An Efficient Algorithm for Learning with Semi-Bandit Feedback
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The learning problem

Follow the perturbed leader

Goal: minimize (expected) regret

* Foreachtimestept =1,2,..,T T Parameter: learningraten > 0,Ly = 0
* Learner chooses action V; € S € {0,1}¢ R; = maxE Z(Vt —v)Te, For each timestept = 1,2, ..., T
e Adversary selects loss vector £, € [0,1]¢ ves |- * Draw perturbation vector Z; with
* Learner suffers loss V" ¢, Z:i ~ Exp(n) i.id. foralli €
* Learner observes feedback based on V; ... under various feedback assumptions: {12, ...,d}
and . Choose Ve = arg rglel? vT(Lt 1
._ Full bandit:
Decision set: ) V"¢, € [0,m]
— {771} ~1 €1{0,1}
lvill{ < m Semi-bandit:
tyforallist. Vy; =1
. FPL is efficient whenever the optimization
Full info: LT
E.g: sequential routin ¢, €[0,1]° et
81 564 5 ‘ can be solved efficiently
BUT
“FPL is suboptimal by far!”
“FPL doesn’t work with bandit feedback!”
The loss estimation problem Results
Traditional approach Loss estimation by Geometric Resampling Semi-bandit
7 Cui Theorem:
ti — Vi :
Et[Vt,i] REPLTGR < 2m. /2dT (logd + 1)
... but how do we compute Et[Vt’i] for FPL? Draw Vi ~ p¢
Poland (2005): ' Observe {V; ;¢ ;} Full info
 assume they are given by an oracle (A Draw V{/ (1), V¢ (2), ... ~ D¢ Theorem:
2 — mi 17! — '
e use O(T*) samples Let K;; = min{k: Vy (k) = 1}

REPL < 2m3/2/T(logd + 1)

Let €4 ; = €4 K¢ Vi
We need to estimate 1/q; ;, not qti'

Observation: biased coin with P[H] ,
But where does the sampling hurt?

. . * Had we known the g;;’s, we could do
Unbiased since I '
. E [V ] _ Low” variance: 2 > /2
. Et Kt’l _qlt" - Et[zl 19¢it ,i] <1/q:; * How much samples do we need?
t[ t,i] — /CIt,i  Expectation: d

Expected number of * Worst-case: o

tosses until first H: 1/qg Stop sampling after M steps!

dT
Additional regret: v

So what did we achieve?

* Actually, not that difficult since the

EWA/EXP3 m3/2,/T log(d /m) m+/dT log(d/m) m3/2,/dT log(d/m) sometimes variance is not much higher...

e ...butwe don’t know how to
compute upper confidence bounds

Mirror descent m+/T log(d/m) VmdT 27?7 sometimes efficiently
* Extending results to linear bandits with

full bandit feedback
 Use geometric expansion of the

FPL P77 always 2
matrix inverse needed there?
. . | * Can we strengthen guarantees for FPL
Computational complexity Conclusion even more?
* f(S) £ Time to solve optimization on S * This is arguably the most efficient
* Shortest paths: f(S) = 0(d) method for learning with semi-bandit

* Spanning trees: f(S) = O(dlogd) feedback
° ' . — 2 .
Perfect matchings: f(S) = 0(md*) * As a side result, we have proved that FPL

Total running time: -
is at least as good as EXP3
Expectation: dTf(S) 5

Worst-case: VdT3/2f(S)/
m




