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Abstract

We consider a stochastic extension of the shortest patHgmnolith adversarial rewards. In this
episodic Markov decision problem the agent traverses tiir@n acyclic graph with random tran-
sitions: at each step of an episode the agent chooses an,aetieives some reward, and arrives
at a random next state, where the reward and the distribofitine next state depends on the ac-
tual state and the chosen action. We consider the banditisittwhen only the reward of the just
visited state-action pair is revealed to the agent. Forgioblem we develop algorithms that per-
form asymptotically as well as the best stationary polichimdsight. Assuming that all states are
reachable with probabilityy > 0 under all policies, we give an algorithm and prove that itgeé

is O(L?,/T|A|/«), whereT is the number of episodes| denotes the (finite) set of actions, and
L is the length of the longest path in the graph. Variants oftgerithm are given that improve the
dependence on the transition probabilities under spedifiditions. The results are also extended
to variations of the problem, including the case when we aamprith time varying policies.

1 Introduction

Consider the problem of controlling an inventory so as to imé&e the revenue. This is an optimal control
problem, where the state of the controlled system is thekstbe action is the amount of stock ordered.
The evolution of the stock is also influenced by the demandghwis assumed to be stochastic. Further,
the revenue depends on the prices at which products are bandfsold. In this example the dynamics of
one component of the controlled system (the evolution dflgtes well understood, while another part (the
process generating the prices) can only be poorly modeteatidition, the poorly known part is uncontrolled
and its state is unobserved (i.e., this part evolves autonsiy) and it influences the rewards only, while the
state of the controlled part is available for measuremehis 3ituation is shown in Figure 1.

If the uncontrolled part is hard to model, a better approaihthbe to solve the following robust control
problem: Choose a sufficiently large class of controlleet thas the property that no matter how the state
of the uncontrolled part evolves, the class contains somérater that performs well. Then, design an
algorithm that is able to perform almost as well as the bestrotier in the chosen class selected based on
hindsight.

This problem formulation shares many similarities with Huecalled expert framework, where the task
is to find an algorithm that can predict (almost) as well ashibst amongst a fixed set of experts in an ar-
bitrary prediction environment (cf. Chapter 2 of Cesa-Blarand Lugosi, 2006 and the references therein).
However, the control problem is made more complicated byabethat one must take into account that the
decisions of the controller influence future states and #srs future rewards. This, in fact, has two conse-
guences: Firstly, in order to perform well, the controllarshplan ahead in time. That is, the controller must
address the usual temporal credit assignment problem. iFhisually done by resorting to some form of
(approximate) dynamic programming to maintain computetiefficiency (Bertsekas and Tsitsiklis, 1996;
Sutton and Barto, 1998). Secondly, the controller must atiidress the exploration-exploitation problem
which arises because only the rewards associated withateeattion pairs visited are available for measure-
ment. This is again made difficult by the fact that in ordereaable to explore an action in a given state, the
state must first be visited, which requires some planning.

In this paper we consider a special case of this general gmgblvhich we callthe online, loop-free
stochastic shortest-path (Online SSP, O-SSP) probl€éhis problem is a generalization of two previously



Figure 1: lllustration of the general problem
whose special case is studied in the paper: The
Uncontrolled controlled system has two components. One
e component, whose state is controlled and observ-
l able and is perfectly known, while the other com-
v ponent is unknown and uncontrolled. The sec-
function ond component influences the rewards received
and the rewards represent the only source of in-
formation about this component. When the un-
oot controlled part has a complex dynamics and/or a
complex state, its identification is hopeless and

one might be better off with implementing a ro-
bust optimal control strategy, such as the one de-

scribed in this paper.
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considered problems: it is an online extension of the (lfrep-version of the) stochastic shortest-path prob-
lem (Bertsekas and Tsitsiklis, 1996) and a stochastic eidarof the online shortest path problem @Byy

et al., 2007). The problem is defined as follows: The corgtbtlynamics is stochastic. It is assumed that
the number of states and actions is finite. There is a digghgd initial state and terminal state amongst the
states and the state space has the structure of a layerdd grapction chosen at some state of some layer
of the graph leads to another state in the next layer. Whereth@rtal state is reached, a new episode starts:
the state of the system is reset to the initial state. At tineestime, a new reward function is chosen (since
no state is visited twice, there is no reason to change thardefunction before the end of an episode). Note
that only the reward of the last state-action pair is maddahla to the algorithm, that is, we consider the
so-calledbandit setting The class of controllers that our algorithm must competé vgi selected to be the
class of state-feedback policies, that is, policies thigcs@ctions according to the actual state, or the class
of policies which switch between such state-feedback @slic

Clearly, the inventory management problem mentioned ké&fmd falls into this class of problem pro-
vided that we restrict our attention to its finite horizonigat when the stocks, orders and demand are
measured in discrete units, the size of the inventory igdichto lie between a maximum size and zero (ex-
cess demands are lost) and where the demands are indepedeletitally distributed random variables. The
O-SSP setup is also particularly suited to address the gamobf robust adaptive routing in virtual networks
over some (possibly wireless) base network with a fixed ngusitrategy. Other examples include machine
maintenance, asset pricing, or production planning. Ireganour framework captures operations research
problems, where the control objective involves componeshiish depend on some exogenously developing,
hard to model prices.

