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Recap of last lecture

Parameterized problem: a parameter k is associated with each input instance.

A parameterized problem is fixed-parameter tractable (FPT) if it can be solved in

time f (k) · nc for some function f depending only on k and constant c not

depending on k .

We have seen that VERTEX COVER, k -PATH, BIPARTITE DELETION, CHORDAL

COMPLETION etc. are FPT parameterized by the size k of the solution.

We would like f (k) to be as slowly growing as possible (e.g., O∗(1.2k) is much

better than O∗(2k)).
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Recap of last lecture

Techniques:

Kernelization: construct in polynomial time an equivalent instance of size bounded

by some function f (k).

Bounded depth search trees: branch into a constant number of directions,

decreasing the parameter in each step.

Iterative compression: given a solution of size k + 1, find a solution of size k .

Graph Minors Theory: if a property is closed under taking minors, then powerful

theorems immediately imply FPT algorithms.

Color coding: assign random colors and solve a “colorful” version of the problem.
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Treewidth

Introduction and definition

Part I: Algorithms for bounded treewidth graphs.

Part II: Graph-theoretic properties of treewidth.

Part III: Applications for general graphs.
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The Party Problem

PARTY PROBLEM

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.
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The Party Problem

PARTY PROBLEM

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

Do not invite a colleague and his direct boss at the same time!
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The Party Problem

PARTY PROBLEM

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

Do not invite a colleague and his direct boss at the same time!
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Input: A tree with weights on the

vertices.

Task: Find an independent set of maxi-

mum weight.
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Solving the Party Problem

Dynamic programming paradigm: We solve a large number of subproblems that

depend on each other. The answer is a single subproblem.

Tv : the subtree rooted at v .

A[v ]: max. weight of an independent set in Tv

B[v ]: max. weight of an independent set in Tv that does not contain v

Goal: determine A[r ] for the root r .
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Solving the Party Problem

Dynamic programming paradigm: We solve a large number of subproblems that

depend on each other. The answer is a single subproblem.

Tv : the subtree rooted at v .

A[v ]: max. weight of an independent set in Tv

B[v ]: max. weight of an independent set in Tv that does not contain v

Goal: determine A[r ] for the root r .

Method:

Assume v1, ... , vk are the children of v . Use the recurrence relations

B[v ] =
∑k

i=1 A[vi ]

A[v ] = max{B[v ] , w(v) +
∑k

i=1 B[vi ]}

The values A[v ] and B[v ] can be calculated in a bottom-up order

(the leaves are trivial).
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Treewidth
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Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree

structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag con-

taining both of them.

2. For every vertex v , the bags containing v form a

connected subtree.

h

dcb

a

e f g

a, b, c g , hb, e, f

d , f , gb, c, f

c, d , f
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Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree

structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag con-

taining both of them.

2. For every vertex v , the bags containing v form a

connected subtree.
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Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree

structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag con-

taining both of them.

2. For every vertex v , the bags containing v form a

connected subtree.
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Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree

structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag con-

taining both of them.

2. For every vertex v , the bags containing v form a

connected subtree.

Width of the decomposition: largest bag size −1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 ⇐⇒ graph is a forest
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Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree

structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag con-

taining both of them.

2. For every vertex v , the bags containing v form a

connected subtree.

Width of the decomposition: largest bag size −1.

treewidth: width of the best decomposition.
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c

a

f g he

db

d , f , g

g , ha, b, c b, e, f

b, c, f

c, d , f

Fixed Parameter Algorithms – p.8/48



Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree

structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag con-

taining both of them.

2. For every vertex v , the bags containing v form a

connected subtree.

Width of the decomposition: largest bag size −1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 ⇐⇒ graph is a forest
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Finding tree decompositions

Fact: It is NP-hard to determine the treewidth of a graph (given a graph G and an

integer w , decide if the treewidth of G is at most w ), but there is a polynomial-time

algorithm for every fixed w .

Fact: [Bodlaender’s Theorem] For every fixed w , there is a linear-time algorithm that

finds a tree decomposition of width w (if exists).

⇒ Deciding if treewidth is at most w is fixed-parameter tractable.

⇒ If we want an FPT algorithm parameterized by treewidth w of the input graph, then

we can assume that a tree decomposition of width w is available.
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Finding tree decompositions

Fact: It is NP-hard to determine the treewidth of a graph (given a graph G and an

integer w , decide if the treewidth of G is at most w ), but there is a polynomial-time

algorithm for every fixed w .

Fact: [Bodlaender’s Theorem] For every fixed w , there is a linear-time algorithm that

finds a tree decomposition of width w (if exists).

⇒ Deciding if treewidth is at most w is fixed-parameter tractable.

