Fixed Parameter Algorithms

Daniel Marx

Tel Aviv University, Israel

Open lectures for PhD students in computer science

January 9, 2010, Warsaw, Poland

Fixed Parameter Algorithms — p.1/41

Parameterized complexity

Parameterized problem: a parameter k is associated with each input
instance.

A parameterized problem is fixed-parameter tractable (FPT) if it can be
solved in time f (k) - n° for some function f depending only on k and constant
¢ not depending on k.

For some important parameterized problems, for example k-CLIQUE and
k-INDEPENDENT SET, no FPT algorithm is known.

Can we show that these problems are not FPT?

This would require to show that P # NP: if P = NP, then k-CLIQUE is
polynomial-time solvable, hence FPT.

Can we give some evidence that certain problems are not FPT?

Fixed Parameter Algorithms — p.2/41

Classical complexity

Nondeterministic Turing Machine (NTM): single tape, finite alphabet, finite state,
head can move left/right only one cell. In each step, the machine can branch into
an arbitrary number of directions. Run is successful if at least one branch is
successful.

NP: The class of all languages that can be recognized by a polynomial-time NTM.

Polynomial-time reduction from problem P to problem Q: a function ¢ with the
following properties:

¢(x) can be computed in time |x|°WY,

¢(x) is a yes-instance of Q if and only if x is a yes-instance of P.

Definition: Problem @ is NP-hard if any problem in NP can be reduced to Q.

If an NP-hard problem can be solved in polynomial time, then every problem in NP

can be solved in polynomial time (i.e., P = NP).

Fixed Parameter Algorithms — p.3/41

Part I

Reductions and
the W-hierarchy

Fixed Parameter Algorithms — p.4/41

Parameterized complexity

To build a complexity theory for parameterized problems, we need two things:
An appropriate notion of reduction.

An appropriate hypothesis.

Polynomial-time reduction is not good for our purposes.

Example: Graph G has an independent set k if and only if it has a vertex cover of
size n — k.

= Transforming an INDEPENDENT SET instance (G, k) into a VERTEX COVER
instance (G, n — k) is a correct polynomial-time reduction.

However, VERTEX COVER is FPT, but INDEPENDENT SET is not known to be FPT.

Fixed Parameter Algorithms — p.5/41

Parameterized reduction

Parameterized reduction from problem P to problem Q: a function ¢ with the
following properties:

¢(x) can be computed in time (k) - |x|°Y), where k is the parameter of x,
¢(x) is a yes-instance of Q if and only if x is a yes-instance of P.

If k is the parameter of x and k' is the parameter of ¢(x), then k' < g(k) for
some function g.

Fact: If there is a parameterized reduction from problem P to problem @ and Q is
FPT, then P is also FPT.

Example: Transforming an INDEPENDENT SET instance (G, k) into a VERTEX
CoVER instance (G, n — k) is not a parameterized reduction.

Example: Transforming an INDEPENDENT SET instance (G, k) into a CLIQUE
instance (G, k) is a parameterized reduction.

Fixed Parameter Algorithms — p.6/41

A reduction

Fact: There is a parameterized reduction from INDEPENDENT SET to DOMINATING
SET.

Proof: Let G be a graph with n vertices, m edges, and let k be an integer. We
construct a graph H such that G has an independent set of size k if and only if H
has a dominating set of size k.

The dominating set has to contain one vertex from each of the k cliques. Additional
vertices ensure that these selections describe an independent set.

(See the blackboard.)

Fixed Parameter Algorithms — p.7/41

Basic hypotheses

Parameterized complexity theory cannot be built on assuming P £ NP — we have
to assume something stronger.

Let us choose a basic hypothesis:

Engineers’ Hypothesis : k-CLIQUE cannot be solved in time (k) - n°®.

Theorists’ Hypothesis : k-STEP HALTING PROBLEM (is there a branch of the
given NTM that stops in k steps?) cannot be solved in time f(k) - n®®),

Exponential Time Hypothesis (ETH) : n-variable 3SAT cannot be solved in
time 2°(").

Which hypothesis is the most plausible?