The main results of this paper are as follows: Assuming thattates are reachable with probability
a > 0 under all policies, we give an algorithm and prove that itreeis O(L?/T|.A|/«), whereL is
the number of layers]" is the number of episodes andl denotes the (finite) set of actions (Theorem 4).
Although the number of states in a given layer does not shoin tipe bound, the bound shows a scaling
that is at least linear with the number states simee; <;<1, |4)| < 1/a, where|A;| is the number of states
in the I-th layer. We also give a variant of this result that shows ssjiidy improved dependence on the
transition probabilities (sinca can be exponentially small in the size of the number of syaféis result
is given in Theorem 5. The results are also extended to canwigh time-varying policies in Theorem 8.

A nice property of the algorithms proposed is that they uselltalgorithms developed for the prediction
(stateless) setting, the only requirement for the bandjbrithm being that it should return a probability
distribution over the actions. Hence, our algorithm can enake of specially tailored, improved bandit
algorithms, for example, algorithms with adaptive tunihgttmay achieve better performance (and bounds)
when the best action has very large gains (Auer et al., 208@24dyorithms with improved performance when
manyactions have relatively good performance (Exercise 2.6asBcBianchi and Lugosi 2006). Specifically,
when theExp3 algorithm of Auer et al. (2002a) is used, the dependence cam be improved t(D(l/\ﬂa)
(Theorem 6). Finally, in this special case, under the lessgent assumption that for every state there is
some policy that reaches the state with positive probghilé give an algorithm whose expected regret per
step vanishes over time (Theorem 7).

How do our results compare to those in earlier works in thénerlearning literature? As noted earlier,
our work can be viewed as a stochastic extension of worksdbragidered online shortest path problems
in deterministic settings. Here, the closest to our ideaksagorithm is the paper by @ygy et al. (2007).
One major difference between the algorithms is that ourrédtgu is based on direct estimates of tiatal
reward to go in every state-action pair, whereas the algorivf Gyorgy et al. (2007) estimates the reward



to go via estimating thenmediaterewards. Compared to the bound indgy et al. (2007), our bounds are
slightly larger (and thus weaker). In earlier work, Awerbuwnd Kleinberg (2004) gave af\(T2/3) regret
bound, while McMahan and Blum (2004) gave@(I'®/*) bound, building upon the exponentially weighted
average forecaster and, respectively, the follow the peetlileader algorithm, both under the assumption
that the only information received is the total reward atehe of the episodes. More recently, Dani et al.
(2008) proposed a generalizationE¥p3 due to Auer et al. (1995), which can be applied to this settimd
which gives an expected regret 6| X |*/2T'/?), where|X| is the size of the state space. More recently,
Bartlett et al. (2008) showed that the algorithm can be edrso that the bound holds with high probability.
We note in passing that Dani et al. (2008) suggest that thggrithm can be implemented efficiently for the
MDP setting. However, this is not clear at all: Although, ceptually, the algorithm can be applied to our
case, when policies are represented through the diswitmithat they induce over the state space, but this
does not seem to lead to an algorithm that can be implemented.

Another thread of work that is closely related to ours comsidhlgorithms for learning and acting in
Markovian decision processes (MDPs) with arbitrary rewssrguences. In fact, clearly, our framework is a
special case of this more general framework. The first woak ¢tonsidered this setting is due to Even-Dar
et al. (2005, 2009). In this work the restriction on the MDRhat it must beunichain (i.e., all stationary
policies must generate a unique stationary distributiol) iais assumed that the worst mixing time,over
all policies is uniformly small (the mixing time appears hetbounds). This is similar to our assumption of
the MDP being episodic, with all policies terminating aftesteps (though strictly speaking, their assumption
does not hold true in our setting). However, the major déffexe between our work and that of Even-Dar et al.
(2005, 2009) is that they assume that the reward functiamlisdbservable, whereas we consider the bandit
setting. They propose an algorithm, MDP-E, which is veryilsinto ours in that it uses some (optimized)
expert algorithm in every state which is fed with the acti@hdes of the policy used in the last round (which,
in our case, corresponds to the total reward to go). Theygmdxound on the expected regret of this algorithm

of the formO(72,/T log | A]). The improved dependence on the action set (as compared boond stated
above) is the result of the assumption that the reward fonds available at every step and not only the
reward of the last state-action pair visited, otherwisddthend shows a dependence somewhat similar to ours
in the main quantities. We actually prove a similar boundoiarproblem, just to fix some ideas, in Section 4.

