On adaptive regret bounds for non-stochastic bandits

Gergely Neu

INRIA Lille, SequeL team

→ Universitat Pompeu Fabra, Barcelona

Outline

- Online learning and bandits
- Adaptive bounds in online learning
- Adaptive bounds for bandits
 - What we already have
 - What's new: First-order bounds
 - What may be possible
 - What seems impossible*

Online learning and non-stochastic bandits

For each round $t = 1, 2, \dots, T$

- Learner chooses action $I_t \in \{1,2,...,N\}$
- Environment chooses losses $\ell_{t,i} \in [0,1]$ for all i
- Learner suffers loss ℓ_{t,I_t}
- Learner observes losses $\ell_{t,i}$ for all i

Online learning and non-stochastic bandits

For each round t = 1, 2, ..., T

- Learner chooses action $I_t \in \{1,2,...,N\}$
- Environment chooses losses $\ell_{t,i} \in [0,1]$ for all i
- Learner suffers loss ℓ_{t,I_t}
- Learner observes losses $\ell_{t,i}$ for all i

For each round t = 1, 2, ..., T

- Learner chooses action $I_t \in \{1,2,...,N\}$
- Environment chooses losses $\ell_{t,i} \in [0,1]$ for all
- Learner suffers loss ℓ_{t,I_t}
- Learner observes its own loss ℓ_{t,I_t}

Online learning and non-stochastic bandits

For each round t = 1, 2, ..., T

- Learner chooses action $I_t \in \{1, 2, ..., N\}$
- Environment chooses losses $\ell_{t,i} \in [0,1]$ for all i
- Learner suffers loss ℓ_{t,I_t}
- Learner observes losses $\ell_{t,i}$ for all i

Need to explore!

For each round t = 1, 2, ..., T

- Learner chooses action $I_t \in \{1, 2, ..., N\}$
- Environment chooses losses $\ell_{t,i} \in [0,1]$ for all
- Learner suffers loss ℓ_{t,I_t}
- Learner observes its own loss ℓ_{t,I_t}

Minimax regret

Define (expected) regret against action i as

$$R_{T,i} = \mathbf{E} \left[\sum_{t=1}^{T} \ell_{t,I_t} - \sum_{t=1}^{T} \ell_{t,i} \right]$$

• Goal: minimize regret against the best action i^*

$$R_T = R_{T,i^*} = \max_i R_{T,i}$$

Minimax regret

Define (expected) regret against action i as

$$R_{T,i} = \mathbf{E} \left[\sum_{t=1}^{T} \ell_{t,I_t} - \sum_{t=1}^{T} \ell_{t,i} \right]$$

• Goal: minimize regret against the best action i^*

$$R_T = R_{T,i^*} = \max_i R_{T,i}$$

Full information

$$R_T = \Theta(\sqrt{T \log N})$$

Bandit

$$R_T = \Theta(\sqrt{NT})$$

Beyond minimax: <u>i.i.d. losses</u>

Full information

$$R_T = \Theta(\sqrt{T\log N})$$

Bandit

$$R_T = \Theta(\sqrt{NT})$$

Beyond minimax: "Higher-order" bounds

	Full information	Bandit
minimax	$R_T = O(\sqrt{T\log N})$	$R_T = O(\sqrt{NT})$
first-order $L_{T,i} = \sum_{t} \ell_{t,i}$	$R_T = O(\sqrt{L_{T,i^*} \log N})$	
second-order $S_{T,i} = \sum_{t} \ell_{t,i}^2$	$R_T = O(\sqrt{S_{t,i^*} \log N})$ Cesa-Bianchi, Mansour, Stoltz (2005)	
variance $V_{T,i} = \sum_{t} (\ell_{t,i} - m)^{2}$	$R_T = O(\sqrt{V_{T,i^*} \log N})$ Hazan and Kale (2010)	

with a little cheating

Beyond minimax: "Higher-order" bounds

	Full information	Bandit
minimax	$R_T = O(\sqrt{T \log N})$	$R_T = O(\sqrt{NT})$
first-order $L_{T,i} = \sum_{t} \ell_{t,i}$	$R_T = O(\sqrt{L_{T,i^*} \log N})$	
second-order $S_{T,i} = \sum_{t} \ell_{t,i}^2$	$R_T = O(\sqrt{S_{t,i^*} \log N})$ Cesa-Bianchi, Mansour, Stoltz (2005)	$R_T = ilde{O}ig(\sqrt{\sum_i S_{t,i}}ig)$ Auer et al. (2002) + some hacking
variance $V_{T,i} = \sum_{t} (\ell_{t,i} - m)^{2}$	$R_T = O(\sqrt{V_{T,i^*} \log N})$ Hazan and Kale (2010)	$R_T = ilde{O}ig(N^2\sqrt{\sum_i V_{t,i}}ig)$ Hazan and Kale (2011)

