
Turing-machines

Friedl Katalin
BME SZIT

friedl@cs.bme.hu

March 22, 2016

The assumption that the memory of a PDA is a stack turns out to be a pretty
strong restriction. Now, we introduce a computational model that relaxes this
restriction. Although this is also a theoretical model, we will see that from a
certain point of view it is the most general possible. There are many equivalent
variants of Turing machines, but for the sake of simplicity we only treat here
one deterministic and one nondeterministic version. The definition is similar to
the preceding ones, but here the stack is replaced by a tape. We can move on
the tape one slot at a time, however, we can move forwards and backwards, as
well.

Deterministic Turing-machine

Defintion 1 Let k ≥ 1 be an integer. A k-tape Turing-machine is described by
a seven tuple M = (Q,Σ,Γ, q0, ∗, F, δ), where:

• Q is a finite nonempty set, the set of states of the machine

• Σ is a finite nonempty set, the input alphabet

• Γ is a finite nonempty set, tape alphabet, Σ ⊂ Γ

• q0 ∈ Q the start state

• ∗ ∈ Γ \ Σ, the blank symbol of the tape,

• F ⊆ Q the set of accept states,

• δ the transition function, δ : (q, a1, a2, · · · , ak)→ (q′, b1, b2, · · · , bk, D1, D2, · · · , Dk),
where q, q′ ∈ Q, ai, bi ∈ Γ and Di ∈ {L,R, S} (that is Left, Right or Stay).

The meaning is the following. Each tape has a beginning and is one-way
infinite. Each slot on the tapes can store one symbol of Γ. The machine is in
state q0 at the beginning. On the first few slots of the first tape (starting at
the first slot) the input word is stored, which can only contain symbols from
Σ. The rest of the first tape, and if k > 1, then the other tapes everywhere are

1

filled up with blank symbol ∗. Each tape has a read/write head that stay on
the first slot.

If in a given situation the character under the read/write head on the first
tape is a1, that on the second tape is a2, on the ith tape is ai, and the machine
is in state q, then in one step according to the value of the transition function
δ(q, a1, a2, . . . , ak) = (q′, b1, b2, · · · , bk, D1, D2, · · · , Dk) the machine moves to
state q′, rewrites character ai to bi on the ith tape and the head moves Left,
Right or Stays put corresponding to the value Di.

The Turing machine performs sequence steps corresponding to its transition
function during a computation. We have to take care of that if a head is at the
beginning of a tape then it does not move Left from there (it must not “fall
off” the tape). The computation stops when machine cannot move, that is the
computation gets stuck, i.e., the transition function is not defined for the given
situation. The machine accepts the input if it gets stuck in an accept state (a
state in F).

It is important to note that it is not guaranteed that a Turing-machine stops
on a given input. The following possibilities are there. In the second and third
case the Turing-machine does not accept the input word.

• the machine sooner or later stops in an accept state, that is it accepts the
input.

• the machine sooner or later stops in a non-accept state, that is it rejects
the input

• the machine never stops on the given input, that is it loops. In this case
the machine does not accept the input.

The definition of Turing-machines resembles to the definition of incomplete
automata. Important formal restriction is that now the condition of acceptance
is different. In case of finite automata and pushdown automata it was required
that the input must be completely read till its end, the computation must not
get stuck before that. Now, it is not necessary to read the input completely,
however, acceptance is only possible when the machine gets stuck. It is possible
to give acceptance conditions similar to the ones in case of finite automata, we
would obtain an equivalent model, but the form introduced above is the most
generally widespread and it is simpler to use.

It can be shown, that despite of the differences that the Turing-machine is
a generalization both of finite automata and pushdown automata: both can
be easily simulated by Turing-machine. Indeed, the states of the automata are
stored in the states of the Turing-machine, the stack of the pushdown automata
can be stored on a tape. The Turing-machine has more possibilities than finite
automate in two sense, namely the head(s) can move in two directions and that
the heads can also write. It can be shown that from these two only the second
one is important, since a finite automaton that can move in two direction on
the tape also accepts only regular languages.

