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• For each time step 𝑡 = 1,2,… , 𝑇
• Learner chooses action 𝑉𝑡 ∈ 𝑆 ⊆ 0,1 𝑑

• Adversary selects loss vector ℓ𝑡 ∈ [0,1]𝑑

• Learner suffers loss 𝑉𝑡
⊤ℓ𝑡

• Learner observes feedback based on 𝑉𝑡

and ℓ𝑡

Decision set:

𝑆 = 𝑣𝑖 𝑖=1
𝑁 ⊆ 0,1 𝑑

𝑣𝑖 1 ≤ 𝑚

E.g: sequential routing

𝑤𝑢

𝑅𝑇 = max
𝑣∈𝑆

𝐄  

𝑡=1

𝑇

𝑉𝑡 − 𝑣 ⊤ℓ𝑡

Full bandit:
𝑉𝑡

⊤ℓ𝑡 ∈ [0,𝑚]

Semi-bandit:
ℓ𝑡,𝑖 for all 𝑖 s.t. 𝑉𝑡,𝑖 = 1

Full info:
ℓ𝑡 ∈ 0,1 𝑑

Follow the perturbed leader

Parameter: learning rate 𝜂 > 0, 𝐿0 = 0
For each time step 𝑡 = 1,2, … , 𝑇
• Draw perturbation vector 𝑍𝑡 with 

𝑍𝑡,𝑖 ∼ Exp 𝜂 i.i.d. for all 𝑖 ∈
1,2, … , 𝑑

• Choose 𝑉𝑡 = argmin
𝑣∈𝑆

𝑣⊤ 𝐿𝑡−1,𝑖 −

FPL is efficient whenever the optimization
min
𝑣∈𝑆

𝑣⊤ℓ

can be solved efficiently

“FPL is suboptimal by far!” 
“FPL doesn’t work with bandit feedback!” 

BUT

The loss estimation problem

Traditional approach

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝐄𝑡 𝑉𝑡,𝑖

𝑉𝑡,𝑖

… but how do we compute 𝐄𝑡 𝑉𝑡,𝑖 for FPL? 

Poland (2005): 
• assume they are given by an oracle
• use 𝑂 𝑇2 samples

We need to estimate 1/𝑞𝑡,𝑖, not 𝑞𝑡,𝑖!

Observation: biased coin with 𝐏 H = 𝑞

T T T H

Expected number of 
tosses until first H: 1/𝑞

…

• Draw 𝑉𝑡 ∼ 𝒑𝑡

• Observe {𝑉𝑡,𝑖ℓ𝑡,𝑖}
• Draw 𝑉𝑡

′ 1 , 𝑉𝑡
′ 2 ,… ∼ 𝒑𝑡

• Let 𝐾𝑡,𝑖 = min 𝑘: 𝑉𝑡
′ 𝑘 = 1

• Let  ℓ𝑡,𝑖 = ℓ𝑡,𝑖𝐾𝑡,𝑖𝑉𝑡,𝑖

Loss estimation by Geometric Resampling

Unbiased since

• 𝐄t 𝑉𝒕,𝒊 = 𝑞𝑡,𝑖

• 𝐄t[𝐾𝑡,𝑖] = 1/𝑞𝑡,𝑖

“Low” variance:

• 𝐄t  𝑖=1
𝑑 𝑞𝑡,𝑖

 ℓ𝑡,𝑖
2 ≤ 1/𝑞𝑡,𝑖

Results

Theorem:

𝑅𝑇
𝐹𝑃𝐿+𝐺𝑅 ≤ 2𝑚 2𝑑𝑇(log 𝑑 + 1)

Theorem:

𝑅𝑇
𝐹𝑃𝐿 ≤ 2𝑚3/2 𝑇(log 𝑑 + 1)

Semi-bandit

Full info

𝑑 → 𝑚

But where does the sampling hurt?
• Had we known the 𝑞𝑡,𝑖’s, we could do 

2 → 2
• How much samples do we need?

• Expectation: 𝑑
• Worst-case: ∞

Stop sampling after 𝑀 steps!

Additional regret: 
𝑑𝑇

𝑒𝑀

So what did we achieve?

Full info Semi-bandit Full bandit Efficient

EWA/EXP3 𝑚3/2 𝑇 log 𝑑/𝑚 𝑚 𝑑𝑇 log 𝑑/𝑚 𝑚3/2 𝑑𝑇 log 𝑑/𝑚 sometimes

Mirror descent 𝑚 𝑇 log 𝑑/𝑚 𝑚𝑑𝑇 ??? sometimes

FPL 𝑚3/2 𝑇 log 𝑑 𝑚 𝑑𝑇 log 𝑑 ??? always

Computational complexity
• 𝑓 𝑆 ≜ Time to solve optimization on 𝑆

• Shortest paths: 𝑓 𝑆 = 𝑂(𝑑)
• Spanning trees: 𝑓 𝑆 = 𝑂 𝑑 log 𝑑
• Perfect matchings: 𝑓 𝑆 = 𝑂 𝑚𝑑2

Total running time:
• Expectation: 𝑑𝑇𝑓 𝑆

• Worst-case: 𝑑𝑇3/2𝑓 𝑆 /
𝑚

Conclusion
• This is arguably the most efficient 

method for learning with semi-bandit 
feedback

• As a side result, we have proved that FPL 
is at least as good as EXP3

Future work
• Proving high probability bounds
• Actually, not that difficult since the 

variance is not much higher…
• … but we don’t know how to 

compute upper confidence bounds 
efficiently

• Extending results to linear bandits with 
full bandit feedback
• Use geometric expansion of the 

matrix inverse needed there?
• Can we strengthen guarantees for FPL 

even more?