Fixed Parameter Algorithms — p.8/41

Basic hypotheses

Parameterized complexity theory cannot be built on assuming P £ NP — we have
to assume something stronger.

Let us choose a basic hypothesis:

Engineers’ Hypothesis : k-CLIQUE cannot be solved in time (k) - n°®.

i

Theorists’ Hypothesis : k-STEP HALTING PROBLEM (is there a branch of the
given NTM that stops in k steps?) cannot be solved in time f(k) - n®®),

T
Exponential Time Hypothesis (ETH) : n-variable 3SAT cannot be solved in
time 2°(").

Which hypothesis is the most plausible?

Fixed Parameter Algorithms — p.8/41

INDEPENDENT SET and
k-STEP HALTING PROBLEM

Fact: There is a parameterized reduction from INDEPENDENT SET to the k-STEP
HALTING PROBLEM.

Proof: Given a graph G and an integer k, we construct a Turing machine M and
an integer k' = O(k?) such that M halts in k" steps if and only if G has an
independent set of size k.

The alphabet of M is the vertices of G.
In the first k steps, M nondeterministically writes k vertices to the first k cells.

For every 1 </ < k, M moves to the i-th cell, stores the vertex in the internal
state, and goes through the tape to check that every other vertex is
nonadjacent with the /-th vertex (otherwise M loops).

M does k checks and each check can be done in 2k steps = k' = O(k?).

(See the blackboard.)

Fixed Parameter Algorithms — p.9/41

INDEPENDENT SET and
k-STEP HALTING PROBLEM

Fact: There is a parameterized reduction from the k-STEP HALTING PROBLEM to

INDEPENDENT SET.

Proof: Given a Turing machine M and an integer k, we construct a graph G that
has an independent set of size k’ := k? if and only if M halts in k steps.

G consists of k? cliques, thus a k’-independent set has to contain one vertex
from each.

The selected vertex from clique K;; describes what happens in Step / at cell J:
what is written there, is the head there, and if so, what is the state.

We add edges between the cliques to rule out inconsistencies: head is at more
than one location at the same time, wrong character is written, head moves in

the wrong direction etc.

(See the blackboard.)

Fixed Parameter Algorithms — p.10/41

Summary

INDEPENDENT SET and k-STEP HALTING PROBLEM can be reduced to each
other = Engineers’ Hypothesis and Theorists’ Hypothesis are equivalent!

INDEPENDENT SET and k-STEP HALTING PROBLEM can be reduced to
DOMINATING SET.

Is there a parameterized reduction from DOMINATING SET to INDEPENDENT
SET?

Probably not. Unlike in NP-completeness, where most problems are
equivalent, here we have a hierarchy of hard problems.

Does not matter if we only care about whether a problem is FPT or not!

Fixed Parameter Algorithms — p.11/41

Boolean circuit

A Boolean circuit consists of input gates, negation gates, AND gates, OR gates,
and a single output gate.

X1 X2 X3 X4 X6 X7

CIRCUIT SATISFIABILITY: Given a Boolean circuit C, decide if there is an
assignment on the inputs of C such that the output is true.

WEIGHTED CIRCUIT SATISFIABILITY: Given a Boolean circuit C and an integer k,
decide if there is an assignment of weight k such that the output is true.

Fixed Parameter Algorithms — p.12/41

Weight of an assignment: number of true values.

WEIGHTED CIRCUIT SATISFIABILITY

INDEPENDENT SET can be reduced to WEIGHTED CIRCUIT SATISFIABILITY:

DOMINATING SET can be reduced to WEIGHTED CIRCUIT SATISFIABILITY:
X1 X2 X3 X4 X6 X7

Fixed Parameter Algorithms — p.13/41

WEIGHTED CIRCUIT SATISFIABILITY

INDEPENDENT SET can be reduced to WEIGHTED CIRCUIT SATISFIABILITY:

DOMINATING SET can be reduced to WEIGHTED CIRCUIT SATISFIABILITY:
X1 X2 X3 X4 X6 X7

To express DOMINATING SET, we need more complicated circuits.