2

Defintion 2 The language recognized by Turing-machine M :

L(M) = {w ∈ Σ : M accepts word w}

Turing-machines can also be represented by graphs. In this case the ar-
rows representing transitions are labeled by what characters are written by the
machine on reading given characters, furthermore in what directions the heads
move.

Example 1 The 2-tape Turing-machine shown below recognizes language {anbncn :
n ≥ 0}. The underlying idea is that the input characters a’s are copied to the
second tape. Then reading the second tape from right to left we can compare the
number of b’s to the number of a’s, finally, reading forward we can compare the
same number to the number of c’s.

q0 q1 q2

q3q4q5

(a, ∗)→ (a, X), S,R

(b, ∗)→ (b, ∗),S,S
(c, ∗)→ (c, ∗),S,S

(a, ∗)→ (a, a), R,R

(b, ∗)→ (b, ∗), S,L

(b, a)→ (b, a), R,L

(c, X)→ (c, X), S,R

(c, a)→ (c, a), R,R

(∗, ∗)→ (∗, ∗), S,S

In a little bit more details the working of the machine is as follows.

• If the empty word is the input in state q0, then the machine accepts it. If
the input starts with character b or c, then the machine moves to state
q5 where the computation stops and the machine rejects the input. If the
input starts with symbol a, then an X is written on the first slot of the
second tape, so when reading from the right to left, it marks the beginning
of the tape. The first tape is not changed.

• State q1 is the copying state, as long as an a is read on tape 1, an a is
written on tape 2. On reading the first b, the machine moves to state q2.
(If character c comes, then the computation stops since the machine gets
stuck, and the input is rejected since q1 is not an accept state.)

• In state q2 the head of the first tape moves still to the right, while the head
of tape 2 moves to the left as long as character b is read on the first tape
and a is read on the second tape. The machine can move to state q3 iff
the first character c comes on the first tape exactly when the head arrives
at the symbol X marking the beginning of the second tape, that is iff the
numbers of characters a and b were equal.

• State q3 is to compare the number of characters c and the number of a’s
on tape 2. This time the head moves to right on tape 2, again.

3

• The machine moves to accept state q4 iff the heads reach the blank symbols
on both tapes at the same time.

Thus, it is shown that language {anbncn : n ≥ 0} can be recognized by
a Turing-machine, but it is known that there is no pushdown automaton (let
alone finite automaton) recognizing it.

The diagonal language and the halting language

In order to show a language that cannot be recognized by Turing-machine ei-
ther, it is necessary to note that a Turing-machine can be described by a finite
sequence of characters (basically, the transition function must be given). Such a
sequence can be encoded by a 0/1 sequence, so a Turing-machine description (or
a description of a pushdown automaton or finite automaton) can be considered
as an element of {0, 1}∗. Naturally, not all words are descriptions of Turing-
machines. If w ∈ {0, 1}∗ describes a Turing machine, then let the corresponding
Turing-machine be denoted by Mw.

For the following language every 0/1 sequence is considered in two roles.
Once, it is viewed as a Turing-machine description, second it is considered as
an input of Turing-machines.

Defintion 3 The diagonal language Ld consists of words w ∈ {0, 1}∗ that are
Turing-machine descriptions and machine Mw does not accept word w, that is

Ld = {w ∈ {0, 1}∗ : w 6∈ L(Mw)}.

Theorem 1 There exists no Turing-machine M that recognizes the diagonal
language Ld.

Proof: The proof is indirect. Let us assume that M is a Turing-machine that
recognizes Ld and let x be its description. The question is whether x is contained
in the diagonal language.

Case 1. Assume that x ∈ Ld. By the definition of the diagonal language this
means that x 6∈ L(Mx). On the other hand, by the choice of x, Mx = M
and by the choice of M we have that L(Mx) = L(M) = Ld. This is a
contradiction, since both x ∈ Ld and x 6∈ L(Mx) should hold at the same
time.

Case 2. Assume now that x 6∈ Ld. By definition this implies that x ∈ L(Mx),
which is a contradiction, again, since L(Mx) = L(M) = Ld.

. There are no other possible cases, so our original assumption, the existence of
a Turing-machine recognizing Ld is false. �

Another “problematic” case is, when there exists a Turing-machine that
recognizes the given language, however it does not stop in finite time for all
inputs.