More recently, Yu et al. (2009) proposed algorithms for thme (full information) problem and proved
a bound on the expected regret of ord¥i(r + |A| + |X|) 7| A|2T3/4+< log T') for arbitrarye € (0,1/3).2
The algorithm proposed (“Lazy FPL”) works with phases ofgnmn!/3—< and changes policies only at the
end of the phases. At the end of a phase the optimal (diffi@temtlue function corresponding to the sum
of past reward functions is first found. Within the phase,ab#on to be followed at some time step is then
selected as the one that maximizes the one-step lookahtail zue computed with this value function but
with the immediate rewards perturbed randomly in an apjmanner. The advantage of this algorithm
to that of Even-Dar et al. (2009) is that it is computatiopddiss expensive, which, however, comes at the
price of an increased bound on the regret. Yu et al. (2008)doiced another algorithm (“Q-FPL”) which is
shown to enjoy a vanishing regret over time (i.e., the atgoriis Hannan consistent). The major advance,
however, is that, for the first time, Yu et al. (2009) propoaadilgorithm (“Exploratory FPL") to address the
problem of learning in the bandit setting. This algorithrtiraates the immediate rewards by appropriately
weighting the rewards received and in a phase either useifoaimaty exploring policy or that of underlying
their Lazy FPL algorithm. They prove that the regret of thgoathm vanishes almost surely.

Yu and Mannor (2009a,b) considered the problem of on-lineni@g in MDPs where the transition prob-
abilities may also change arbitrarily after each transiti@his problem is significantly more difficult than
the case where only the reward function is changed arbjtré¢cordingly, the algorithms proposed in these
papers fail to achieve consistency. Yu and Mannor (200%D ebnsidered the case when rewards are only
observed along the trajectory traversed by the agent. Henavcloser investigation reveals that their result
(Theorem IV.1) is incorrect: If the state space consistsndf a single state, the problem becomes identical
to the non-stochastic multi-armed bandit problem. Themiit be shown easily that the obtained bound on
the expected regret 8(+/log |A|T'), which contradicts the knowf(+/|.4|T") lower bound on the regret for
such problems.

1The notion of mixing time in this paper is somewhat, but not essentially diff¢han that of used by Even-Dar et al.
(2005, 2009).

2To show this contradiction, one has to replace, in the bound of TheordrofYu and Mannor (2009b), the condition
T > N with an extra®(1/T) term, and then let andd converge to zero at appropriate rates.



2 Problem definition

Formally, a Markovian Decision Process (MDR)is defined by a state spagg an action se#, a transition
functionP : X x A x X — [0,1], and a reward function : X x A — [0,1]. In time stepk, knowing
the stater;,, € X, a decision maker (or agent) acting in the MDP, chooses an actiom, € A(x) where
A(xz) C Alis the set of admissible actions at stateAs a result the process moves to state; € X’ with
probability P(x 1|2, ax) and the decision maker receives rewafdy, a;) (this implies that forany: € X
anda € A(z), P(-|z,a) defines a probability distribution ove¥). The goal of the agent is to maximize its
average reward. In an episodic MDP there is a terminal stageX: if this state is reached, the episode is
ended and the whole process starts again with a designaititigistate. For a more detailed introduction
the reader is referred to, for example, Puterman (1994).

The loop-free stochastic shortest path (SSP) problem ieeaiapcase of episodic MDPs. Informally,
given an acyclic directed graph an agent has to traversatextig over paths between two given vertices of
the graph. At each vertex the agent makes a decision, and badee decision it follows a random edge of
the graph to the next vertex and receives some reward. Theftba agent is to maximize its average reward
received over the paths. More formally, we consider MDPsre/tige state spack consists of layers, that is,
X = UZLZOXl, whered] is called thdth layer of the state space aAgin X, = () for all [ # k. The first and
last layers are singleton layers, thats, = {z} andX;, = {z1.}. The significance of the layers is given by
the fact that the state of the agent can only move betweerecotige layers, that is, in each episode the agent
starts at layef, and at time instaritit is at layer! until it reaches the terminal statg,. This assumption is
equivalent to assuming that each path in the graph is of égogth, and is reflected by the special structure
of the transition function: for any; € &; anda € A(x;), P(z14 1|z, a;) = 0if 2141 & X;41.% For any state
x € X we will usel,, to denote the index of the layerbelongs to, thatid,, = [ if x € A].

In this paper we consider the online version of the loop-8& problem, in which case the reward
function is allowed to change between episodes, that itgansof a single reward function we are given
a sequence of rewards; } describing the rewards at episodthat is assumed to be an individual sequence
fixed in advanc that is, no statistical assumption is made about the revadrobs. Note that the constraint
thatr; depends only on the current state and action is assumedamgynfiplicity: the results of the paper
can easily be extended to the situation wheris allowed to depend on the next state as well (i.e., when the
reward function is of the form, (x;, a;, z;11).