⇒ If we want an FPT algorithm parameterized by treewidth w of the input graph, then

we can assume that a tree decomposition of width w is available.

Running time is 2O(w3) · n. Sometimes it is better to use the following results instead:

Fact: There is a O(33w · w · n2) time algorithm that finds a tree decomposition of width

4w + 1, if the treewidth of the graph is at most w .

Fact: There is a polynomial-time algorithm that finds a tree decomposition of width

O(w
√

log w), if the treewidth of the graph is at most w .
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Part I:

Algoritmhs for
bounded-treewidth graphs
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WEIGHTED MAX INDEPENDENT SET
and tree decompositions

Fact: Given a tree decomposition of width w , WEIGHTED MAX INDEPENDENT SET can

be solved in time O(2w · n).

Bx : vertices appearing in node x .

Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v ], B[v ] for each

vertex of the graph, we compute 2|Bx | ≤ 2w+1

values for each bag Bx .

M[x , S]: the maximum weight of an independent

set I ⊆ Vx with I ∩ Bx = S .

b, e, f g , h

c, d , f

b, c, f d , f , g

a, b, c

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S ] if all the values are known for
the children of x?
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Nice tree decompositions

Definition: A rooted tree decomposition is nice if every node x is one of the following

4 types:

Leaf: no children, |Bx | = 1

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

Forget: 1 child y , Bx = By \ {v} for some vertex v

Join: 2 children y1, y2 with Bx = By1 = By2

Leaf Forget JoinIntroduce

u, v , w

u, v , w u, w

u, w u, v , w

u, v , w

u, v , w

v

Fact: A tree decomposition of width w and n nodes can be turned into a nice tree

decomposition of width w and O(wn) nodes in time O(w 2n).
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WEIGHTED MAX INDEPENDENT SET
and nice tree decompositions

Leaf: no children, |Bx | = 1

Trivial!

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

m[x , S] =















m[y , S] if v 6∈ S ,

m[y , S \ {v}] + w(v) if v ∈ S but v has no neighbor in S ,

−∞ if S contains v and its neighbor.

Leaf Forget JoinIntroduce

u, v , w

u, v , w u, w

u, w u, v , w

u, v , w

u, v , w

v
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WEIGHTED MAX INDEPENDENT SET
and nice tree decompositions

Forget: 1 child y , Bx = By \ {v} for some vertex v

m[x , S] = max{m[y ,S], m[y , S ∪ {v}]}

Join: 2 children y1, y2 with Bx = By1 = By2

m[x , S] = m[y1, S] + m[y2, S] − w(S)

Leaf Forget JoinIntroduce

u, v , w

u, v , w u, w

u, w u, v , w

u, v , w

u, v , w

v
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WEIGHTED MAX INDEPENDENT SET
and nice tree decompositions

Forget: 1 child y , Bx = By \ {v} for some vertex v

m[x , S] = max{m[y ,S], m[y , S ∪ {v}]}

Join: 2 children y1, y2 with Bx = By1 = By2

m[x , S] = m[y1, S] + m[y2, S] − w(S)

There are at most 2w+1 · n subproblems m[x , S] and each subproblem can be solved

in constant time (assuming the children are already solved).

⇒ Running time is O(2w · n).

⇒ WEIGHTED MAX INDEPENDENT SET is FPT parameterized by treewidth.

⇒ WEIGHTED MIN VERTEX COVER is FPT parameterized by treewidth.
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3-COLORING and
tree decompositions

Fact: Given a tree decomposition of width w , 3-COLORING can be solved in O(3w ·n).

Bx : vertices appearing in node x .

Vx : vertices appearing in the subtree rooted at x .

For every node x and coloring c : Bx → {1, 2, 3},

we compute the Boolean value E [x , c], which is

true if and only if c can be extended to a proper

3-coloring of Vx .

b, e, f g , h

c, d , f

b, c, f d , f , g

a, b, c

bcf=T bcf=F
bcf=T bcf=F

... ...

How to determine E [x , c] if all the values are known for
the children of x?
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3-COLORING and
nice tree decompositions

Leaf: no children, |Bx | = 1

Trivial!

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

If c(v) 6= c(u) for every neighbor u of v , then E [x , c] = E [y , c ′], where c ′ is c

restricted to By .

Forget: 1 child y , Bx = By \ {v} for some vertex v

E [x , c] is true if E [y , c ′] is true for one of the 3 extensions of c to By .

Join: 2 children y1, y2 with Bx = By1 = By2

E [x , c] = E [y1, c] ∧ E [y2, c]

Leaf Forget JoinIntroduce

u, v , w

u, v , w u, w

u, w u, v , w

u, v , w

u, v , w

v
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3-COLORING and
nice tree decompositions

Leaf: no children, |Bx | = 1

Trivial!