with a little cheating

Beyond minimax: "Higher-order" bounds

	Full information	Bandit
minimax	$R_T = O(\sqrt{T \log N})$	$R_T = O(\sqrt{NT})$
first-order $L_{T,i} = \sum_{t} \ell_{t,i}$	$R_T = O(\sqrt{L_{T,i^*} \log N})$	(it's complicated)
second-order $S_{T,i} = \sum_{t} \ell_{t,i}^2$	$R_T = O(\sqrt{S_{t,i^*} \log N})$	$R_T = \tilde{O}\left(\sqrt{\sum_i S_{t,i}}\right)$
	Cesa-Bianchi, Mansour, Stoltz (2005)	Auer et al. (2002) + some hacking
variance $V_{T,i} = \sum_t (\ell_{t,i} - m)$	$R_T = O(\sqrt{V_{T,i^*} \log N})$ Hazan and Kale (2010)	$R_T = ilde{O}ig(N^2\sqrt{\sum_i V_{t,i}}ig)$ Hazan and Kale (2011)
	riazari aria Naic (2010)	riazari ariu Naic (2011)

with a little cheating

First-order bounds for bandits

(it's complicated)

- "Small-gain" bounds:
 - Consider the gain game with $g_{t,i} = 1 \ell_{t,i}$
 - Auer, Cesa-Bianchi, Freund and Schapire (2002):

$$R_T = O(\sqrt{NG_{T,i^*} \log N}) \qquad G_{T,i} = \sum_t g_{t,i}$$

First-order bounds for bandits

(it's complicated)

- "Small-gain" bounds:
 - Consider the gain game with $g_{t,i} = 1 \ell_{t,i}$
 - Auer, Cesa-Bianchi, Freund and Schapire (2002):

$$R_T = O(\sqrt{NG_{T,i^*}\log N}) \qquad G_{T,i} = \sum_t g_{t,i}$$

Problem:

only good if best expert is bad!

First-order bounds for bandits

(it's complicated)

- "Small-gain" bounds: $R_T = O(\sqrt{NG_{T,i^*}} \log N)$
- A little trickier analysis gives

$$R_T = O(\sqrt{\sum_t \sum_i g_{t,i} \log N})$$

$$R_T = O(\sqrt{\sum_t \sum_i g_{t,i} \log N})$$
 or $R_T = O(\sqrt{\sum_t \sum_i \ell_{t,i} \log N})$

First-order bounds for bandits

(it's complicated)

- "Small-gain" bounds: $R_T = O(\sqrt{NG_{T,i^*}} \log N)$
- A little trickier analysis gives

$$R_T = O(\sqrt{\sum_t \sum_i g_{t,i} \log N})$$
 or $R_T = O(\sqrt{\sum_t \sum_i \ell_{t,i} \log N})$

$$R_T = O(\sqrt{\sum_t \sum_i \ell_{t,i} \log N})$$

Problem:

one misbehaving action ruins the bound!

First-order bounds for bandits

(it's complicated)

- "Small-gain" bounds: $R_T = O(\sqrt{NG_{T,i^*} \log N})$
- A little trickier analysis gives $R_T = O(\sqrt{\sum_t \sum_i \ell_{t,i} \log N})$
- Some obscure actual first-order bounds:
 - Stoltz (2005): $N\sqrt{L_T^*}$
 - Allenberg, Auer, Györfi and Ottucsák (2006): $\sqrt{NL_T^*}$
 - Rakhlin and Sridharan (2013): $N^{3/2}\sqrt{L_T^*}$

First-order bounds for bandits

```
(it's complicated)
```

- "Small-gain" bounds: $R_T = O(\sqrt{NG_{T,i^*} \log N})$
- A little trickier analysis gives $R_T = O(\sqrt{\sum_t \sum_i \ell_{t,i} \log N})$
- Some obscure actual first-order bounds:

```
Problem:
no real insight from analyses!
\sqrt{NL_T^*}
```

First-order bounds for nonstochastic bandits

A typical bandit algorithm

For every round t = 1, 2, ..., T

- Choose arm $I_t = i$ with probability $p_{t,i}$
- Compute unbiased loss estimate