4

Defintion 4 The halting language Lh consists of such (Turing-machine, input)
pairs that the given Turing-machine stops in finite time on the given input.

Lh = {w#x : Mw stops on input x}

Theorem 2 There exists no Turing-machine M that stops in finite time on all
inputs and recognizes the halting language Lh.

Sketch of the proof: We show that if there were such a Turing-machine M ,
then there would exist another one M ′ that recognizes the diagonal language.
However, this latter one is known not to exist. Thus, let us assume that Turing-
machine M is such that it stops on every input and L(M) = Lh. This basically
means that we can test whether machine Mw stops on input w.

If we know that it stops, then we can simulate it, as well (we need to interpret
the description of the Turing-machine, basically) and after finite number of steps
it turns out whether Mw accepts w. If w ∈ L(Mw), then let M ′ reject the input,
and if w 6∈ L(Mw), then let M ′ accept it.

On the other hand, if it turns out that Turing-machine Mw does not stop on
input w, then we do not need to simulate its computation. If it does not stop,
then it does not accept either, so in this case let M ′ stop in a non-accept state.

Thus, we have constructed Turing-machine M ′ that stops in finite time on
each input and recognizes the diagonal language, that contradicts to the previous
theorem. �

Turing-machines can be viewed as programs written in some programming
language, and the word fed to the machine can be considered as input of the
program. Using this analogy, the previous theorem states that it is impossible
to write a program that decides in finite time for any given other program and
input for it whether it would stop in finite time.

We will soon see that this analogy is not an exaggeration. The power and
limitations of Turing-machines in general is shown by the following.

Church–Turing-thesis

1. There exists a Turing-machine recognizing language L iff there exists a
(not necessarily finite) process (algorithm) that accepts exactly the words
of language L.

2. There exists a Turing-machine that stops for every input in finite time
recognizing language L iff there exists a (always finite) process (algorithm)
that for every input word x decides whether it is a word of language L.

We have no definition for the concepts of process, algorithm of the thesis, so
we cannot consider the thesis above as a theorem. The Church–Turing-thesis
states the fact based on experience that so far no computational model were
introduced that could recognize more languages that Turing-machines can.

In short, the Church–Turing-thesis states that Turing-machine is a best pos-
sible and strongest computational model we have.

5

Nondeterministic Turing-machine

Nondeterminism is an already known concept, it works the same way here.
The value of the transition function is a set in case of nondeterministic Turing-
machine, the machine accepts an input word if there is a possible computation
that stops in an accept state. It is worth noting that the tree of computation
of a nondeterministic Turing-machine may contain infinite branches.

Similarly to finite automata, it is possible to get rid of nondeterminism in
case of Turing-machines.

Theorem 3 Every nondeterministic Turing-machine can be simulated by a de-
terministic Turing-machine.

Sketch of the proof: Let M be the nondeterministic Turing-machine we want to
construct deterministic machine M ′ for. The idea is that for an arbitrary input
x M ′ performs a breadth first search walk on the computation tree of M (more
precisely it generates from top to bottom this computation tree). If it finds an
accepting leaf (that is where M would get stuck in an accept state), then M ′

stops in an accept state. If the BFS tree walk ends so that M ′ did not find an
accepting leaf then it stops in a non-accept state. On the other hand, if the
tree is infinite and it does not contain an accepting leaf, then M ′ will not stop,
either, (which by definition means that it does not accept the input). �

Remark 1 Note that depth first search cannot be used, because it does not
return if there is an infinite path in the computation tree.

Polynomial time

We study Turing-machines that stop on every input in finite time in the fol-
lowings. In that case the main question is how many steps do they take before
stopping. It is worth taking this number of steps as a function of the input
length, since longer input naturally may require more steps.

Defintion 5 Deterministic Turing-machine M is said to have time complexity
(or running time) f(n) if for every input x we have that M takes at most f(|x|)
steps on input x.

That is f(n) is an upper bound for the running time of the Turing-machine
on input words of length n.