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

If c(v) 6= c(u) for every neighbor u of v , then E [x , c] = E [y , c ′], where c ′ is c

restricted to By .

Forget: 1 child y , Bx = By \ {v} for some vertex v

E [x , c] is true if E [y , c ′] is true for one of the 3 extensions of c to By .

Join: 2 children y1, y2 with Bx = By1 = By2

E [x , c] = E [y1, c] ∧ E [y2, c]

There are at most 3w+1 · n subproblems E [x , c] and each subproblem can be solved in

constant time (assuming the children are already solved).

⇒ Running time is O(3w · n).

⇒ 3-COLORING is FPT parameterized by treewidth. Fixed Parameter Algorithms – p.15/48



Vertex coloring

More generally:

Fact: Given a tree decomposition of width w , c -COLORING can be solved in O∗(cw ).

Exercise: Every graph of treewidth at most w can be colored with w + 1 colors.

Fact: Given a tree decomposition of width w , VERTEX COLORING can be solved in

time O∗(ww ).

⇒ VERTEX COLORING is FPT parameterized by treewidth.

Fixed Parameter Algorithms – p.16/48



Hamiltonian cycle and
tree decompositions

Fact: Given a tree decomposition of width w , HAMILTONIAN CYCLE can be solved in

time wO(w) · n.

Bx : vertices appearing in node x .

Vx : vertices appearing in the subtree rooted at x .

If H is a Hamiltonian cycle, then the subgraph

H[Vx ] is a set of paths with endpoints in Bx .

What are the important properties of H[Vx ] “seen

from the outside world”?

The subsets B0
x , B1

x , B2
x of Bx having degree

0, 1, and 2.

The matching M of B1
x .

B0
x B1

x B2
x

x

Vx

Number of subproblems (B0
x , B1

x ,B2
x , M) for each node x : at most 3w · ww .

Fixed Parameter Algorithms – p.17/48



Hamiltonian cycle and
nice tree decompositions

For each subproblem (B0
x , B1

x , B2
x ,M), we have to determine if there is a set of paths

with this pattern.

How to do this for the different types of nodes?

(Assuming that all the subproblems are solved for the children.)

Leaf: no children, |Bx | = 1

Trivial!
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Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B0
x , B1

x , B2
x , M) of node x .

Forget: 1 child y , Bx = By \ {v} for some vertex v

In a solution H of (B0
x , B1

x , B2
x , M), vertex v has degree 2. Thus subproblem

(B0
x , B1

x ,B2
x , M) of x is equivalent to subproblem (B0

x , B1
x ,B2

x ∪ {v},M) of y .

B2
xB0

x B1
x

Fixed Parameter Algorithms – p.19/48



Hamiltonian cycle and
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Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B0
x , B1

x , B2
x , M) of node x .

Forget: 1 child y , Bx = By \ {v} for some vertex v

In a solution H of (B0
x , B1

x , B2
x , M), vertex v has degree 2. Thus subproblem

(B0
x , B1
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Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B0
x , B1

x , B2
x , M) of node x .

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

Case 1: v ∈ B0
x . Subproblem is equivalent with (B0

x \ {v},B1
x , B2

x , M) for node y .

v x

B2
xB0

x B1
x
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Hamiltonian cycle and
nice tree decompositions
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x , B1
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x , M) of node x .

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

Case 1: v ∈ B0
x . Subproblem is equivalent with (B0
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Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B0
x , B1

x , B2
x , M) of node x .

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

Case 1: v ∈ B0
x . Subproblem is equivalent with (B0

x \ {v},B1
x , B2

x , M) for node y .
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Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B0
x , B1

x , B2
x , M) of node x .

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

Case 1: v ∈ B0
x . Subproblem is equivalent with (B0

x \ {v},B1
x , B2

x , M) for node y .

v x

B0
x B2

xB1
x

⇐ y

B0
y B2

yB1
y
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Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B0
x , B1

x , B2
x , M) of node x .

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

Case 2: v ∈ B1
x . Every neighbor of v in Vx is in Bx . Thus v has to be adjacent with one

other vertex of Bx .

Is there a subproblem (B0
y , B1

y ,B2
y , M ′) of node y such that making a vertex of By

adjacent to v makes it a solution for subproblem (B0
x , B1

x , B2
x , M) of node x?

v
x

B2
xB0

x B1
x
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Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B0
x , B1

x , B2
x , M) of node x .

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

Case 2: v ∈ B1
x . Every neighbor of v in Vx is in Bx . Thus v has to be adjacent with one

other vertex of Bx .

Is there a subproblem (B0
y , B1

y ,B2
y , M ′) of node y such that making a vertex of By

adjacent to v makes it a solution for subproblem (B0
x , B1

x , B2
x , M) of node x?
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nice tree decompositions
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Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B0
x , B1

x , B2
x , M) of node x .