Fixed Parameter Algorithms — p.13/41

Depth and weft

The depth of a circuit is the maximum length of a path from an input to the output.

A gate is large if it has more than 2 inputs. The weft of a circuit is the maximum
number of large gates on a path from an input to the output.

INDEPENDENT SET: weft 1, depth 3

Fixed Parameter Algorithms — p.14/41

The W-hierarchy

Let C[t, d] be the set of all circuits having weft at most t and depth at most d.

Definition: A problem P is in the class WI[t] if there is a constant d and a
parameterized reduction from P to WEIGHTED CIRCUIT SATISFIABILITY of C[t, d].

We have seen that INDEPENDENT SET is in W[1] and DOMINATING SET is in W[2].

Fact: INDEPENDENT SET is in W[1]-complete.
Fact: DOMINATING SET is in W[2]-complete.

If any W[1]-complete problem is FPT, then FPT = W[1] and every problem in W[1]
Is FPT.

If any W[2]-complete problem is in W[1], then W[1] = W][2].

= If there is a parameterized reduction from DOMINATING SET to INDEPENDENT
SET, then W[1] = W]2].

Fixed Parameter Algorithms — p.15/41

MULTICOLORED CLIQUE

A useful variant of CLIQUE:

MULTICOLORED CLIQUE: The vertices of the input graph G are colored with k
colors and we have to find a clique containing one vertex from each color.

Fact: MULTICOLORED CLIQUE is W[1]-hard.

Proof by reduction from CLIQUE (see blackboard).

Fixed Parameter Algorithms — p.16/41

LIST COLORING

LisT COLORING is a generalization of ordinary vertex coloring: given a graph G, a
set of colors C, and a list L(v) C C for each vertex v, the task is to find a coloring
c where c(v) € L(v) for every v.

Fact: VERTEX COLORING is FPT parameterized by treewidth.
However, list coloring is more difficult:

Fact: LIST COLORING is W[1]-hard parameterized by treewidth.

Fixed Parameter Algorithms — p.17/41

LIST COLORING

Fact: LIST COLORING is W[1]-hard parameterized by treewidth.

Proof: By reduction from MULTICOLORED CLIQUE.
Let G be a graph with color classes Vi, ..., V.
In the LIST COLORING instance, the set C of colors is the set of vertices of G.

The colors of vertices uy, ..., ux select the k vertices of the clique, hence we
set L(u;) = V.

If x € Vi and y € V; are not adjacent in G, then we need to ensure that
c(u;) = x and c(uj) = y are not true at the same time = we add a vertex
adjacent to u; and uj whose listis {x, y}.

Fixed Parameter Algorithms — p.18/41

LIST COLORING

Fact: LIST COLORING is W[1]-hard parameterized by treewidth.

Proof: By reduction from MULTICOLORED CLIQUE.
Let G be a graph with color classes Vi, ..., V.
In the LIST COLORING instance, the set C of colors is the set of vertices of G.

The colors of vertices uy, ..., ux select the k vertices of the clique, hence we
set L(u;) = V.

If x € Vi and y € V; are not adjacent in G, then we need to ensure that
c(u;) = x and c(uj) = y are not true at the same time = we add a vertex

adjacent to u; and uj whose listis {x, y}.

What about planar graphs?

Fixed Parameter Algorithms — p.18/41

MULTICOLORED GRID

MULTICOLORED GRID: Given a graph G partitioned into k? color classes Vi
(1<i,j £k)findak x k grid subgraph such that vertex v; ; appears in V; ;.

Fact: MULTICOLORED GRID is W[1]-hard.
Proof: By reduction from MULTICOLORED CLIQUE.
Let G be a graph with color classes Vi, ..., V.
Each vertex of the constructed graph H is labeled by a pair of vertices of G.

The color class V;; contains vertex (x,y), x € Vj, y € V; if
I=jand x =y,

i # j and x, y are adjacent.

Edges:
(x,y) € Vijand (x',y") € Vi1, are adjacent if x = x’.
(x,y) € Vijand (x',y") € Vi i1 are adjacentif y = y'.

