An Efficient Algorithm for Learning with Semi-Bandit Feedback

Gergely Neu gergely.neu@gmail.com INRIA Lille – Nord Europe Gábor Bartók bartok@inf.ethz.ch ETH Zürich

The learning problem

- For each time step t = 1, 2, ..., T
 - Learner chooses action $V_t \in S \subseteq \{0,1\}^d$
 - Adversary selects loss vector $\ell_t \in [0,1]^d$
 - Learner suffers loss $V_t^{\top} \ell_t$
 - Learner observes feedback based on V_t and ℓ_t

Decision set:

Goal: minimize (expected) regret

$$R_T = \max_{v \in S} \mathbf{E} \left[\sum_{t=1}^T (V_t - v)^{\mathsf{T}} \ell_t \right]$$

... under various feedback assumptions:

Full bandit: $V_t^{\mathsf{T}}\ell_t \in [0,m]$

Follow the perturbed leader

Parameter: learning rate $\eta > 0, L_0 = 0$ For each time step t = 1, 2, ..., T

- Draw perturbation vector Z_t with $Z_{t,i} \sim \operatorname{Exp}(\eta)$ i.i.d. for all $i \in \{1,2,\ldots,d\}$
- Choose $V_t = \arg \min_{v \in S} v^{\top} (L_{t-1,i} -$

We need to estimate $1/q_{t,i}$, not $q_{t,i}$! Observation: biased coin with $\mathbf{P}[\mathbf{H}] = q$

But where does the sampling hurt?

- Had we known the $q_{t,i}$'s, we could do $2 \rightarrow \sqrt{2}$
- How much samples do we need?
 - Expectation: *d*
 - Worst-case: ∞

Stop sampling after M steps! Additional regret: $\frac{dT}{eM}$

So what did we achieve?

	Full info	Semi-bandit	Full bandit	Efficient
EWA/EXP3	$m^{3/2}\sqrt{T\log(d/m)}$	$m\sqrt{dT\log(d/m)}$	$m^{3/2}\sqrt{dT\log(d/m)}$	sometimes
Mirror descent	$m\sqrt{T\log(d/m)}$	\sqrt{mdT}	???	sometimes

Future work

- Proving high probability bounds
 - Actually, not that difficult since the variance is not much higher...
 - ... but we don't know how to compute upper confidence bounds efficiently
- Extending results to linear bandits with

 $m^{3/2}\sqrt{T\log d}$ $m\sqrt{dT\log d}$

Computational complexity

- f(S) ≜ Time to solve optimization on S
 Shortest paths: f(S) = O(d)
 - Spanning trees: $f(S) = O(d \log d)$
 - Perfect matchings: $f(S) = O(md^2)$

Total running time: • Expectation: dTf(S)• Worst-case: $\sqrt{dT^{3/2}}f(S)/m$

Conclusion

always

???

- This is arguably the most efficient method for learning with semi-bandit feedback
- As a side result, we have proved that FPL is at least as good as EXP3

full bandit feedback

- Use geometric expansion of the matrix inverse needed there?
- Can we strengthen guarantees for FPL even more?