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

Case 2: v ∈ B1
x . Every neighbor of v in Vx is in Bx . Thus v has to be adjacent with one

other vertex of Bx .

Is there a subproblem (B0
y , B1

y ,B2
y , M ′) of node y such that making a vertex of By

adjacent to v makes it a solution for subproblem (B0
x , B1
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x , M) of node x?
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x B2

xB0
x
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y B2

yB1
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Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B0
x , B1

x , B2
x , M) of node x .

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

Case 3: v ∈ B1
x . Similar to Case 2, but 2 vertices of By are adjacent with v .

x
v

B0
x B2

xB1
x
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Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B0
x , B1

x , B2
x , M) of node x .

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

Case 3: v ∈ B1
x . Similar to Case 2, but 2 vertices of By are adjacent with v .
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Hamiltonian cycle and
nice tree decompositions

Solving subproblem (B0
x , B1

x , B2
x , M) of node x .

Join: 2 children y1, y2 with Bx = By1 = By2

A solution H is the union of a subgraph H1 ⊆ G [Vy1 ] and a subgraph H2 ⊆ G [Vy2 ].

If H1 is a solution for (B0
y1

, B1
y1

,B2
y1

, M1) of node y1 and H2 is a solution for

(B0
y2

,B1
y2

, B2
y2

, M2) of node y2, then we can check if H1 ∪ H2 is a solution for

(B0
x , B1

x ,B2
x , M) of node x .

For any two subproblems of y1 and y2, we check if they have solutions and if their union

is a solution for (B0
x , B1

x , B2
x ,M) of node x .

Fixed Parameter Algorithms – p.21/48



Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:

Logical connectives ∧, ∨, →, ¬, =, 6=

quantifiers ∀, ∃ over vertex/edge variables

predicate adj(u, v): vertices u and v are adjacent

predicate inc(e, v): edge e is incident to vertex v

quantifiers ∀, ∃ over vertex/edge set variables

∈, ⊆ for vertex/edge sets

Example: The formula ∃C ⊆ V ∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true ...
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Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:

Logical connectives ∧, ∨, →, ¬, =, 6=

quantifiers ∀, ∃ over vertex/edge variables

predicate adj(u, v): vertices u and v are adjacent

predicate inc(e, v): edge e is incident to vertex v

quantifiers ∀, ∃ over vertex/edge set variables

∈, ⊆ for vertex/edge sets

Example: The formula ∃C ⊆ V ∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true if graph G(V , E) has a cycle.
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Courcelle’s Theorem

Courcelle’s Theorem: If a graph property can be expressed in EMSO, then for every

fixed w ≥ 1, there is a linear-time algorithm for testing this property on graphs having

treewidth at most w .

Note: The constant depending on w can be very large (double, triple exponential etc.),

therefore a direct dynamic programming algorithm can be more efficient.
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Courcelle’s Theorem

Courcelle’s Theorem: If a graph property can be expressed in EMSO, then for every

fixed w ≥ 1, there is a linear-time algorithm for testing this property on graphs having

treewidth at most w .

Note: The constant depending on w can be very large (double, triple exponential etc.),

therefore a direct dynamic programming algorithm can be more efficient.

If we can express a property in EMSO, then we immediately get that testing this

property is FPT parameterized by the treewidth w of the input graph.

Can we express 3-COLORING and HAMILTONIAN CYCLE in EMSO?
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Using Courcelle’s Theorem

3-COLORING

∃C1,C2,C3 ⊆ V
(

∀v ∈ V (v ∈ C1 ∨ v ∈ C2 ∨ v ∈ C3)
)

∧
(

∀u, v ∈ V adj(u, v) →
(¬(u ∈ C1 ∧ v ∈ C1) ∧ ¬(u ∈ C2 ∧ v ∈ C2) ∧ ¬(u ∈ C3 ∧ v ∈ C3))

)
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Using Courcelle’s Theorem

3-COLORING

∃C1,C2,C3 ⊆ V
(

∀v ∈ V (v ∈ C1 ∨ v ∈ C2 ∨ v ∈ C3)
)

∧
(

∀u, v ∈ V adj(u, v) →
(¬(u ∈ C1 ∧ v ∈ C1) ∧ ¬(u ∈ C2 ∧ v ∈ C2) ∧ ¬(u ∈ C3 ∧ v ∈ C3))

)