Fixed Parameter Algorithms — p.19/41

LI1ST COLORING for planar graphs

Fact: LisT COLORING for planar graphs is W[1]-hard parameterized by treewidth.

Proof is the same as the reduction from MULTICOLORED CLIQUE to LIST
COLORING, but now the resulting graph is planar.

Fixed Parameter Algorithms — p.20/41

Part Il:

Exponential Time
Hypothesis

Fixed Parameter Algorithms — p.21/41

Exponential Time Hypothesis

Engineers’ Hypothesis : k-CLIQUE cannot be solved in time (k) - n°®.

i

Theorists’ Hypothesis : k-STEP HALTING PROBLEM (is there a branch of the
NTM that stops in k steps?) cannot be solved in time £ (k) - n°).

T

Exponential Time Hypothesis (ETH) : n-variable 3SAT cannot be solved in
time 2°(").

What do we have to show to prove that ETH implies Engineers’ Hypothesis?

Fixed Parameter Algorithms — p.22/41

Exponential Time Hypothesis

Engineers’ Hypothesis : k-CLIQUE cannot be solved in time (k) - n°®.

i

Theorists’ Hypothesis : k-STEP HALTING PROBLEM (is there a branch of the
NTM that stops in k steps?) cannot be solved in time £ (k) - n°).

T

Exponential Time Hypothesis (ETH) : n-variable 3SAT cannot be solved in
time 2°(").

What do we have to show to prove that ETH implies Engineers’ Hypothesis?

We have to show that an f(k) - n°®) algorithm implies that there is a 2°(") time
algorithm for n-variable 3SAT.

Fixed Parameter Algorithms — p.22/41

Exponential Time Hypothesis

Engineers’ Hypothesis : k-CLIQUE cannot be solved in time (k) - n°®.

i

Theorists’ Hypothesis : k-STEP HALTING PROBLEM (is there a branch of the
NTM that stops in k steps?) cannot be solved in time £ (k) - n°).

T

Exponential Time Hypothesis (ETH) : n-variable 3SAT cannot be solved in
time 2°(").
What do we have to show to prove that ETH implies Engineers’ Hypothesis?

We have to show that an f(k) - n°®) algorithm implies that there is a 2°(") time
algorithm for n-variable 3SAT.

We show something much stronger:

Fact: If there is an f(k) - n°%) time algorithm for k-CLIQUE, then ETH fails.

Fixed Parameter Algorithms — p.22/41

Lower bound on the exponent

Fact: If there is an f(k) - n°%) time algorithm for k-CLIQUE, then ETH fails.
We use the following result:

Fact: [Sparsification Lemmal]
n-variable 3SAT can be solved in time 2°(")

0

m-clause 3SAT can be solved in time 2°(™

3-COLORING is NP-complete and there is a polynomial-time reduction from
m-clause 3SAT to O(m)-vertex 3-COLORING, thus:

Fact: If n-vertex 3-COLORING can be solved in time 2°(" then m-clause 3SAT can
be solved in time 2°(™ and ETH fails.

Fixed Parameter Algorithms — p.23/41

Lower bound on the exponent

Fact: If there is an f(k) - n°%) time algorithm for k-CLIQUE, then ETH fails.

Suppose that k-CLIQUE can be solved in time f(k) - n*/*() where s(k) is a
monotone increasing unbounded function. We use this algorithm to solve
3-COLORING 0n an n-vertex graph G in time 2°(").

Let £~ '(n) be the largest integer i such that (i) < n.
Function f~*(n) is monotone increasing and unbounded.

Let k := £~ *(n). Split the vertices of G into k groups. Let us build a graph H
where each vertex corresponds to a proper 3-coloring of one of the groups.
Connect two vertices if they are not conflicting.

A k-clique of H corresponds to a proper 3-coloring of G.

= A 3-coloring of G can be found in time
f(k) . nk/s(k) S n- (3n/k)k/s(k) —n- 3n/s(f_1(n)) — 2o(n).

Fixed Parameter Algorithms — p.24/41

Transferring lower bounds

If we have a lower bound for problem P and there is a parameterized reduction
from P to Q, then we get a lower bound for @ as well.