A stochastic stationary policy (or, in short: a policy) is appingr : A x X — [0, 1], wherer(a|z) =
m(a,x) is the probability of taking actiom in statexz. Theinstantaneous value functicand action-value
functionwith respect tar at episode are defined, respectively, as

L—1
vy () =E Z re(Xp, ag)|x; = wl]
k=l
L-1
q; (v, 01) = re(Xp, ar) X = 21, @ :al] ;
k=1,
where the sequende, ao), (x1,a1), ..., (xr—1,ar—1) iS generated by the policy and the MDP, and the

expectations are taken with respectitand the transition functio®. These values are equivalently defined
by the Bellman equations:

a7 (z,0) = ro(x,a) + ) P('|e,a)of (2')

1)
vi(z) =Y 7(al)qf (x,a),

a

with o7 (2, ) = 0. Thecumulative action-valuandcumulative value functiorare defined, respectively, as

t t
Q=) qf and V=1 ol
s=1 s=1

Each policy generates a probability distributien over each layed’;, [ = 0,1,..., L, that s,
wr(zy) = Plx; = 27|x0 = xo]-

3Note that all loop-free state spaces can be transformed to one thaesatisfiassumptions. A simple transformation
algorithm is given in Appendix A of Ggrgy et al. (2007).
“That is, we assume that we are dealing with a so called oblivious opponent.



The distributionu,, can be computed recursively as

pe(w) = Y Py, a)m(a |z ) pe (1), 2)
Tp—1,a1—1
forl =1,2,..., L, with u.(z¢) = 1. Theexpected returrof a fixed policyr for a time horizonl” > 0 is
defined ask}. = Zthl vy = V. The return of the best policy in hindsight is given by
T

R} = supz vy (zg) = = sup VI (x0).
Tot=1

It is known that there exists a stationary and deterministiicy =7, that achieves the above maximum
(Puterman, 1994, Theorem 4.4.2), and so we camuseinstead ofup in the above equation. By a slight
abuse of the notation we will usel.(x) to denote the action for which¥.(a|x) # 0. The state distribution
generated by the optimal policy will be denotedgs=

Our goal is to construct a sequential decision algonthner(na)gthat asymptotically achieves the above
return averaged over the episodes. The decision algoritaynfollow a different policyr; at each episode
t =1,2,...,T. This policy may be random, as it may depend on the previ@aiesthe agent visited and
the previous rewards it received. The random path travdrgdke agent at episodewill be denoted by

uy = {xgt),aé),xgt),agt),... X(;) 1,3(;) I,X(g)},

and the path history up to episotlby
Ut == {u17u23"'7ut}a

forallt = 1,2,...,T with Uy = (. Note thatU, covers all the randomness in the problem (including the
random transitions and the possible randomness in the’agecisions). Thus,

m(alr) =Pla=a|x =z, Us_4].

The value function and the action-value function of poligyare given, respectively, by

L-1
vi(z)) = Eert(xk,ak)

k=ly

X = 7y, Ut—l]

L—-1
iz, a) = E[Zn(xk,ak)

X =1x,8 = al,Ut1‘|
k=1,

where the sequende, ap), (x1,a1), ..., (xr—1,ar_1) IS generated by the policy; (that is fully deter-
mined byU,_;). We will also useQ; = >.'_, q. andV, = 3'_, v,. The state distribution generated by

7 is denoted byu; = iy, , Wherepr, () = Plx € u|U;—4].
The expected return accumulated by the agent in thelfiegtisodes is

T

Ry = ;E [vVi(zo)] = E[Vr(zo)],

and its relative loss with respect to the best fixed potigyin hindsight, calledegret, is defined as
Ly = Ry — Ry = V(o) — E[V(x0)] .

The following lemma will be a key to our main results. Notetthaimilar argument is used by Even-Dar
et al. (2009) to prove their main result about online leagrimunichain MDPs in the full information case
(cf. Lemma 4.1). The benefit of this lemma is that the probléimounding the regret is essentially reduced
to the problem of bounding the difference between actidnesof the policy followed by the agent

Lemma 1 For any time horizori” > 0, let the state distribution generated by the optimal poligy be
denoted by}, and define

Vi (@) = E[Qr(z, 77())] -
Then
Vr(zo) = E[Vr(zo)] Z > (e (Vi (@) =B [V (z)]).

=0 ;€A



Proof:
Vi (z0) — E[Vr(20)] = V(o) — Vi (o) + V3t (20) — E [Vir(ap)]
= Q7 (0, 77 (%0)) — E[Qr (20, 77 (0))] + Vi (20) — E [V ()]
= Y Plailzo, mp(x0)) (Vi (x1) — E[Vr(1)] ) +Vi (20) — E [V ()]

T1€X]

L—-1
=30 e (Vi (@) —E [V (@)]) -

1=0 2;€X]

3 Sequential prediction with expert advice

A widely studied special case of our setting where the sfaeesconsists of a single state is called sequential
prediction with expert advice (Cesa-Bianchi and LugosQ®&)0 In this context, actions are usually referred
to asexperts and several algorithms have been developed that solvedhg wariants of the problem. Such
algorithmsE satisfy a regret bound of the form

Ly < pp(T, A) ®)

wherepy (T, A) is a sublinear function of, and sdimy_,., L /T — 0. Furthermore, we assume through-
out the paper thatz (T, A) is a nondecreasing function @f and|.A|. As usually the regret scales linearly
with the range of the rewards, it is assumed aboverthat[0, 1]. In the course of solving our O-SSP problem
we are going to use such algorithms as basic building blddksée that depending on the actual form of the
algorithm, E' may be universal in the sense that (3) is satisfied foF alivhile several algorithms requife-
dependent parameter settings. On the other hand, thesedaeatan be changed to be universal (sometimes
at the price of slightly deteriorating the bounds) with eithdaptively changing the parameters or simply by
resorting to the doubling trick.