Defintion 6 Nondeterministic Turing-machine M is said to have time com-
plexity (or running time) f(n) if for every input x we have that M takes at
most f(|x|) steps on input x.

That is f(n) is an upper bound for the running time of the Turing-machine
on input words of length n independently of which branch of the computation
tree we look at, that is f(n) is an upper bound for the height of the computation
tree.

6

Defintion 7 M is of polynomial time complexity, if it has time complexity
f(n) for some polynomial f(n) (that is for some constant c the running time is
O(nc)).

Languages can be classified according to how fast Turing-machines can be
fond for them.

The two arguably most important classes are P and NP.

Defintion 8 P is the class languages that have polynomial time complexity de-
terministic Turing machines recognizing them, while NP is the class languages
that have polynomial time complexity nondeterministic Turing machines recog-
nizing them.

Example 2 For example, the language {anbncn : n ≥ 0} belongs to class P,
since the Turing-machine described earlier uses not only polynomial, but linear
number of steps as a function of input length.

The language classes above are also interesting because of they are robust
in the sense that which languages belong to the class is independent of what
machine model is used to define the class. For example, if only 1-tape Turing-
machines are considered, the same classes are obtained.

In general it is extremely tedious to rewrite an algorithm to Turing-machine
formulation. In order to decide whether a language belongs to class P, typically
enough to argue that there is an algorithm using polynomial number of steps
to determine whether a word belongs to the language. Thus, languages that
belong to effective algorithms studied before are in P.

Example 3 The following languages belong to class P.

• Language of connected graphs. The words of the language are adjacency
matrices of connected graphs. In case of an N vertex graph the size of
the matrix is N2. The connectedness of the graph can be decided using
breadth first search in O(N2) running time. (So this is linear time algo-
rithm, in fact.) The process can be implemented using Turing-machine in
polynomial time, so this language is in class P .

• The language of bipartite graphs. This also has a polynomial algorithm.

• The language of bipartite graphs that have complete matching.

• Those words (G, s, t, k), where G is a graph with weighted edges, s and t
are two vertices of the graph, k is a number and there exists a path between
s and t in G of weight at most k.

A polynomial time complexity nondeterministic Turing-machine has to be
presented in order to show that a language belongs to class NP. If we want to
translate this to more usual algorithmic ideas we need another characterization
of class NP.

7

Theorem 4 (Verifier (witness) theorem) It holds for a language L that
L ∈ NP iff there exists constants c1, c2 > 0 and language L1 consisting of
pairs of words such that L1 ∈ P and

L = {x : there exists y, such that |y| ≤ c1|x|c2 and (x, y) ∈ L1}.

According to the conditions L1 has a polynomial time Turing-machine recog-
nizing it. This (or the corresponding polynomial time algorithm) is called an
effective (polynomial time) verifier of L, since it verifies that x ∈ L with the
help of appropriate (witness) y.

Sketch of the proof: Let us first assume that L ∈ NP. This means that there
exists a polynomial time complexity nondeterministic Turing-machine M such
that L(M) = L. That is, there exists number k that on every input of length n
the length of computation paths is O(nk). Thus, if x ∈ L, then M has a branch
of computation that ends in an accept state and its length is at most |x|k. Such
a path can be described by specifying at each state in which branch to continue,
that can be done by a constant amount of bits at each step, so the description
length satisfies the requirement of the witness (c2 = k).

Thus, let language L1 consist of pairs (x, y) such that if x is considered as
an input of machine M , then y describes a branch of the computation tree that
ends with accept. This y satisfies the length requirement as it was shown above.
Checking that this is really an accepting computation branch can be done by
performing the corresponding computation steps in running time linear in the
length of y. Note that if x 6∈ L, then there exists no y such that (x, y) ∈ L1.

For the other direction, lets start from that for a given x we consider all
sequences y of length c1 · |x|c2 , and for all such y we run on pair (x, y) Turing-
machine M ′ that recognizes language L1. For each pair the running time is
polynomial, nevertheless, the total time is exponential, because there are many
y’s. However, the good y can be searched for nondeterministically, that is
generating y is the nondeterministic part, after that M is deterministic and
accepts input x if M ′ accepts pair (x, y). The Turing-machine M constructed
in this way recognizes language L both, the nondeterministic and the following
deterministic parts are of polynomial time complexity. �

Example 4 The following languages are in NP.