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i}} \mathbf{1}_{\{I_t = i\}}$$

• Use $\hat{\ell}_{t,i}$ in a black-box online learning algorithm to compute p_{t+1}

$$R_T \le \frac{\log N}{\eta} + \eta \mathbf{E} \left[\sum_{t=1}^T \sum_{i=1}^N p_{t,i} (\hat{\ell}_{t,i})^2 \right]$$

 $(\eta:$ "learning rate")

$$R_{T} \leq \frac{\log N}{\eta} + \eta \mathbf{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t,i} (\hat{\ell}_{t,i})^{2} \right]$$

$$\leq \frac{\log N}{\eta} + \eta \mathbf{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{N} \hat{\ell}_{t,i} \right]$$

 $(\eta:$ "learning rate")

$$R_{T} \leq \frac{\log N}{\eta} + \eta \operatorname{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t,i} (\hat{\ell}_{t,i})^{2} \right]$$

$$\leq \frac{\log N}{\eta} + \eta \operatorname{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{N} \hat{\ell}_{t,i} \right]$$

$$= \frac{\log N}{\eta} + \eta \sum_{i=1}^{N} L_{T,i}$$

 $(\eta:$ "learning rate")

$$R_{T} \leq \frac{\log N}{\eta} + \eta \mathbf{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t,i} (\hat{\ell}_{t,i})^{2} \right]$$

$$\leq \frac{\log N}{\eta} + \eta \mathbf{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{N} \hat{\ell}_{t,i} \right]$$

$$= \frac{\log N}{\eta} + \eta \sum_{i=1}^{N} L_{T,i} = \tilde{O} \left(\sqrt{\sum_{i=1}^{N} L_{T,i}} \right)$$

 $(\eta:$ "learning rate")

(for appropriate η)

$$R_T = \tilde{O}\left(\sqrt{\sum_{i=1}^N L_{T,i}}\right)$$

$$R_T = \tilde{O}\left(\sqrt{\sum_{i=1}^N L_{T,i}}\right)$$

It's all because $\mathbf{E}[\hat{L}_{T,i}] = L_{T,i}!!!$

$$R_T = \tilde{O}\left(\sqrt{\sum_{i=1}^N L_{T,i}}\right)$$

It's all because $\mathbf{E}[\hat{L}_{T,i}] = L_{T,i}!!!$

Idea: try to enforce $\mathbf{E}[\hat{L}_{T.i}] = O(L_{T.i^*})$

It's all because $\mathbf{E}[\widehat{L}_{T,i}] = L_{T,i}!!!$

Idea: try to enforce

$$\mathbf{E}[\widehat{L}_{T,i}] = O(L_{T,i^*})$$

A typical algorithm – fixed!

For every round t = 1, 2, ..., T

- Choose arm $I_t = i$ with probability $p_{t,i}$
- Compute unbiased loss estimate

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i}} \mathbf{1}_{\{I_t = i\}}$$

• Use $\hat{\ell}_{t,i}$ in a black-box online learning algorithm to compute $m{p}_{t+1}$

A typical algorithm – fixed!

For every round t = 1, 2, ..., T

- Choose arm $I_t = i$ with probability $p_{t,i}$
- Compute biased loss estimate

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i} + \gamma} \mathbf{1}_{\{I_t = i\}}$$

• Use $\hat{\ell}_{t,i}$ in a black-box online learning algorithm to compute $m{p}_{t+1}$

"Implicit
exploration"
(Kocák, N, Valko and
Munos, 2015)

Algorithm: Follow the Perturbed Leader (Kalai and Vempala, 2005, Poland, 2005)

For every round t = 1, 2, ..., T

- Draw perturbation $Z_{t,i} \sim \text{Exp}(1)$ for all i
- Choose arm $I_t = \arg\min_i (\eta \hat{L}_{t-1,i} Z_{t,i})$
- Compute biased loss estimate

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i} + \gamma} \mathbf{1}_{\{I_t = i\}}$$

"Implicit exploration" (Kocák, N, Valko and Munos, 2015)

• Update $\hat{L}_{t,i} = \hat{L}_{t-1,i} + \hat{\ell}_{t,i}$

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i} + \gamma} \mathbf{1}_{\{I_t = i\}}$$

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i} + \gamma} \mathbf{1}_{\{I_t = i\}}$$

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i} + \gamma} \mathbf{1}_{\{I_t = i\}}$$