HAMILTONIAN CYCLE

∃H ⊆ E
(

spanning(H) ∧ (∀v ∈ V degree2(H, v))
)

degree0(H, v) := ¬∃e ∈ H inc(e, v)

degree1(H, v) := ¬degree0(H, v) ∧
(

¬∃e1, e2 ∈ H (e1 6= e2 ∧ inc(e1, v) ∧ inc(e2, v))
)

degree2(H, v) := ¬degree0(H, v) ∧ ¬degree1(H, v) ∧
(

¬∃e1, e2, e3 ∈ H (e1 6=
e2 ∧ e2 6= e3 ∧ e1 6= e3 ∧ inc(e1, v) ∧ inc(e2, v) ∧ inc(e3, v)))

)

spanning(H) := ∀u, v ∈ V ∃P ⊆ H ∀x ∈ V
(

((x = u∨x = v)∧degree1(P, x))∨(x 6=
u ∧ x 6= v ∧ (degree0(P, x) ∨ degree2(P, x)))

)
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Using Courcelle’s Theorem

Two ways of using Courcelle’s Theorem:

1. The problem can be described by a single formula (e.g, 3-COLORING, HAMILTONIAN

CYCLE).

⇒ Problem can be solved in time f (w) · n for graphs of treewidth at most w .

⇒ Problem is FPT parameterized by the treewidth w of the input graph.
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Using Courcelle’s Theorem

Two ways of using Courcelle’s Theorem:

1. The problem can be described by a single formula (e.g, 3-COLORING, HAMILTONIAN

CYCLE).

⇒ Problem can be solved in time f (w) · n for graphs of treewidth at most w .

⇒ Problem is FPT parameterized by the treewidth w of the input graph.

2. The problem can be described by a formula for each value of the parameter k .

Example: For each k , having a cycle of length exactly k can be expressed as

∃v1, ... , vk ∈ V (adj(v1, v2) ∧ adj(v2, v3) ∧ · · · ∧ adj(vk−1, vk) ∧ adj(vk , v1)).

⇒ Problem can be solved in time f (k,w) · n for graphs of treewidth w .

⇒ Problem is FPT parameterized with combined parameter k and treewidth w .
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SUBGRAPH ISOMORPHISM

SUBGRAPH ISOMORPHISM: given graphs H and G , find a copy of H in G as subgraph.

Parameter k := |V (H)| (size of the small graph).

For each H , we can construct a formula φH that expresses “G has a subgraph

isomorphic to H” (similarly to the k-cycle on the previous slide).

Fixed Parameter Algorithms – p.26/48



SUBGRAPH ISOMORPHISM

SUBGRAPH ISOMORPHISM: given graphs H and G , find a copy of H in G as subgraph.

Parameter k := |V (H)| (size of the small graph).

For each H , we can construct a formula φH that expresses “G has a subgraph

isomorphic to H” (similarly to the k-cycle on the previous slide).

⇒ By Courcelle’s Theorem, SUBGRAPH ISOMORPHISM can be solved in time

f (H,w) · n if G has treewidth at most w .
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SUBGRAPH ISOMORPHISM

SUBGRAPH ISOMORPHISM: given graphs H and G , find a copy of H in G as subgraph.

Parameter k := |V (H)| (size of the small graph).

For each H , we can construct a formula φH that expresses “G has a subgraph

isomorphic to H” (similarly to the k-cycle on the previous slide).

⇒ By Courcelle’s Theorem, SUBGRAPH ISOMORPHISM can be solved in time

f (H,w) · n if G has treewidth at most w .

⇒ Since there is only a finite number of simple graphs on k vertices, SUBGRAPH

ISOMORPHISM can be solved in time f (k,w) · n if H has k vertices and G has

treewidth at most w .

⇒ SUBGRAPH ISOMORPHISM is FPT parameterized by combined parameter

k := |V (H)| and the treewidth w of G .
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Part II:

Graph-theoretical properties
of treewidth
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Properties of treewidth

Fact: treewidth ≤ 2 ⇐⇒ graph is subgraph of a

series-parallel graph
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Properties of treewidth

Fact: treewidth ≤ 2 ⇐⇒ graph is subgraph of a

series-parallel graph

Fact: For every k ≥ 2, the treewidth of the k × k

grid is exactly k .
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Properties of treewidth

Fact: treewidth ≤ 2 ⇐⇒ graph is subgraph of a

series-parallel graph

Fact: For every k ≥ 2, the treewidth of the k × k

grid is exactly k .

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract

edges.

⇒ If F is a minor of G , then the treewidth of F is at most the treewidth of G .
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Properties of treewidth

Fact: treewidth ≤ 2 ⇐⇒ graph is subgraph of a

series-parallel graph

Fact: For every k ≥ 2, the treewidth of the k × k

grid is exactly k .

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract

edges.

⇒ If F is a minor of G , then the treewidth of F is at most the treewidth of G .