• The language Ham of graphs containing Hamiltonian cycles. H∈ NP,
because L1 cab be chosen to consist of pairs of words where the first
member of the pair is a description of a graph, the second member is a
permutation of the vertices of the graph that forms a Hamiltonian cycle.
(The sequence of vertices can be done by concatenations of bit sequences
of lengths log n.)

It is clear that L1 ∈ P, because it is easy to decide for a graph and a
sequence of numbers that the sequence forms a Hamiltonian cycle in the
graph – one just have to check that each vertex occurs exactly once and
there are edges between each pair of consecutive vertices, and between the
first and last vertex. In case of an n vertex graph that can be done by

8

an algorithm of running time O(n) (and by Turing-machine in polynomial
time).

It is also clear that there exists a good pair for a graph description x if
and only if the graph contains a Hamiltonian cycle. We need only to check
that the size of the witness is polynomial in the size of the graph. This
holds, since the graph description is of size n2, while the description of the
witness is of size O(n · log n).

• The language Composite consisting of binary forms of positive composite
integers. Let L1 consist of pairs (m, t) of positive integers written in
binary, such that 1 < t < m and m is divisible by t, that is a proper
divisor t is the witness. Divisibility can be checked in polynomial time, so
L1 ∈ P , and naturally the length of t is at most the length of m.

• The language 3-Color of the graphs that can be properly colored by three
colors. 3-Color∈ NP, since L1 can be chosen consisting of pairs whose
first term is a graph description and the second term is the colors of
vertices.

L1 ∈ P, because it is easy to decide about a given graph and a given
coloring that it is a proper coloring of the graph, one just has to check for
each edge whether its end vertices are of distinct colors, and that in total
at most 3 colors were used. This can be done by an O(n2) running time
algorithm.

It is also clear that there exists a good pair for graph x only if the graph
has a proper coloring. The size of the witness is polynomial of the size of
the graph, since the color of each vertex can be described by a constant
length bit sequence.

Defintion 9 The complement L of language L consists of those words that are
not in L, that is L = {x : x 6∈ L}.

Example 5 Composite = Prime, where Prime denotes the language consist-
ing of prime numbers written in binary.

Defintion 10 Let co NP denote the class of complements of languages in NP,
that is co NP = {L : L ∈ NP}.

Intuitively, while for languages in NP there are effective verifiers for belong-
ing to the language, in case of languages in co NP the effective verifier exists
for not belonging to the language. For example, this is so in case of language
Prime, since a proper divisor shows that a number is not a prime.

Theorem 5 P ⊆ NP and P ⊆ co NP

Proof: If L ∈ P, then there exists a polynomial time complexity deterministic
Turing-machine M such that L(M) = L. This M can be considered being
nondeterministic, as well, so L ∈ NP.

9

On the other hand, if L ∈ P , then L ∈ P also holds, since only accept and
non-accept properties of states have to be swapped. L ∈ NP follows by the
argument above, and so by definition L ∈ co NP. �

Remark 2 It can be read out from the proof of Theorem 3 that from a nonde-
terministic Turing-machine running in polynomial time p(n), one can construct
a deterministic Turing-machine running in exponential time O(cp(n)).

Intuitively, but little ambiguously one can say that a language belongs to P
if for an arbitrary x it can be decided fast whether x belongs to the language,
while a language is in NP, if by conjecturing (receiving as a present, being told
by an oracle, or just seeing in a dream) a witness for that x belongs to the
language, it can be verified fast.

One of the fundamental questions of computer science whether P = NP is
true. This would mean that finding a proof is of same complexity as verifying it.
This seems unbelievable, but there is no proof known for that P 6= NP (neither
exists proof for P = NP). Generally accepted belief is that P 6= NP, but there
are also some doubts, as well.

Karp-reduction

The following concept is useful in studying languages in NP. The definition can
be applied in wider range, not only for languages in NP, but we will concentrate
mainly on NP.