The type of the sequential decision problem is usually ffiagsbased on the amount of information
available to the decision maker, the set of the referencerexpnd the way the rewards are generated. In the
basic setup, known as the case ofthtivious opponenthe reward functions;, o, . . . are fixed in advance,
while in the more generalon-oblivioussetup the rewards may depend on any quantity that is detedmin
before round. In the latter case, formally we have = r,(U;_1).

Luckily, the following lemma, which can be obtained as a sgemase of a slight generalization of the
first part of Lemma 4.1 of Cesa-Bianchi and Lugosi (2006)wshthat algorithms that work in the oblivious
case also work in the non-oblivious setting:

Lemma 2 Consider a randomized algorithid such that, for every = 1,2, ..., T, m; is fully determined by
the historyU,_; and the reward sequeneaeg, ro, ..., r;_;. Assume that the regret of the algorithm satisfies
(3) in the oblivious case. Theg) also holds in the non-oblivious case.

Note that the regret in the non-oblivious case is still defi@s max,c 4 Zthl (ri(a) —ri(ag)), where
ry,ro,...,rr - A — R are the reward functions that are obtained as a result avollg £/ and a; is
the action taken by~ at time step. In particular, this definition does not take into accoust tthe sequence
of reward functions would be different if actianwas followed from the beginning. Although this makes, in
general, questionable the meaningfulness of this regfatitiien, in our case this regret definition will still
be just good enough.

In the full information case the decision maker is informed about the rewards ottdires at the end of
each episode; while in tHeandit settingonly the reward of the chosen action is revealed.ofitimized best
expert algorithmin the full information case is an algorithm that attains apezted regret o® (/7T log | A]),
and similarly, aroptimized.A|-armed bandit algorithnis one that attains an expected regretgh/T'|.Al).
Optimized best expert algorithms include tieponentially weighted average forecastEiWA) (a variant
of Littlestone and Warmuth’s (1994) weighted majority aifum, and Vovk’s (1990) aggregating strategies,
also known as Hedge (Freund and Schapire, 1997)) antbtlesv the perturbed leade¢FPL) algorithm
(Kalai and Vempala, 2003). There exist a number of algorittar the bandit case that attain regrets of
O(/T|A|log|Al), such asExp3 by Auer et al. (2002a) anGreen by Allenberg et al. (2006), while the

algorithm presented by Audibert and Bubeck (2009) achigwvesptimal rate)(/T'|.A|).



4  Full information O-SSP

In this section we give an algorithm and a very short proof tmnds the algorithm’s regret in the full
information case. The purpose is mainly to fix some ideaswvtiiabe useful later on.

In the full information case the reward functiopis completely revealed after each epised&Ve will
use the value functions of the agent’s policy at each epistaleonstruct the policy in the next round. Note
that as we can exactly compute these value functions, theeseq of the agent’s policies does not depend
on previous decisions, that is, the policies and the valuetfons are fully determined by the algorithm.
Algorithm 1 uses an arbitrary (optimized) best expert atgor £ in each state: to predict the actions to
be taken at that state based on previous valueg(of -). (Thus, the algorithm is essentially the same as the
MDP-E algorithm of Even-Dar et al. 2009.)

Algorithm 1 Algorithm for the full information O-SSP.

1. Initialize an expert algorithn’(x), an instance of algorithr, for all statesc € X.
2. Fort=1,2,...,T, repeat

(a) Forallx € X and alla € A, letr,(a|x) be the probability that algorithrv(z:) chooses action.
(b) Traverse a path; following the policyr;.

(c) Observe the reward functiom.

(d) Computey; using the Bellman equations (1) fey andr;.

(e) For all states € X, feed the algorithnE (z) with g.(z, -).