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i} + \gamma} \mathbf{1}_{\{I_t = i\}}$$

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i} + \gamma} \mathbf{1}_{\{I_t = i\}}$$

Optimistic estimates

Lemma (N, 2015a): Assume that $Z_{t,i} \leq B$ for all t and i. Then, for any i and j, $\widehat{L}_{T,i} \leq \widehat{L}_{T,j} + \frac{(\log N + B)}{\eta} + \frac{1}{\gamma}$

Optimistic estimates

Lemma (N, 2015a): Assume that
$$Z_{t,i} \le B$$
 for all t and i . Then, for any i and j , $\hat{L}_{T,i} \le \hat{L}_{T,j} + \frac{(\log N + B)}{\eta} + \frac{1}{\gamma}$

All perturbations are nicely bounded with high probability → bad arms are suppressed!

$$R_T \leq \frac{\log N}{\eta} + \eta \mathbf{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t,i} (\hat{\ell}_{t,i})^2 \right]$$

$$\frac{\log N}{\eta} + \eta \mathbf{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{N} \widehat{\ell}_{t,i} \right]$$

$$= \frac{\log N}{\eta} + \eta \sum_{i=1}^{N} L_{T,i} = \tilde{O}\left(\sqrt{\sum_{i=1}^{N} L_{T,i}}\right)$$

(for appropriate η)

$$R_T \leq$$

$$R_T \leq \frac{\log N}{\eta} + \eta \mathbf{E} \left[\sum_{t=1}^T \sum_{i=1}^N p_{t,i} (\hat{\ell}_{t,i})^2 \right]$$

$$\leq$$

$$\frac{\log N}{\eta} + \eta \mathbf{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{N} \hat{\ell}_{t,i} \right]$$

Lemma

$$\leq$$

$$\frac{\log N}{\eta} + \eta N L_{T,i^*} + N(B + \log N)$$

$$\tilde{O}(\sqrt{NL_{T,i^*}})$$

(for appropriate η, γ, B)

$$R_T = \tilde{O}(\sqrt{NL_{T,i^*}})$$

Parameters:

• Set $\gamma = \eta/2$

$$R_T = \tilde{O}(\sqrt{NL_{T,i^*}})$$

Parameters:

- Set $\gamma = \eta/2$
- If we know L_{T,i^*} : $\eta = \sqrt{\frac{(\log N + 1)}{NL_{T,i^*}}}$

$$R_T = \tilde{O}(\sqrt{NL_{T,i^*}})$$

Parameters:

- Set $\gamma = \eta/2$
- If we know L_{T,i^*} : $\eta = \sqrt{\frac{(\log N + 1)}{NL_{T,i^*}}}$
- If we don't: $\eta_t = \sqrt{\frac{(\log N + 1)}{N(1 + \sum_i \hat{L}_{t-1,i})}}$

$$R_T = \tilde{O}(\sqrt{NL_{T,i^*}})$$

Parameters:

• Set $\gamma = \eta/2$

Arguments also extend to combinatorial semi-bandits!

• If we know
$$L_{T,i^*}$$
: $\eta = \sqrt{\frac{(\log N + 1)}{NL_{T,i^*}}}$

• If we don't:
$$\eta_t = \sqrt{\frac{(\log N + 1)}{N(1 + \sum_i \hat{L}_{t-1,i})}}$$

What's next?

Beyond minimax: "Higher-order" bounds

	Full information	Bandit
minimax	$R_T = \Theta(\sqrt{T \log N})$	$R_T = O(\sqrt{NT})$
first-order $L_{T,i} = \sum_{t} \ell_{t,i}$	$R_T = O(\sqrt{L_{T,i^*} \log N})$	(it's complicated)
second-order $S_{T,i} = \sum_{t} \ell_{t,i}^2$	$R_T = O(\sqrt{S_{t,i^*} \log N})$	$R_T = \tilde{O}\left(\sqrt{\sum_i S_{t,i}}\right)$
	Cesa-Bianchi, Mansour, Stoltz (2005)	Auer et al. (2002) + some hacking
variance $V_{T,i} = \sum_{t} (\ell_{t,i} - m)^{2}$	$R_T = O(\sqrt{V_{T,i^*} \log N})$ Hazan and Kale (2010)	$R_T = ilde{O}ig(N^2\sqrt{\sum_i V_{t,i}}ig)$ Hazan and Kale (2011)