Parameterized reduction from problem P to problem @Q: a function ¢ with the

following properties:

¢(x) can be computed in time (k) - |x|°(Y), where k is the parameter of x,
¢(x) is a yes-instance of Q if and only if x is a yes-instance of P.

If k is the parameter of x and k' is the parameter of ¢(x), then k' < g(k) for
some function g.

Suppose there is no f(k) - n°%) algorithm for P.
If g(k) = O(k), then we know that there is no f(k) - n°%) time algorithm for Q.

If g(k) = O(k?), then we know that there is no ???? algorithm for Q.

Fixed Parameter Algorithms — p.25/41

Transferring lower bounds

If we have a lower bound for problem P and there is a parameterized reduction
from P to Q, then we get a lower bound for @ as well.

Parameterized reduction from problem P to problem @Q: a function ¢ with the

following properties:

¢(x) can be computed in time (k) - |x|°(Y), where k is the parameter of x,
¢(x) is a yes-instance of Q if and only if x is a yes-instance of P.

If k is the parameter of x and k' is the parameter of ¢(x), then k' < g(k) for
some function g.

Suppose there is no f(k) - n°%) algorithm for P.
If g(k) = O(k), then we know that there is no f(k) - n°%) time algorithm for Q.

If g(k) = O(k?), then we know that there is no (k) - n°Vk) algorithm for Q.

Fixed Parameter Algorithms — p.25/41

Lower bounds for FPT algorithms

We know that VERTEX COVER can be solved in time O*(c¥).
Can we do it much faster, for example in time O*(c¥*) or O*(c*/'°8¥)?

Fact: If VERTEX COVER can be solved in time 2°%) . n°) then ETH fails.

Proof: There is a polynomial-time reduction from m-clause 3SAT to O(m)-vertex
VERTEX COVER. The assumed algorithm would solve the latter problem in time
2°(m) . ,O() violating ETH.

Fixed Parameter Algorithms — p.26/41

Lower bounds for planar FPT algorithms

Yesterday we have seen that VERTEX COVER, INDEPENDENT SET, DOMINATING
SET can be solved in time 2°0VK) . n9W) on planar graphs.

Can we get much better dependence on k?

Fact: if VERTEX COVER, INDEPENDENT SET, or DOMINATING SET can be solved in
time 2°(VK) . () for planar graphs, then ETH fails.

Proof: There are polynomial-time reductions from m-clause 3SAT to O(m?)-vertex
instances of these problems. Thus a 2°(V%) . n°() time algorithm would solve
m-clause 3SAT in time 2°(V™) . nO() — 2o(m) yiglating ETH.

Fixed Parameter Algorithms — p.27/41

Part IlI:
Approximation schemes

Fixed Parameter Algorithms — p.28/41

Approximation schemes

Polynomial-time approximation scheme (PTAS):
Input: Instance x, € > 0

Output: (1 + €)-approximate solution
Running time: polynomial in | x| for every fixed ¢
PTAS: running time is |x| (/¢
EPTAS: (Efficient PTAS) running time is £(1/¢) - |x|°®

FPTAS: (Fully polynomial approximation scheme) running time is
(1/6)0(1) . ‘X|O(1)

Yesterday, we have seen an EPTAS for INDEPENDENT SET on planar graphs.

For some problems, there is a PTAS, but no EPTAS is known. Can we show that no
EPTAS is possible?

Fixed Parameter Algorithms — p.29/41

Standard parameterization

Given an optimization problem we can turn it into a decision problem: the input is
a pair (x, k) and we have to decide if there is a solution for x with cost at least/at
most k.

The standard parameterization of an optimization problem is the associated
decision problem, with the value k appearing in the input being the parameter.

Example:

VERTEX COVER
Input: (G, k)

Parameter: k

Question: Is there a vertex cover of size at most k?

If the standard parameterization of an optimization problem is FPT, then
(intuitively) it means that we can solve it efficiently if the optimum is small.