The treewidth of the k-clique is k − 1. Follows from:

Fact: For every clique K , there is a bag B with K ⊆ B .
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Excluded Grid Theorem

Fact: [Excluded Grid Theorem] If the treewidth of G is at least k4k2(k+2), then G has a

k × k grid minor.

A large grid minor is a “witness” that treewidth is large.

Fact: Every planar graph with treewidth at least 4k has k × k grid minor.
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Excluded Grid Theorem

Fact: [Excluded Grid Theorem] If the treewidth of G is at least k4k2(k+2), then G has a

k × k grid minor.

A large grid minor is a “witness” that treewidth is large.

Fact: Every planar graph with treewidth at least 4k has k × k grid minor.

Fact: Every planar graph with treewidth at least 4k

can be contracted to a partially triangulated k × k

grid.
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The Robber and Cops game

Game: k cops try to capture a robber in the graph.

In each step, the cops can move from vertex to vertex arbitrarily with helicopters.

The robber moves infinitely fast on the edges, and sees where the cops will land.

Fact:

k + 1 cops can win the game ⇐⇒ the treewidth of the graph is at most k .
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The Robber and Cops game

Game: k cops try to capture a robber in the graph.

In each step, the cops can move from vertex to vertex arbitrarily with helicopters.

The robber moves infinitely fast on the edges, and sees where the cops will land.

Fact:

k + 1 cops can win the game ⇐⇒ the treewidth of the graph is at most k .

The winner of the game can be determined in time nO(k) using standard techniques

(there are at most nk positions for the cops)

⇓
For every fixed k , it can be checked in polynomial-time if treewidth is at most k .
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The Robber and Cops game

Game: k cops try to capture a robber in the graph.

In each step, the cops can move from vertex to vertex arbitrarily with helicopters.

The robber moves infinitely fast on the edges, and sees where the cops will land.

Fact:

k + 1 cops can win the game ⇐⇒ the treewidth of the graph is at most k .

The winner of the game can be determined in time nO(k) using standard techniques

(there are at most nk positions for the cops)

⇓
For every fixed k , it can be checked in polynomial-time if treewidth is at most k .

Exercise 1: Show that the treewidth of the k × k grid is at least k − 1.

Exercise 2: Show that the treewidth of the k × k grid is at least k .
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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Outerplanar graphs

Definition: A planar graph is outerplanar if it has a planar embedding where every

vertex is on the infinite face.

Fact: Every outerplanar graph has treewidth at most 2.

⇒ Every outerplanar graph is series-parallel.
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k-outerplanar graphs

Given a planar embedding, we can define layers by iteratively removing the vertices

on the infinite face.

Definition: A planar graph is k-outerplanar if it has a planar embedding having at

most k layers.

1

1 1

1
2

2

1

2

3

3

2

3

3

3

3

2

2

2

32

2

2

1

Fact: Every k-outerplanar graph has treewidth at most 3k + 1.
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k-outerplanar graphs

Given a planar embedding, we can define layers by iteratively removing the vertices

on the infinite face.

Definition: A planar graph is k-outerplanar if it has a planar embedding having at

most k layers.
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Fact: Every k-outerplanar graph has treewidth at most 3k + 1.
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k-outerplanar graphs

Given a planar embedding, we can define layers by iteratively removing the vertices

on the infinite face.

Definition: A planar graph is k-outerplanar if it has a planar embedding having at

most k layers.
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Fact: Every k-outerplanar graph has treewidth at most 3k + 1.
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k-outerplanar graphs

Given a planar embedding, we can define layers by iteratively removing the vertices

on the infinite face.

Definition: A planar graph is k-outerplanar if it has a planar embedding having at

most k layers.
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Fact: Every k-outerplanar graph has treewidth at most 3k + 1.
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k-outerplanar graphs

Given a planar embedding, we can define layers by iteratively removing the vertices

on the infinite face.

Definition: A planar graph is k-outerplanar if it has a planar embedding having at

most k layers.

3

33
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3

Fact: Every k-outerplanar graph has treewidth at most 3k + 1.
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Part III:

Applications
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Baker’s shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G , find a copy

of H in G as subgraph. Parameter k := |V (H)|.

Layers of the planar graph:

(as in the definition of

k-outerplanar):
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Baker’s shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G , find a copy

of H in G as subgraph. Parameter k := |V (H)|.

Layers of the planar graph:

(as in the definition of

k-outerplanar):

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s (mod k + 1)
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Baker’s shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G , find a copy

of H in G as subgraph. Parameter k := |V (H)|.

Layers of the planar graph:

(as in the definition of

k-outerplanar):

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s (mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.

Using the f (k, w) · n time algorithm for SUBGRAPH ISOMORPHISM, the problem

can be solved in time f (k, 3k + 1) · n.