with a little cheating

Beyond minimax: "Higher-order" bounds

	Full information	Bandit
minimax	$R_T = \Theta(\sqrt{T \log N})$	$R_T = O(\sqrt{NT})$
first-order $L_{T,i} = \sum_t \ell_{t,i}$	$R_T = O(\sqrt{L_{T,i^*} \log N})$	$R_T = \tilde{O}(\sqrt{NL_{T,i^*}})$
second-order $S_{T,i} = \sum_{t} \ell_{t,i}^2$	$R_T = O(\sqrt{S_{t,i^*} \log N})$ Cesa-Bianchi, Mansour, Stoltz (2005)	$R_T = \tilde{O} \left(\sqrt{\sum_i S_{t,i}} \right)$ Auer et al. (2002) + some hacking
variance $V_{T,i} = \sum_{t} (\ell_{t,i} - m)^{2}$	$R_T = O(\sqrt{V_{T,i^*} \log N})$ Hazan and Kale (2010)	$R_T = ilde{O} ig(N^2 \sqrt{\sum_i V_{t,i}} ig)$ Hazan and Kale (2011)

🗡 with a little cheating

Beyond minimax: "Higher-order" bounds

	Full information	Bandit
minimax	$R_T = \Theta(\sqrt{T \log N})$	$R_T = O(\sqrt{NT})$
first-order $L_{T,i} = \sum_t \ell_{t,i}$	$R_T = O(\sqrt{L_{T,i^*} \log N})$	$R_T = \tilde{O}(\sqrt{NL_{T,i^*}})$
second-order $S_{T,i} = \sum_{t} \ell_{t,i}^2$	What about these?	$R_T = ilde{O} ig(\sqrt{\sum_i S_{t,i}} ig)$ Auer et al. (2002) + some hacking
variance $V_{T,i} = \sum_{t} (\ell_{t,i} - m)^{2}$	$R_T = U(\sqrt{V_{T,i^*}} \log N)$ Hazan and Kale (2010)	$R_T = ilde{O} ig(N^2 \sqrt{\sum_i V_{t,i}} ig)$ Hazan and Kale (2011)

with a little cheating

A key tool for adaptive bounds in full-

info: PROD (Cesa-Bianchi, Mansour and Stoltz, 2005)

$$p_{t,i} \propto \prod_{s=1}^{t-1} (1 - \eta \ell_{s,i})$$

A key tool for adaptive bounds in full-info: PROD (Cesa-Bianchi, Mansour and Stoltz, 2005)

$$p_{t,i} \propto \prod_{s=1}^{t-1} (1 - \eta \ell_{s,i})$$

Used for proving

- Second-order bounds (Cesa-Bianchi et al., 2005)
- Variance-dependent bounds (Hazan and Kale, 2010)
- Path-length bounds (Steinhardt and Liang, 2014)
- Quantile bounds (Koolen and Van Erven, 2015)
- Best-of-both-worlds bounds (Sani et al., 2014)
- ...

A key tool for adaptive bounds in full-info: PROD (Cesa-Bianchi, Mansour and Stoltz, 2005)

$$p_{t,i} \propto \prod_{s=1}^{t-1} (1 - \eta \ell_{s,i})$$

But does it work for bandits?

il., 2005) d Kale, 2010) ig, 2014) 2015) . 2014)

•

A key tool for adaptive bounds in full-info: PROD (Cesa-Bianchi, Mansour and Stoltz, 2005)

$$p_{t,i} \propto \prod_{s=1}^{t-1} (1 - \eta \ell_{s,i})$$

But loes it work for d Kale, 2010) ag, 2014) 2015)

$$p_{t,i} \propto \prod_{s=1}^{t-1} \left(1 - \eta \hat{\ell}_{s,i}\right)$$

$$p_{t,i} \propto e^{-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s,i}}$$
 with
$$\tilde{\ell}_{t,i} = -\frac{1}{\eta} \log (1 - \eta \hat{\ell}_{t,i})$$

EXP3 with a pessimistic estimate:

$$\mathbf{E}\big[\tilde{\ell}_{t,i}\big] \ge \ell_{t,i}$$

$$p_{t,i} \propto e^{-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s,i}}$$
 with
$$\tilde{\ell}_{t,i} = -\frac{1}{\eta} \log(1 - \eta \hat{\ell}_{t,i})$$

EXP3 with a pessimistic estimate:

$$\mathbf{E}\big[\tilde{\ell}_{t,i}\big] \ge \ell_{t,i}$$

$$p_{t,i} \propto e^{-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s,i}}$$
 with
$$\tilde{\ell}_{t,i} = -\frac{1}{\eta} \log(1 - \eta \hat{\ell}_{t,i})$$

