
592 Chapter 24 Single-Source Shortest Paths

24.1-5 ⋆

Let G = (V, E) be a weighted, directed graph with weight function w : E → R.

Give an O(V E)-time algorithm to find, for each vertex v ∈ V , the value δ∗(v) =

minu∈V {δ(u, v)}.

24.1-6 ⋆

Suppose that a weighted, directed graph G = (V, E) has a negative-weight cycle.

Give an efficient algorithm to list the vertices of one such cycle. Prove that your

algorithm is correct.

24.2 Single-source shortest paths in directed acyclic graphs

By relaxing the edges of a weighted dag (directed acyclic graph) G = (V, E)

according to a topological sort of its vertices, we can compute shortest paths from

a single source in 2(V + E) time. Shortest paths are always well defined in a dag,

since even if there are negative-weight edges, no negative-weight cycles can exist.

The algorithm starts by topologically sorting the dag (see Section 22.4) to im-

pose a linear ordering on the vertices. If there is a path from vertex u to vertex v,

then u precedes v in the topological sort. We make just one pass over the vertices

in the topologically sorted order. As we process each vertex, we relax each edge

that leaves the vertex.

DAG-SHORTEST-PATHS(G, w, s)

1 topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE(G, s)

3 for each vertex u, taken in topologically sorted order

4 do for each vertex v ∈ Adj[u]

5 do RELAX(u, v,w)

Figure 24.5 shows the execution of this algorithm.

The running time of this algorithm is easy to analyze. As shown in Section 22.4,

the topological sort of line 1 can be performed in 2(V + E) time. The call of

INITIALIZE-SINGLE-SOURCE in line 2 takes 2(V) time. There is one iteration

per vertex in the for loop of lines 3–5. For each vertex, the edges that leave the

vertex are each examined exactly once. Thus, there are a total of |E | iterations

of the inner for loop of lines 4–5. (We have used an aggregate analysis here.)

Because each iteration of the inner for loop takes 2(1) time, the total running time

is 2(V + E), which is linear in the size of an adjacency-list representation of the

graph.

24.2 Single-source shortest paths in directed acyclic graphs 593

2
∞ ∞0

5

16

3 4

∞ ∞ ∞

7 –1 –2

2

(a)

xtsr y z

25

16

3 4

7 –1 –2

2

(c)

xtsr y z

25

16

3 4

7 –1 –2

2

(e)

xtsr y z

25

16

3 4

7 –1 –2

2

(g)

xtsr y z

25

16

3 4

7 –1 –2

2

(b)

xtsr y z

25

16

3 4

7 –1 –2

2

(d)

xtsr y z

25

16

3 4

7 –1 –2

2

(f)

xtsr y z

∞ 0 ∞ ∞2 6

∞ 0 2 6 5 4

∞ 0 2 6 5 3

∞ 0 2 6 5 3

∞ 0 2 6 6 4

∞ ∞0 ∞ ∞ ∞

Figure 24.5 The execution of the algorithm for shortest paths in a directed acyclic graph. The

vertices are topologically sorted from left to right. The source vertex is s. The d values are shown

within the vertices, and shaded edges indicate the π values. (a) The situation before the first iteration

of the for loop of lines 3–5. (b)–(g) The situation after each iteration of the for loop of lines 3–5.

The newly blackened vertex in each iteration was used as u in that iteration. The values shown in

part (g) are the final values.

The following theorem shows that the DAG-SHORTEST-PATHS procedure cor-

rectly computes the shortest paths.

Theorem 24.5

If a weighted, directed graph G = (V, E) has source vertex s and no cycles, then

at the termination of the DAG-SHORTEST-PATHS procedure, d[v] = δ(s, v) for all

vertices v ∈ V , and the predecessor subgraph Gπ is a shortest-paths tree.

594 Chapter 24 Single-Source Shortest Paths

Proof We first show that d[v] = δ(s, v) for all vertices v ∈ V at termina-

tion. If v is not reachable from s, then d[v] = δ(s, v) = ∞ by the no-path

property. Now, suppose that v is reachable from s, so that there is a shortest

path p = 〈v0, v1, . . . , vk〉, where v0 = s and vk = v. Because we pro-

cess the vertices in topologically sorted order, the edges on p are relaxed in the

order (v0, v1), (v1, v2), . . . , (vk−1, vk). The path-relaxation property implies that

d[vi] = δ(s, vi) at termination for i = 0, 1, . . . , k. Finally, by the predecessor-

subgraph property, Gπ is a shortest-paths tree.

An interesting application of this algorithm arises in determining critical paths

in PERT chart2 analysis. Edges represent jobs to be performed, and edge weights

represent the times required to perform particular jobs. If edge (u, v) enters ver-

tex v and edge (v, x) leaves v, then job (u, v)must be performed prior to job (v, x).

A path through this dag represents a sequence of jobs that must be performed in a

particular order. A critical path is a longest path through the dag, corresponding to

the longest time to perform an ordered sequence of jobs. The weight of a critical

path is a lower bound on the total time to perform all the jobs. We can find a critical

path by either

• negating the edge weights and running DAG-SHORTEST-PATHS, or

• running DAG-SHORTEST-PATHS, with the modification that we replace “∞”

by “−∞” in line 2 of INITIALIZE-SINGLE-SOURCE and “>” by “<” in the

RELAX procedure.

Exercises

24.2-1

Run DAG-SHORTEST-PATHS on the directed graph of Figure 24.5, using vertex r

as the source.

24.2-2

Suppose we change line 3 of DAG-SHORTEST-PATHS to read

3 for the first |V | − 1 vertices, taken in topologically sorted order

Show that the procedure would remain correct.

24.2-3

The PERT chart formulation given above is somewhat unnatural. It would be

more natural for vertices to represent jobs and edges to represent sequencing con-

2“PERT” is an acronym for “program evaluation and review technique.”