Fixed Parameter Algorithms — p.30/41

No EPTAS

Fact: If the standard parameterization of an optimization problem is W[1]-hard,
then there is no EPTAS for the optimization problem, unless FPT = WI[1].

Proof: Suppose an f(1/¢) - n°Y) time EPTAS exists. Running this EPTAS with
e := 1/(k + 1) decides if the optimum is at most/at least k.

Fixed Parameter Algorithms — p.31/41

No EPTAS

Fact: If the standard parameterization of an optimization problem is W[1]-hard,
then there is no EPTAS for the optimization problem, unless FPT = WI[1].

Proof: Suppose an f(1/¢) - n°Y) time EPTAS exists. Running this EPTAS with
e := 1/(k + 1) decides if the optimum is at most/at least k.

Thus W[1]-hardness results immediately show that (assuming W[1] # FPT)
No EPTAS for INDEPENDENT SET for unit disks/squares.
No EPTAS for DOMINATING SET for unit disks/squares.
No EPTAS for planar TMIN, TMAX, MPSAT.

No EPTAS for CLOSEST STRING.

Fixed Parameter Algorithms — p.31/41

Part V.

| ower bounds
for kernels

Fixed Parameter Algorithms — p.32/41

Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an
instance (/, k) to an instance (/’, k") such that

(1, k) is a yes-instance if and only if (/’, k") is a yes-instance,
k' < k, and

|1'] < f(k) for some function (k).

Fixed Parameter Algorithms — p.33/41

Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an
instance (/, k) to an instance (/’, k") such that

(1, k) is a yes-instance if and only if (/’, k") is a yes-instance,
k' < k, and

|1'] < f(k) for some function (k).

Simple fact: If a problem has a kernelization algorithm, then it is FPT.
Proof: Solve the instance (/’, k") by brute force.

Fixed Parameter Algorithms — p.33/41

Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an
instance (/, k) to an instance (/’, k") such that

(1, k) is a yes-instance if and only if (/’, k") is a yes-instance,
k' < k, and

|1'] < f(k) for some function (k).

Simple fact: If a problem has a kernelization algorithm, then it is FPT.
Proof: Solve the instance (/’, k") by brute force.

Converse: Every FPT problem has a kernelization algorithm.
Proof: Suppose there is an f(k)n“ algorithm for the problem.

If f(k) < n, then solve the instance in time f(k)n® < n“™!, and output a trivial
yes- or no-instance.

If n < f(k), then we are done: a kernel of size f(k) is obtained.

Fixed Parameter Algorithms — p.33/41

Polynomial kernels

Asking which problems have kernels is not interesting: it is the same as asking
which problems are FPT.

A more relevant question: which problems have polynomial kernels (i.e., the size
of instance /" is O(k°) for some constant c)?

We have seen some polynomial kernels:

3 k-vertex kernel for VERTEX COVER
k? kernel for COVERING POINTS WITH LINES

k? kernel for d-HITTING SET

But if the problem is FPT by some other technique (color coding, iterative compres-
sion, etc.), then it is not clear whether it has a polynomial kernel.

Fixed Parameter Algorithms — p.34/41

Kernel lower bounds

Recall: k-PATH can be solved in (randomized) time O*((2e)*) by color coding.

Very recent result (2008): k-PATH has no poly kernel, unless coNP C NP/poly and
the polynomial hierarchy collapses.

Similar results for other problems: under the same assumption, no polynomial
kernel for

k-CYCLE
STEINER TREE
CONNECTED VERTEX COVER

VERTEX DISJOINT PATHS

Very-very recent result: VERTEX COVER has no O(k*~) kernel, unless ...

Note: The 3k-vertex kernel has size O(k?).

Fixed Parameter Algorithms — p.35/41

k-PATH

Intuition why k-PATH has no polynomial kernel (not a proof!).
Suppose that k-PATH has a kernel of size k°.

Set t = k“ 4+ 1 and consider t instances (Gi, k), ..., (G, k) with the same
parameter k.

The instance (G1 U ... G, k) is a yes-instance if and only if at least one (Gj, k) is a

yes-instance.