Defintion 11 (Karp-reduction) Let L1, L2 ⊆ Σ∗ two languages. L1 can be
Karp-reduced to L2, if there exists function f : Σ∗ → Σ∗ computable in polyno-
mial time that x ∈ L1 ⇔ f(x) ∈ L2.

In notation L1 ≺ L2.

The notation suggests, as we will see soon, that language L2 is at least as hard
as language L1.

Remark 3 The property that a function is computable in polynomial time should
be interpreted as there exists a polynomial time algorithm that computes the value
of f(x) for a given x. Formally, this can also be defined by Turing-machines,
such a version of Turing-machines is needed where the question is not whether
the input is accepted, but what is on one of its predetermined tape at the time of
halting. For example, one can require that the result of the computation is the
content of the second tape.

Example 6 Similarly to language 3-Color one can define language 4-Color.
It consists of descriptions of unoriented graphs that can be properly colored using
4 colors. We show that 3-Color≺ 4-Color. We need to exhibit an appropriate
function f .

• If x is not a graph description (for example its length is not a square
number when we expect adjacency matrix), then let f(x) = x. In this case
x 6∈ 3-Color and f(x) 6∈ 4-Color

10

• For a graph G let G′ be the graph obtained by adding a new vertex to G
and connecting it to every vertex of G. Let f(G) = G′.

Function f can be computed in polynomial time since (the adjacency matrix
of)G′ can be constructed from the matrix of G. On the other hand, it is clear
that G can be properly colored using 3 colors iff G′ can be properly colored using
4 colors.

NP-completeness

Defintion 12 Language L is NP-complete, if L ∈ NP and for every L′ ∈ NP
holds that L′ ≺ L.

NP-complete languages can be considered being hardest in class NP, since every
language in NP can be reduced to them.

Historically, the first NP-complete language consisted of Boolean formulas.
A Boolean formula consists of logic constants 0 and 1, logic variables (Boolean

variables) x1, . . . , xn, their negated forms x1, . . . , xn connected by operations ∧
(“and”) and ∨ (“or”) and parentheses. A formula is satisfiable if there is an
assignment of the variables so that the value of the formula is 1.

A Boolean formula is in conjunctive normal form or CNF, if it is in the
following form.

(xi1 ∨ xi2 ∨ xi3 . . .) ∧ (xij ∨ xij+1
∨ xij+2

. . .) ∧ . . .

A 3CNF formula is a CNF formula, where there are at most 3 literals in each
parentheses

Defintion 13 The language of satisfiable formulas is

SAT = {ϕ(x1, . . . , xn) : ∃b1, . . . , bn evaluation such that ϕ(b1, . . . , bn) = 1}

The language of satisfiable 3CNF formulas is

3SAT = {ϕ(x1, . . . , xn) : ϕ ∈ SAT and ϕ is of 3CNF form}.

Remark 4 Of course, the definition above should be understood so that for-
mulas are coded by 0-1 sequences according to some syntax and the language
consists of the codes.

Theorem 6 (Cook, Levin) Language SAT is NP-complete.

Sketch of the proof: It is not hard to show that SAT is in NP, since an evaluation
resulting in value 1 is a good witness. The length of the evaluation and the time
required to check it are both polynomial in the length of the input.

The hard part of the proof is to show that every language in NP can be
reduced to SAT. Let L ∈ NP be arbitrary. Then there exists a polynomial time
complexity nondeterministic Turing-machine M such that L(M) = L. If x is

11

an input of M , then the Karp-reduction assigns a formula to it such that the
formula is satisfiable iff x ∈ L. The basic idea is that the formula essentially
describes the computation of M on input x and is satisfiable iff there exists an
accepting branch of the computation. We do not go into details of that, just
for the taste of it there will be variables of type ziq of meaning that after the
ith step machine M is in state q. These must satisfy that for each i within the
number of steps there exists exactly one q such that ziq = 1. Similarly there will
be variables describing the contents of the tapes or the positions of the heads.
The rules how these change from the ith step to the i+ 1st step can be derived
from the transition function. �

Since the formula in the theorem can be given in 3CNF form, as well, we
have

Theorem 7 Language 3SAT is NP-complete.

12