Implicit exploration

$$\tilde{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i} + \gamma} \mathbf{1}_{\{I_t = i\}}$$

EXP3 with a pessimistic estimate:

$$\mathbf{E}\big[\tilde{\ell}_{t,i}\big] \ge \ell_{t,i}$$

$$p_{t,i} \propto e^{-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s,i}}$$
 with
$$\tilde{\ell}_{t,i} = -\frac{1}{\eta} \log (1 - \eta \hat{\ell}_{t,i})$$

Implicit exploration

$$\tilde{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i} + \gamma} \mathbf{1}_{\{I_t = i\}}$$

$$p_{t,i} \propto e^{-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s,i}}$$
 with
$$\tilde{\ell}_{t,i} = \frac{1}{\eta} \log (1 + \eta \hat{\ell}_{t,i})$$

PROD for bandits

PROD for bandits

Key for first-order bounds: implicit exploration

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i} + \gamma} \mathbf{1}_{\{I_t = i\}}$$

+ also key for highprobability bounds! (NIPS 2015)

Key for first-order bounds: implicit exploration

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i} + \gamma} \mathbf{1}_{\{I_t = i\}}$$

+ also key for highprobability bounds! (NIPS 2015)

 Further bounds seem to be difficult to prove: smoothness conflicts with need to explore!

Key for first-order bounds: implicit exploration

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i} + \gamma} \mathbf{1}_{\{I_t = i\}}$$

+ also key for highprobability bounds! (NIPS 2015)

- Further bounds seem to be difficult to prove: smoothness conflicts with need to explore!
- More depressing results by Lattimore (NIPS 2015)

Key for first-order bounds: implicit exploration

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i} + \gamma} \mathbf{1}_{\{I_t = i\}}$$

+ also key for highprobability bounds! (NIPS 2015)

- Further bounds seem to be difficult to prove: smoothness conflicts with need to explore!
- More depressing results by Lattimore (NIPS 2015)
 - Second-order bounds (Cesa-Bianchi et al., 2005)
 - Variance-dependent bounds (Hazan and Kale, 2010)
 - Path-length bounds (Steinhardt and Liang, 2014)
 - Quantile bounds (Koolen and Van Erven, 2015)

Thanks!

Appendix

First-order bounds for combinatorial semi-bandits

For every round t = 1, 2, ..., T

- learner picks an action $V_t \in S \subseteq \{0,1\}^d$
- Environment chooses loss vector $\ell_t \in [0,1]^d$
- Learner suffers loss $V_t^{\mathsf{T}} \ell_t$
- Learner observes losses $V_{t,i} \ell_{t,i}$

For every round t = 1, 2, ..., T

- learner picks an action $V_t \in S \subseteq \{0,1\}^d$
- Environment chooses loss vector $\ell_t \in [0,1]^d$
- Learner suffers loss $V_t^{\mathsf{T}} \ell_t$
- Learner observes losses $V_{t,i} \ell_{t,i}$

For every round t = 1, 2, ..., T

- learner picks an action $V_t \in S \subseteq \{0,1\}^d$
- Environment chooses loss vector $\ell_t \in [0,1]^d$
- Learner suffers loss $V_t^{\mathsf{T}} \ell_t$
- Learner observes losses $V_{t,i} \ell_{t,i}$

Decision set:

$$S = \{v_i\}_{i=1}^N \subseteq \{0,1\}^d \\ \|v_i\|_1 \le m$$

Goal: minimize (expected) regret

$$\widehat{R}_T = \max_{v \in S} \mathbf{E} \left[\sum_{t=1}^T (V_t - v)^{\top} \ell_t \right]$$

Minimax regret is

$$\widehat{R}_T = \Theta(\sqrt{mdT})$$

Best efficient algorithm (FPL) gives

$$\widehat{R}_T = O(m\sqrt{dT\log(d)})$$

Goal: minimize (expected) regret

$$\widehat{R}_T = \max_{v \in S} \mathbf{E} \left[\sum_{t=1}^T (V_t - v)^{\top} \ell_t \right]$$

Minimax regret is

$$\widehat{R}_T = \Theta(\sqrt{mdT})$$

Best efficient algorithm (FPL) gives

$$\widehat{R}_T = O(m\sqrt{dT\log(d)})$$

Our bound:

$$\hat{R}_T = O(m\sqrt{dL_T^* \log(d)})$$