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Online learning and 
non-stochastic bandits

For each round 𝑡 = 1,2,… , 𝑇
• Learner chooses action 𝐼𝑡 ∈ {1,2, … , 𝑁}
• Environment chooses losses ℓ𝑡,𝑖 ∈ [0,1] for all 𝑖

• Learner suffers loss ℓ𝑡,𝐼𝑡

• Learner observes losses ℓ𝑡,𝑖 for all 𝑖
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Need to explore!



Minimax regret

• Define (expected) regret against action 𝑖 as
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Beyond minimax:
i.i.d. losses

𝑅𝑇 = Θ 𝑁𝑇𝑅𝑇 = Θ 𝑇 log𝑁

Full information Bandit

Θ(log𝑁) Θ(𝑁log 𝑇)



Beyond minimax:
“Higher-order” bounds
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First-order bounds for 
bandits
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Problem:
only good if best expert is bad!
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Problem:
one misbehaving action ruins the bound!



First-order bounds for 
bandits

• “Small-gain” bounds:

• A little trickier analysis gives

• Some obscure actual first-order bounds:

› Stoltz (2005): 𝑁 𝐿𝑇
∗

› Allenberg, Auer, Györfi and Ottucsák (2006): 𝑁𝐿𝑇
∗

› Rakhlin and Sridharan (2013): 𝑁3/2 𝐿𝑇
∗

(it’s complicated)

𝑅𝑇 = 𝑂 𝑁𝐺𝑇,𝑖∗ log𝑁

𝑅𝑇 = 𝑂  𝑡  𝑖 ℓ𝑡,𝑖 log𝑁



• “Small-gain” bounds:

• A little trickier analysis gives

• Some obscure actual first-order bounds:

› Stoltz (2005): 𝑁 𝐿𝑇
∗

› Allenberg, Auer, Györfi and Ottucsák (2006): 𝑁𝐿𝑇
∗

› Rakhlin and Sridharan (2013): 𝑁3/2 𝐿𝑇
∗

First-order bounds for 
bandits

(it’s complicated)

𝑅𝑇 = 𝑂 𝑁𝐺𝑇,𝑖∗ log𝑁

𝑅𝑇 = 𝑂  𝑡  𝑖 ℓ𝑡,𝑖 log𝑁

Problem:
no real insight from analyses!



First-order bounds for non-
stochastic bandits



A typical bandit algorithm

For every round 𝑡 = 1,2, … , 𝑇
• Choose arm 𝐼𝑡 = 𝑖 with probability 𝑝𝑡,𝑖

• Compute unbiased loss estimate

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖
𝟏 𝐼𝑡=𝑖

• Use  ℓ𝑡,𝑖 in a black-box online learning 
algorithm to compute 𝒑𝑡+1
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A typical regret bound

𝑅𝑇 =  𝑂  𝑖=1
𝑁 𝐿𝑇,𝑖

It’s all because 

𝐄  𝐿𝑇,𝑖 = 𝐿𝑇,𝑖!!!

Idea: try to enforce 

𝐄  𝐿𝑇,𝑖 = 𝑂(𝐿𝑇,𝑖∗)

Need optimistic
estimates!



A typical algorithm – fixed!
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Algorithm: Follow the Perturbed Leader 

(Kalai and Vempala, 2005, Poland, 2005)

For every round 𝑡 = 1,2, … , 𝑇
• Draw perturbation 𝑍𝑡,𝑖 ∼ Exp(1) for all 𝑖

• Choose arm 𝐼𝑡 = argmin
𝑖

𝜂 𝐿𝑡−1,𝑖 − 𝑍𝑡,𝑖

• Compute biased loss estimate
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Implicit exploration in action
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Optimistic estimates

Lemma (N, 2015a): Assume that 𝑍𝑡,𝑖 ≤
𝐵 for all 𝑡 and 𝑖. Then, for any 𝑖 and 𝑗,

 𝐿𝑇,𝑖 ≤  𝐿𝑇,𝑗 +
log𝑁 + 𝐵

𝜂
+

1
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Lemma (N, 2015a): Assume that 𝑍𝑡,𝑖 ≤
𝐵 for all 𝑡 and 𝑖. Then, for any 𝑖 and 𝑗,

 𝐿𝑇,𝑖 ≤  𝐿𝑇,𝑗 +
log𝑁 + 𝐵
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+

1

𝛾

All perturbations are nicely bounded with high 
probability → bad arms are suppressed!
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 ℓ𝑡,2

 ℓ𝑡,3

 ℓ𝑡,4

 ℓ𝑡,5

 ℓ𝑡,6

𝐵

Bad arms are no 
longer drawn!

 𝐿𝑡,𝑖 stops growing if 
𝑖 is bad



Finally: a first-order bound!
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Finally: a first-order bound!
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Parameters:
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𝑅𝑇 =  𝑂 𝑁𝐿𝑇,𝑖∗
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Arguments also extend to 
combinatorial semi-bandits!



What’s next?
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Cesa-Bianchi, Mansour, Stoltz (2005)
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Summary

• Key for first-order bounds: implicit exploration

• Further bounds seem to be difficult to prove:
smoothness conflicts with need to explore!

• More depressing results by Lattimore (NIPS 2015)
• Second-order bounds (Cesa-Bianchi et al., 2005)

• Variance-dependent bounds (Hazan and Kale, 2010)

• Path-length bounds (Steinhardt and Liang, 2014)

• Quantile bounds (Koolen and Van Erven, 2015)

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾
𝟏 𝐼𝑡=𝑖

+ also key for high-
probability bounds!
(NIPS 2015)

?



Thanks!





Appendix



First-order bounds for 
combinatorial semi-bandits



For every round 𝑡 = 1,2, … , 𝑇
• learner picks an action 𝑉𝑡 ∈ 𝑆 ⊆ 0,1 𝑑

• Environment chooses loss vector ℓ𝑡 ∈ 0,1 𝑑

• Learner suffers loss 𝑉𝑡
⊤ℓ𝑡

• Learner observes losses 𝑉𝑡,𝑖ℓ𝑡,𝑖

𝑤𝑢
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𝑤𝑢

Decision set:

𝑆 = 𝑣𝑖 𝑖=1
𝑁 ⊆ 0,1 𝑑

𝑣𝑖 1 ≤ 𝑚

Combinatorial semi-bandits



Combinatorial semi-bandits

• Goal: minimize (expected) regret

 𝑅𝑇 = max
𝑣∈𝑆

𝐄  

𝑡=1

𝑇

𝑉𝑡 − 𝑣 ⊤ℓ𝑡

• Minimax regret is
 𝑅𝑇 = Θ 𝑚𝑑𝑇

• Best efficient algorithm (FPL) gives
 𝑅𝑇 = 𝑂 𝑚 𝑑𝑇 log(𝑑)
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 𝑅𝑇 = max
𝑣∈𝑆

𝐄  

𝑡=1

𝑇

𝑉𝑡 − 𝑣 ⊤ℓ𝑡

• Minimax regret is
 𝑅𝑇 = Θ 𝑚𝑑𝑇

• Best efficient algorithm (FPL) gives
 𝑅𝑇 = 𝑂 𝑚 𝑑𝑇 log(𝑑)

• Our bound:
 𝑅𝑇 = 𝑂 𝑚 𝑑𝐿𝑇

∗ log(𝑑)