Kernelization gives an instance of k¢ < t bits. Less than one bit per original
instance. Intuitively, we managed to solve at least one instance.

Fixed Parameter Algorithms — p.36/41

OR-distillation algorithms

An OR-distillation algorithm for a problem P is an algorithm with the following
properties:

The input is a sequence /1, ..., I; of instances of P.

The running time is polynomial.

The output is an instance O of P with
|O] < max;_, poly(|h|)
O is a yes-instance < at least one /; is a yes instance.

We are able to compress arbitrarily many instances into a single instance. Should
not be possible for NP-hard problems.

Fact: If an NP-hard problem has an OR-distillation algorithm, then coNP C NP/poly
and the polynomial hierarchy collapses.

Fixed Parameter Algorithms — p.37/41

Proof for k-PATH

Fact: k-PATH has no poly kernel, unless coNP C NP/poly and the polynomial
hierarchy collapses.

We show that if k-PATH has a polynomial kernel, then it has an OR-distillation.

Suppose we have t instances, each of size n.

Group them by the parameter.

Make each group a single graph (with many components) = n instances.
Kernelize each group =- n instance, each of size poly(n).

Asking if at least one instance is YES is a problem in NP = As k-PATH is
NP-complete, we can construct a k-PATH instance of size poly(n) answering
this question = OR-distillation.

Fixed Parameter Algorithms — p.38/41

OR-composition

What properties of k-PATH were used in the proof?

It is NP-hard.

By taking the union, we can join instances with the same parameter into a
single instance.

Fixed Parameter Algorithms — p.39/41

OR-composition

What properties of k-PATH were used in the proof?

It is NP-hard.

By taking the union, we can join instances with the same parameter into a
single instance.

An OR-composition algorithm formalizes the second property:
The input is a sequence /1, ..., I; of instances with the same parameter k.
The running time is polynomial.

The output is an instance O with parameter k” and
k" < poly(k)

O is a yes-instance < at least one /; is a yes instance.

Fact: NP-hard + OR-composition = OR-distillation = No poly kernel, unless ...

Fixed Parameter Algorithms — p.39/41

AND-composition

We can define AND-composition and AND-distillation in a similar way:

they create one instance that is a yes-instance if and only if every input instance is
a yes-instance.

Example: TREEWIDTH (given a graph G and an integer k, is the treewidth of G at
most k?) has an AND-composition: The union of graphs Gi, ..., G; has treewidth
at most k if and only if every G; has treewidth at most k.

It is conjectured that NP-complete problems have no AND-distillation, but
currently no result similar to OR-distillation is known.

Such a result could be used to show that TREEWIDTH has no polynomial
kernel.

Fixed Parameter Algorithms — p.40/41

Parameterized complexity

Possibility to give evidence that certain problems are not FPT.

Parameterized reduction.

The W-hierarchy.
ETH gives much stronger and tighter lower bounds.

PTAS vs. EPTAS

Kernel lower bounds.

Fixed Parameter Algorithms — p.41/41

	Parameterized complexity
	Classical complexity
	
	Parameterized complexity
	Parameterized reduction
	A reduction
	Basic hypotheses
		extsc {Independent Set} and\ 	extsc {k-Step Halting Problem}
		extsc {Independent Set} and\ 	extsc {k-Step Halting Problem}
	Summary
	Boolean circuit
		extsc {Weighted Circuit Satisfiability}
	Depth and weft
	The W-hierarchy
		extsc {Multicolored Clique}
		extsc {List Coloring}
		extsc {List Coloring}
		extsc {Multicolored Grid}
		extsc {List Coloring} for planar graphs
	
	Exponential Time Hypothesis
	Lower bound on the exponent
	Lower bound on the exponent
	Transferring lower bounds
	Lower bounds for FPT algorithms
	Lower bounds for planar FPT algorithms
	
	Approximation schemes
	Standard parameterization
	No EPTAS
	
	Kernelization
	Polynomial kernels
	Kernel lower bounds
		extsc {k-Path}
	OR-distillation algorithms
	Proof for 	extsc {k-Path}
	OR-composition
	AND-composition
	Parameterized complexity