In order to understand how the algorithm works, considerestired stater. By definition, ;1 (:|z) is
the distribution computed by the expert algorittif{:) when used on a discrete prediction problem with the
“reward sequencef (z, -), ¢2(x, -), . .. and action se#d(x). Sinceg,(z, -) depends om,, which depends on
the past rewards, the prediction problem is modeled as otiengh-oblivious opponents. The cumulative
expectedeward of the algorithm up to episo&is V(z) and the reward of a constant actiors Q1 (z, a).
Let E be a best expert algorithm with regret boung(7', A). By Lemma 2, for any action at stater, we
get

Qr(z,a) = Vr(z) < (L = l)pe(T, A),

where we used tha@t < ¢ (z,a) < L — l,.. Since in this cas€ is non-randomy! (z) = Qr(z, w4 (x))
and thus

Vi(z) = Vr(a) < (L —1)pp(T, A). (4)

Based on this bound and Lemma 1, we immediately obtain a imeafoce bound on this algorithm for our
original problem:

Proposition 3 Let E be an expert algorithm with regret boupg; (', A). Then the regret of Algorithm 1 can
be bounded as
L(L+1)

Ly < 5

PE (Tv A)
Remark: Applying EWA with (time-horizon dependent) optimized paweters as the expert algorithA)
the above bound becontes

L(L+1) [Tlog|A|

Lr < .
=" 2

Proof: By Lemma 1, we have

L—1
L= " pile) (Vi (1) — E[Vr(a)]) -

=0 ;€A

Using (4) to bound the terms on the right hand side yields #séreld bound. |

5See Theorem 2.2 in Cesa-Bianchi and Lugosi (2006).



5 Bandit O-SSP

In the bandit case, the rewards are only observed on the ffaththe agent traverses at each episode
this section we give an algorithm and analyze its perforradacthis case.
First, we define conditionally unbiased estimateg0éndv; givenU,_; as follows:

it (0al) 0.
Az, a) = i (ar|z) pe (1) it (21, 1) = (Xl & )’ (5)
0 otherwise.
Vi(z) = Zﬂt(a|$l)(it($l»a) . (6)

Indeed, it is easy to check th&{q;(z, a)|U;—1] = qi(z,a) andE[V(z)|U;—1] = v¢(z). Note that the
estimatesy, andv; can only be computed after the end of episod&Ve will also use the following key
property of this estimate:

qi(z,a) — vi(x)
me() ' )

Similarly to the full information case, Algorithm 2 given lbe employs an.A(z)|-armed bandit algo-
rithm B in each state: to choose actions using the observations from the previatisphat include:. The
only assumption that we make abdgiis that it works with unbiased estimates of the rewards ofdha (5),
and its regret scales linearly with the range of the rewakitge that algorithms liké&xp3 can be redefined
to receive unbiased estimates of this form instead of theahctwards. In the following, we use all bandit
algorithms with these updates.

E[élt(% a) — ‘A’t(x)UIIGUNUt*l] = Licu,

Algorithm 2 Algorithm for the bandit O-SSP.

1. Initialize an|.A(x)|-armed bandit algorithn®(x), an instance oB, for all statest € X'.
2. Fort=1,2,...,T, repeat

(a) Forallz € X and alla € A, letw,(a|z) be the probability that algorithr®(«) chooses action.
(b) Computeu,(x) for all z € X using (2) recursively.
(c) Traverse a path, following the policy;.

(d) Observe rewards (u;) = {rt (xét), aé”) pees Tt (X(Lt),l, a(Lt),l) }

(e) Construct estimatef using equation (5).
(f) For all statesc € X, feed the algorithnB(x) with q;(z, -)

Theorem 4 Let B be an multi-armed bandit algorithm with regret boupd(T', A). Assume that there exists
somea > 0 for which i (x) > « holds for allz € X and all stationary policiesr. Then the regret of
Algorithm 2 can be bounded as

L(L+1)

Ly <
= 2c

PB (Ta A)

Remark: For example, using the algorithm of Audibert and Bubeck @Q0Qith appropriate parameters as
the base bandit algorithi yields

- 15L(L+1
< %,/T\AL
«
Also note that the conditions of the proposition are satisfifor example,

min P(2'|z,a) > 0.
mEXI,aG.A,x’EXH],lGl:L—l
In fact, our assumption af being positive is closely related to the uniform mixing amgption used generally
in the literature considering online learning in MDPs.
Proof: The set of episodes when statas visited will be denoted b\, = {1 <¢<T |z € w;}. By
Lemma 1, we have

L-1
Ly = Z Z () [Vi (1) = E[Vr ()] - ®

=0 z;€X);



On the other hand, we have, for any fixed

Vi@) ~E[Ve(@)] = E|YE [qtu,w;(x))—vt(m\uuﬂ
T .
= S Elaie (@) — vila)]. ©)

Therefore, by (7) we obtain

Vi (z) = E[Vr(2)]

|
=

> e, 7 (@) - {’t(x)]

— B[y e [a ) - u@ Hzequ“H

S .
- E Zﬂxeutqt(me(x))_vt(x)]

Mt(ﬂﬁ)
e ale (@) — i)
- K t;f S ] . (10)

As for everyz we are using an independest(z)|-armed bandit algorithm® with regret boungh 5 (T', A(x))
that is fed with valuesy; (x, -) which are conditionally unbiased estimates of values teiry to[0, (L —
l)/ ], by Lemma 2 we have the following for any fixed

(L = l2)pp(T, A(z)) < —(L = l:)pB(T, A).