Fixed Parameter Algorithms – p.35/48



Baker’s shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G , find a copy

of H in G as subgraph. Parameter k := |V (H)|.

Layers of the planar graph:

(as in the definition of

k-outerplanar):

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s (mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.

Using the f (k, w) · n time algorithm for SUBGRAPH ISOMORPHISM, the problem

can be solved in time f (k, 3k + 1) · n.

We do this for every 0 ≤ s < k + 1: for at least one value of s, we do not delete

any of the k vertices of the solution ⇒ we find a copy of H in G if there is one.

SUBGRAPH ISOMORPHISM for planar graphs is FPT parameterized by k := |V (H)|.
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Layers of the planar graph:

(as in the definition of

k-outerplanar):

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s (mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
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Baker’s shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G , find a copy

of H in G as subgraph. Parameter k := |V (H)|.

Layers of the planar graph:

(as in the definition of

k-outerplanar):

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s (mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.

Using the f (k, w) · n time algorithm for SUBGRAPH ISOMORPHISM, the problem

can be solved in time f (k, 3k + 1) · n.

We do this for every 0 ≤ s < k + 1: for at least one value of s, we do not delete

any of the k vertices of the solution ⇒ we find a copy of H in G if there is one.

SUBGRAPH ISOMORPHISM for planar graphs is FPT parameterized by k := |V (H)|.
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Detour to approximation...
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Detour to
approximation algorithms

Definition: A c-approximation algorithm for a maximization problem is a

polynomial-time algorithm that finds a solution of cost at least OPT/c .

Definition: A c-approximation algorithm for a minimization problem is a

polynomial-time algorithm that finds a solution of cost at most OPT · c .

There are well-known approximation algorithms for NP-hard problems:
3
2
-approximation for METRIC TSP, 2-approximation for VERTEX COVER,

8
7
-approximation for MAX 3SAT, etc.
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Detour to
approximation algorithms

Definition: A c-approximation algorithm for a maximization problem is a

polynomial-time algorithm that finds a solution of cost at least OPT/c .

Definition: A c-approximation algorithm for a minimization problem is a

polynomial-time algorithm that finds a solution of cost at most OPT · c .

There are well-known approximation algorithms for NP-hard problems:
3
2
-approximation for METRIC TSP, 2-approximation for VERTEX COVER,

8
7
-approximation for MAX 3SAT, etc.

For some problems, we have lower bounds: there is no (2 − ǫ)-approximation for

VERTEX COVER or ( 8
7
− ǫ)-approximation for MAX 3SAT (under suitable

complexity assumptions).

For some other problems, arbitrarily good approximation is possible in polynomial

time: for any c > 1 (say, c = 1.000001), there is a polynomial-time

c-approximation algorithm!
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Approximation schemes

Definition: A polynomial-time approximation scheme (PTAS) for a problem P is an

algorithm that takes an instance of P and a rational number ǫ > 0,

always finds a (1 + ǫ)-approximate solution,

the running time is polynomial in n for every fixed ǫ > 0.

Typical running times: 21/ǫ · n, n1/ǫ, (n/ǫ)2, n1/ǫ2

.

Some classical problems that have a PTAS:

INDEPENDENT SET for planar graphs

TSP in the Euclidean plane

STEINER TREE in planar graphs

KNAPSACK
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Baker’s shifting strategy for EPTAS

Fact: There is a 2O(1/ǫ) · n time PTAS for INDEPENDENT SET for planar graphs.

Let D := 1/ǫ. For a fixed 0 ≤ s < D, delete every layer Li with i = s (mod D)

The resulting graph is D-outerplanar, hence it has treewidth at most

3D + 1 = O(1/ǫ).

Using the O(2w · n) time algorithm for INDEPENDENT SET, the problem can be

solved in time 2O(1/ǫ) · n.

We do this for every 0 ≤ s < D: for at least one value of s, we delete at most

1/D = ǫ fraction of the solution ⇒ we get a (1 + ǫ)-approximate solution.
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Back to FPT...
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Depth-first search (DFS)

Fact: Finding a cycle of length at least k in a graph is FPT parameterized by k .

Let us start a depth-first search from an arbitrary vertex v . There are two types of

edges: tree edges and back edges.

If there is a back edge whose endpoints differ by at

least k − 1 levels ⇒ there is a cycle of length at

least k .

Otherwise, the graph has treewidth at most k−2 and

we can solve the problem by applying Courcelle’s

Theorem.
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Depth-first search (DFS)

Fact: Finding a cycle of length at least k in a graph is FPT parameterized by k .

Let us start a depth-first search from an arbitrary vertex v . There are two types of

edges: tree edges and back edges.

If there is a back edge whose endpoints differ by at

least k − 1 levels ⇒ there is a cycle of length at

least k .

