592

Chapter 24 Single-Source Shortest Paths

24.1-5

Let G = (V, E) be a weighted, directed graph with weight function w : £ — R.
Give an O(V E)-time algorithm to find, for each vertex v € V/, the value §*(v) =
minyey {8(u, v)}.

24.1-6 *

Suppose that a weighted, directed graph G = (V, E) has a negative-weight cycle.
Give an efficient algorithm to list the vertices of one such cycle. Prove that your
algorithm is correct.

24.2 Single-source shortest paths in directed acyclic graphs

By relaxing the edges of a weighted dag (directed acyclic graph) G = (V, E)
according to a topological sort of its vertices, we can compute shortest paths from
a single source in ® (V' 4 E) time. Shortest paths are always well defined in a dag,
since even if there are negative-weight edges, no negative-weight cycles can exist.

The algorithm starts by topologically sorting the dag (see Section 22.4) to im-
pose a linear ordering on the vertices. If there is a path from vertex u to vertex v,
then u precedes v in the topological sort. We make just one pass over the vertices
in the topologically sorted order. As we process each vertex, we relax each edge
that leaves the vertex.

DAG-SHORTEST-PATHS (G, w, s)

1 topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE (G, s)

3 for each vertex u, taken in topologically sorted order
4 do for each vertex v € Adj[u]

5 do RELAX(u, v, w)

Figure 24.5 shows the execution of this algorithm.

The running time of this algorithm is easy to analyze. As shown in Section 22.4,
the topological sort of line 1 can be performed in ®(V + E) time. The call of
INITIALIZE-SINGLE-SOURCE in line 2 takes ® (V) time. There is one iteration
per vertex in the for loop of lines 3-5. For each vertex, the edges that leave the
vertex are each examined exactly once. Thus, there are a total of |E| iterations
of the inner for loop of lines 4-5. (We have used an aggregate analysis here.)
Because each iteration of the inner for loop takes ® (1) time, the total running time
is ®(V + E), which is linear in the size of an adjacency-list representation of the
graph.

24.2 Single-source shortest paths in directed acyclic graphs 593

Figure 24.5 The execution of the algorithm for shortest paths in a directed acyclic graph. The
vertices are topologically sorted from left to right. The source vertex is s. The d values are shown
within the vertices, and shaded edges indicate the 7z values. (a) The situation before the first iteration
of the for loop of lines 3-5. (b)—(g) The situation after each iteration of the for loop of lines 3-5.
The newly blackened vertex in each iteration was used as u in that iteration. The values shown in
part (g) are the final values.

The following theorem shows that the DAG-SHORTEST-PATHS procedure cor-
rectly computes the shortest paths.

Theorem 24.5

If a weighted, directed graph G = (V, E) has source vertex s and no cycles, then
at the termination of the DAG-SHORTEST-PATHS procedure, d[v] = §(s, v) for all
vertices v € V, and the predecessor subgraph G, is a shortest-paths tree.

594

Chapter 24 Single-Source Shortest Paths

Proof We first show that d[v] = &(s, v) for all vertices v € V at termina-
tion. If v is not reachable from s, then d[v] = §(s,v) = oo by the no-path
property. Now, suppose that v is reachable from s, so that there is a shortest
path p = (vy, vy, ..., V), where v9 = s and vy, = v. Because we pro-
cess the vertices in topologically sorted order, the edges on p are relaxed in the
order (v, v1), (v1, v2), ..., (vg_1, vx). The path-relaxation property implies that
d[v;] = é(s, v;) at termination for i = 0, 1, ..., k. Finally, by the predecessor-
subgraph property, G is a shortest-paths tree. |

An interesting application of this algorithm arises in determining critical paths
in PERT chart® analysis. Edges represent jobs to be performed, and edge weights
represent the times required to perform particular jobs. If edge (u, v) enters ver-
tex v and edge (v, x) leaves v, then job (u, v) must be performed prior to job (v, x).
A path through this dag represents a sequence of jobs that must be performed in a
particular order. A critical path is a longest path through the dag, corresponding to
the longest time to perform an ordered sequence of jobs. The weight of a critical
path is a lower bound on the total time to perform all the jobs. We can find a critical
path by either

* negating the edge weights and running DAG-SHORTEST-PATHS, or

* running DAG-SHORTEST-PATHS, with the modification that we replace “oco0”
by “—o00” in line 2 of INITIALIZE-SINGLE-SOURCE and “>” by “<” in the
RELAX procedure.

Exercises

24.2-1
Run DAG-SHORTEST-PATHS on the directed graph of Figure 24.5, using vertex r
as the source.

24.2-2
Suppose we change line 3 of DAG-SHORTEST-PATHS to read

3 for the first | V| — 1 vertices, taken in topologically sorted order

Show that the procedure would remain correct.

24.2-3
The PERT chart formulation given above is somewhat unnatural. It would be
more natural for vertices to represent jobs and edges to represent sequencing con-

24PERT” is an acronym for “program evaluation and review technique.”