Q| =
QI+

qi(z,a) — ve(x)
g t;ﬁ He () =

Combining this bound with (8)-(10) finishes the proof. |

A problem with the above theorem is that the bound scales With but in certain casea can be
exponentially small. On the other hand, if the minimal ptaibgy of visiting a state is exponentially small
then the maximal probability of visiting the same state mfigrobe also exponentially small (clearly this is
the case in the grid-world example considered in the siriwuiatin Section 6, see Figure 2). The following
theorem can be very useful in these situations.

Theorem 5 Let B be a multi-armed bandit algorithm with regret boupg (7, .A), and define

a(a) = minjir(a) and B(z) = max g (z).

Assume that = max,cx 58 < oo. Then the regret of Algorithm 2 can be bounded as
Ly <k L|X|ps(T, A).

Proof: Following the proof of Theorem 4 we obtain, for ahy

Y (Vi @) ~EVr@)) = Y e | Y2 @il Zvitz

T €EX) €A teTy,, “t(xl)
1
< L— T
<X Bl o (L= Den (T A
T EX)
< |Xi|kLps(T, A).
Summing up for all finishes the proof. |

In particular, if we useExp3 (as described in Section 6.8 of Cesa-Bianchi and Lugosi p@6@he
bandit algorithmB, we can prove regret bounds that have slightly better degreaedom. The proof of the
results, given in the following theorem, follows closelg ttherivation of the original regret bound of thgp3
algorithm (Auer et al., 2002a) and will be given in detailamextended version of this paper.



Theorem 6 Assume that the conditions of Theorem 4 hold and the barghiti#thm B is theExp3 algorithm
with parameters) < v < 1and0 < n < \Al((ziv—lr) Then, if Algorithm 2 is used, for each statec X we

have

In | A
+ =4

Ly
BlQr(r.0) - Vo) < (14 (e~ 205 21A)) (L~ )T
An optimal choice ofy andn yields the following bound on the regret:

L(L+1) [TIA[In|Al(e —2)
=

Ly <

(%

Furthermore, lets’ = max,cx 2 < co wherea(z) and 3(x) are defined in Theorem 5. Then

o()
Lp < K L|X|\/T) Al In Al (e — 2).

In the above results we used the assumption that any statippcy induces a distribution that visits each
state with positive probability. However, this assumptioay be too restrictive in many situations. If we only
require that each state is reachable with positive proiafor an adequately chosen policy, then usibgp3

in our algorithm with differenty at each layer yields a consistent strategy with sublinegaetealthough the
convergence rate becomes very slow.

Theorem 7 Let
DPmin = min P(2|z,a)
T€X,a€A,x' €Xyy1,1<I<L—1,P(z'|x,a)>0
and assume that for each statehere is a policyr such thatu, (z) > 0. If Algorithm 2 is run with théexp3

—1— -1 . .
algorithm with parameters; = 72 o andy, = HiTh(ﬁlL“f?f/ IAD for each stater; € A}, then

- L(L+1 L+l —L-
Ljr < HEED - ) <(e1)+“4| - H|A>T2 o
Prin

Proof: For any! our assumptions implys;(z;) > Hﬁ;é(pmin%—/w). Therefore, similarly to the first
statement of Theorem 6, for allanda we have

E[Qr(z,a) = Vr(z)] < <%m L le—2m, (L - lz)|A|> (L—1)T + In|Al

15 (pmini /| A)) ”
— la+1 o
(L—1)(e—1)+ (L lx)\ﬁll In A\ o
pnﬁin
by straightforward calculations. Summing up the above fdanfor/, = 0,..., L — 1 proves the proposition
by Lemma 1. i«

So far the regret of our algorithm was measured relative édoikst fixed policy. On the other hand, in
our motivating examples it may be the case that the bestypolianges over time, and hence it is natural
to compare our performance to the best time varying poli®tny.;r = (w1, m,...,mr) be a sequence of
policies, and letRr(m1.7) denote the expected return, affeepisodes, of the algorithm that applies policy
7 at episode. Our goal is to minimize the expected loBs (71.7) — Ry relative tomy ..

Clearly, it is not possible to provide a uniform bound on tloiss, as, in general, it is harder to achieve
the performance of an algorithm that changes the employkdypoore often (the extreme situation is when
the policy changes in each time instant). In the followingwik give an algorithm that bounds the tracking
regret with the help of the complexity af.7 that can be defined as

Clmr) =1+ {t:m #m41,1 <t <T -1}

That isC(m1.7) is the number of times the employed policy changes betweeseouitive episodes.

While this problem seems much harder than the ones consiflefetke, the tracking algorithms for the
prediction framework help us solve this problem. Severgbathms are known for the full information
case with vanishing tracking regret under various conditiand with different rewards, see, for example,
Willems (1996); Helmbold and Warmuth (1998); Shamir and Iher(1999); Vovk (1999); Girgy et al.
(2008). These methods can be extended to the bandit casdlasege for example, Auer et al. (2002a).
Assume that we have an algorithBil" for the bandit sequential prediction problem (that is, wtteere is
only one state) that satisfies, for every policy sequence,

Ry(m.r) — Ry < ppr(T, A, C(m1.7)) (11)



with some functiorppr (T, A, C(71.7)) that is a nondecreasing function’Bf A, andC(71.7). Then using
such an algorithm as the expert algoritiBnin Algorithm 2 solves the tracking problem in the following
sense.