Otherwise, the graph has treewidth at most k−2 and

we can solve the problem by applying Courcelle’s

Theorem.

In the second case, a tree decomposition can be easily

found: the decomposition has the same structure as the

DFS spanning tree and each bag contains the vertex and

its k − 2 ancestors.
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Bidimensionality

A powerful framework to obtain efficient algorithms on planar graphs.

Let x(G) be some graph invariant (i.e., an integer associated with each graph).

Some typical examples:

Maximum independent set size.

Minimum vertex cover size.

Length of the longest path.

Minimum dominating set size

Minimum feedback vertex set size.

Given G and k , we want to decide if x(G) ≤ k (or x(G) ≥ k).

For many natural invariants, we can do this in time 2O(
√

k) · nO(1).
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Bidimensionality for
VERTEX COVER

Observation: If the treewidth of a planar graph G is at least 4
√

2k

⇒ It contains a
√

2k ×
√

2k grid minor (Excluded Grid Theorem for planar graphs)

⇒ The vertex cover size of the grid is at least k in the grid

⇒ Vertex cover size is at least k in G .
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Bidimensionality for
VERTEX COVER

Observation: If the treewidth of a planar graph G is at least 4
√

2k

⇒ It contains a
√

2k ×
√

2k grid minor (Excluded Grid Theorem for planar graphs)

⇒ The vertex cover size of the grid is at least k in the grid

⇒ Vertex cover size is at least k in G .

We use this observation to solve VERTEX COVER on planar graphs as follows:

Set w := 4
√

2k.

Use the 4-approximation tree decomposition

algorithm (2O(w) · nO(1) = 2O(
√

k) · nO(1) time).

If treewidth is at least w : we answer ’vertex

cover is ≥ k ’.

If we get a tree decomposition of width 4w ,

then we can solve the problem in time

2w · nO(1) = 2O(
√

k) · nO(1).
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Bidimensionality (cont.)

Definition: A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and

If Gk is the k × k grid, then x(Gk) ≥ ck2 (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are

minor-bidimensional.
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Bidimensionality (cont.)

Definition: A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and

If Gk is the k × k grid, then x(Gk) ≥ ck2 (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are

minor-bidimensional.
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Bidimensionality (cont.)

We can answer “x(G) ≥ k?” for a minor-bidimensional parameter the following way:

Set w := c
√

k for an appropriate constant c .

Use the 4-approximation tree decomposition algorithm.

If treewidth is at least w : x(G) is at least k .

If we get a tree decomposition of width 4w , then we can solve the problem

using dynamic programming on the tree decomposition.

Running time:

If we can solve the problem using a width w tree decomposition in time

2O(w) · nO(1), then the running time is 2O(
√

k) · nO(1).

If we can solve the problem using a width w tree decomposition in time

wO(w) · nO(1), then the running time is 2O(
√

k log k) · nO(1).
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Contraction bidimensionality

Problem: DOMINATING SET is not minor-bidimensional (why?).
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Contraction bidimensionality

Problem: DOMINATING SET is not minor-bidimensional (why?).

We fix the problem by allowing only contractions but not edge/vertex deletions.

Definition: A graph invariant x(G) is

contraction-bidimensional if

x(G ′) ≤ x(G) for every contraction G ′

of G , and

If Gk is a k×k partially triangulated grid,

then x(Gk) ≥ ck2 (for some constant

c > 0).

Example: minimum dominating set,

maximum independent set are contraction-

bidimensional.
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Bidimensionality for
DOMINATING SET

The size of a minimum dominating set is a contraction bidimensional invariant:

we need at least (k − 2)2/9 vertices to dominate all the internal vertices of a partially

triangulated k × k grid (since a vertex can dominate at most 9 internal vertices).

We use this observation to solve DOMINATING SET on planar graphs as follows:

Set w := 3
√

k + 2.

Use the 4-approximation tree decomposition algorithm.

If treewidth is at least w : we answer ’dominating set is ≥ k ’.

If we get a tree decomposition of width 4w , then we can solve the problem in

time 3w · nO(1) = 2O(
√

k) · nO(1).

Fact: Given a tree decomposition of width w , DOMINATING SET can be solved in time

O∗(3w ).

Exercise: Given a tree decomposition of width w , DOMINATING SET can be solved in

time O∗(4w ). Fixed Parameter Algorithms – p.47/48



Summary

Notion of treewidth allows us to generalize dynamic programming on trees to more

general graphs.

Standard techniques for designing algorithms on bounded treewidth graphs:

dynamic programming and Courcelle’s Theorem.

Surprising uses of treewidth in other contexts (planar graphs).

Tomorrow: Bad news. Complexity results. Which problems are not FPT?
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