24.1-5 \star

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbf{R}$. Give an $O(V E)$-time algorithm to find, for each vertex $v \in V$, the value $\delta^{*}(v)=$ $\min _{u \in V}\{\delta(u, v)\}$.

24.1-6 \star

Suppose that a weighted, directed graph $G=(V, E)$ has a negative-weight cycle. Give an efficient algorithm to list the vertices of one such cycle. Prove that your algorithm is correct.

24.2 Single-source shortest paths in directed acyclic graphs

By relaxing the edges of a weighted dag (directed acyclic graph) $G=(V, E)$ according to a topological sort of its vertices, we can compute shortest paths from a single source in $\Theta(V+E)$ time. Shortest paths are always well defined in a dag, since even if there are negative-weight edges, no negative-weight cycles can exist.

The algorithm starts by topologically sorting the dag (see Section 22.4) to impose a linear ordering on the vertices. If there is a path from vertex u to vertex v, then u precedes v in the topological sort. We make just one pass over the vertices in the topologically sorted order. As we process each vertex, we relax each edge that leaves the vertex.

DAG-SHORTEST-PATHS (G, w, s)

```
topologically sort the vertices of \(G\)
Initialize-Single-Source \((G, s)\)
    for each vertex \(u\), taken in topologically sorted order
            do for each vertex \(v \in A d j[u]\)
                        do \(\operatorname{Relax}(u, v, w)\)
```

Figure 24.5 shows the execution of this algorithm.
The running time of this algorithm is easy to analyze. As shown in Section 22.4, the topological sort of line 1 can be performed in $\Theta(V+E)$ time. The call of Initialize-Single-Source in line 2 takes $\Theta(V)$ time. There is one iteration per vertex in the for loop of lines $3-5$. For each vertex, the edges that leave the vertex are each examined exactly once. Thus, there are a total of $|E|$ iterations of the inner for loop of lines $4-5$. (We have used an aggregate analysis here.) Because each iteration of the inner for loop takes $\Theta(1)$ time, the total running time is $\Theta(V+E)$, which is linear in the size of an adjacency-list representation of the graph.

Figure 24.5 The execution of the algorithm for shortest paths in a directed acyclic graph. The vertices are topologically sorted from left to right. The source vertex is s. The d values are shown within the vertices, and shaded edges indicate the π values. (a) The situation before the first iteration of the for loop of lines 3-5. (b)-(g) The situation after each iteration of the for loop of lines 3-5. The newly blackened vertex in each iteration was used as u in that iteration. The values shown in part (g) are the final values.

The following theorem shows that the DAG-Shortest-Paths procedure correctly computes the shortest paths.

Theorem 24.5

If a weighted, directed graph $G=(V, E)$ has source vertex s and no cycles, then at the termination of the DAG-Shortest-Paths procedure, $d[v]=\delta(s, v)$ for all vertices $v \in V$, and the predecessor subgraph G_{π} is a shortest-paths tree.

Proof We first show that $d[v]=\delta(s, v)$ for all vertices $v \in V$ at termination. If v is not reachable from s, then $d[v]=\delta(s, v)=\infty$ by the no-path property. Now, suppose that v is reachable from s, so that there is a shortest path $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $v_{0}=s$ and $v_{k}=v$. Because we process the vertices in topologically sorted order, the edges on p are relaxed in the order $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$. The path-relaxation property implies that $d\left[v_{i}\right]=\delta\left(s, v_{i}\right)$ at termination for $i=0,1, \ldots, k$. Finally, by the predecessorsubgraph property, G_{π} is a shortest-paths tree.

An interesting application of this algorithm arises in determining critical paths in PERT chart 2 analysis. Edges represent jobs to be performed, and edge weights represent the times required to perform particular jobs. If edge (u, v) enters vertex v and edge (v, x) leaves v, then job (u, v) must be performed prior to job (v, x). A path through this dag represents a sequence of jobs that must be performed in a particular order. A critical path is a longest path through the dag, corresponding to the longest time to perform an ordered sequence of jobs. The weight of a critical path is a lower bound on the total time to perform all the jobs. We can find a critical path by either

- negating the edge weights and running Dag-Shortest-Paths, or
- running DaG-Shortest-Paths, with the modification that we replace " ∞ " by " $-\infty$ " in line 2 of Initialize-Single-Source and " $>$ " by " $<$ " in the Relax procedure.

Exercises

24.2-1

Run Dag-Shortest-Paths on the directed graph of Figure 24.5, using vertex r as the source.

24.2-2

Suppose we change line 3 of DAG-Shortest-Paths to read
3 for the first $|V|-1$ vertices, taken in topologically sorted order
Show that the procedure would remain correct.

24.2-3

The PERT chart formulation given above is somewhat unnatural. It would be more natural for vertices to represent jobs and edges to represent sequencing con-

[^0]
[^0]: 2"PERT" is an acronym for "program evaluation and review technique."

