lipschitz-continuous as a function of 0
in the sense that for any (x,a) pair, 8,0’ € RY, |Q(x,a) —
Qi (x,a)| < L'||0—0|| with some L' > 0;

(2) Except on a set of measure zero, the gradient, Vg¢Qy, is

given by the solution of the following fixed-point equa-
fion:

We(x,a) — (rle(xv a))T
+YLyex P(ylx,a) Loea™(b]y)We(y, D),
where T is any policy that is greedy with respect to Q.
Fixed-point equation analogous to the Bellman-equation:

re(x,a) N (rle(xaa))TaQe(xva) A We(x,a)

— known RL methods can be used to find the derivatives!
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Algorithm

1: function IRL(MDP\I’, (I), TCE,TMUT)
2: 60 — 0

3. for s = 0 to iteration-limit do

4 I < Fp,

. MDP «— (MDP\r)Ur

e QF « find-optimal-Q(MDP)

7. Ty, < G(Q*)

. for j=1toddo

9: MDP — (MDP\r)U0;

o (Wp,); — find-Q(MDP, T )

1.  end for

122 VJ « calculate-grad-J (g, g, Tg, tir)
13 AB «— compute-step(V.J, Vg )
14: OS_H < GS — AO

15: end for

16: return r

The function compute-step may involve natural gradient

computation or RPROP step size selection (Igel and Hiisken
2000).

Experimental results

Improved generalization capabilities, policy matched on a
great portion of X:

Expert trajectories

Low error region Low error region
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|

Direct policy imitation IRL

Performance vs. number of samples (results for the algo-
rithm of Abbeel and Ng (2004) also shown):
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Natural gradients | RPROP Plain gradients | Max margin

Mean |Deviation Mean  Deviation Mean Deviation Mean Deviation
Original 0.0051 0.0010 1 0.0130 0.0134 | 0.0011/0.0068 0.0473/0.14776
Transformed |0 0 0.01100.0076  10.0256/0.0237 0.07020.0228
Perturbed 0.0163 0.0165 0.0197/0.0179 10.1377/0.3428 0.2473/0.3007

The results are shown for using original features, linearly transformed features and noise-perturbed features, respec-

tively.
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