Theorem 8 Assume thaBBT is a multi-armed bandit algorithm that satisfies the regretibd (11). If ,
defined in Theorem 5, is finite and Algorithm 2 is used with #redit algorithm BT, then the regret relative
to any fixed sequence of policies can be bounded as

Ry (my.r) — Ry < kL|X|ppr(T, A, C(m1.7)).

Remark: In particular, if theExp3.Salgorithm of Auer et al. (2002a) is used, thefifs known in advance
and is used optimally in setting the parameters of the dlgoriwe obtain

Ry(mir) — Ry < KL|X| ( ) VAT In(JA|T) + 2¢ J|4VL|1TT)>

Furthermore, if a bound' on the complexity ofr;.1 is known in advance (this is useful, if the complexity of
the optimalr,.r is bounded), then using this value in setting the paramefdfgp3.S we obtain

Ry(mir) — Ry < kL|X|Ve — 1/|AT(Cn(JA|T) + e).

Proof: A simple generalization of Lemma 1 yields

Ry (my.1) — Rr = VT (zo) — E[Vr(zo)] ZU E[Vr(zo)]

= Z > Z“t 2)E [ae (@, mi(20)) — vi(@)]

=0 z;€X; t=1
Now we have, for any, similarly to (9),
E [qi(z, m(z)) — vi(2)] = E[q(z, m(z)) — ve(2)].
Therefore, similarly to (10), we obtain

Zut E [qu (e, m1(2)) — va(e)] = Zut |:qt x, m(:r)(l)— Vi@ )]

K

IN

Qi (z, m(2)) — vi(z)
)

{€T, pe(z

Finally, (11) and Lemma 2 yields, as at the end of the prooftedrem 4,

ElY Blemls ) (“T)] = oz(Lx)pBT(T’ A Clmir))

teT,

sinceppr (T, A, C) is an increasing function af' by assumption. Combining the above results finishes the
proof. |

6 Simulations

We have run our experiments on a grid world of siex 10, where in each episode the agent has to find
the shortest path from the lower left corner to the uppertriginer. The agent has two actions: Both make
the agent move right or up, the “right” (“up”) action make thgent move right (respectively, “up”) with
probability 0.7, while it makes it move “up” (respectively, “right”) with pbability 0.3. That is, we have

L = 20, |X| = 100, a = 0.3'° xk = (0.7/0.3)!° (the values ofx and x correspond to the top-left and
bottom-right corners). The experiment is run with= 100,000, rewards are set randomly 20 times at
episodes = 1, 5000, 10000, ... for all z, a, and change linearly in between. We have simulated theipslic
generated by EWA for the full information case, and the petigenerated bixp3 for the bandit case. An
example of the grid-world (of smaller size) and the resuflts typical simulation are shown in Figure 2.
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Figure 2: (a) An example of a grid-world. (b) The average eegr an episode of the proposed algorithms as
the function of the number of episodes in a simple MDP.

Lo

7 Conclusions and future work

In this paper we considered the problem of online learnintpap-free stochastic-shortest path problems
in a bandit setting when only the reward of the current ttéoss is available for measurement. The per
episode complexity of our algorithm ©(|.4| |X'|?) and the algorithm is easy to implement. According to
our knowledge, ours is the first algorithm that can be implatext efficiently and which is known to achieve
anO(4/T|A|) regret in the bandit setting, under the assumption thalygwelicy reaches every state with
positive probability. Unfortunately, the regret boundlssawith the inverse of the minimal such probability,
which is clearly undesirable in many situations. To all&vitis problem, variants of the original bound have
been developed that may be preferred in certain specificcése the case when this latter condition does
not hold, we proposed an algorithm whose expected regréthesover time. We view our results as a step
towards algorithms that work efficiently and which can be lenpented efficiently. However, much work
remains to be done.

As for immediate future work, obvious directions includeesxding our results to the case of unichain
MDPs setting, or, less ambitiously, to the case when thehaki shortest-path problem may have loops.
Although one can construct an unbiased estimate of theraedilnes by plugging in an unbiased estimate of
the rewards, these estimates are not of the form (5), thuaralysis does not apply. It is nontrivial whether
a proper estimate of the action values can be found; evenanpibsitive answer there are further obstacles
to eliminate (e.g., the change rate of the distributionsegated by the applied bandit algorithm has to be
controlled in order to be able to apply the analysis of Evem-&t al., 2009). Alternate directions to extend
our results include the case of unknown transition proligs| partial monitoring, high probability bounds,
or when the state and action space are too large to keep afealaach of them, in which case one must
resort to some form of function approximation, just to menta few.
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