REGULAR LANGUAGES

ins with a question: What is a computer? It is
perhaps a silly question, as even my four-year-old daughter knows that this thing
I type on is a computer. But these real computers are quite complicated—too
much so to allow us to set up a manageable mathematical theory of them di-
rectly. Instead we use an idealized computer called a computational model. As
with any model in science, a computational model may be accurate in some ways
but perhaps not in others. Thus we will use several different computational mod-
els, depending on the features we want to focus on. We begin with the simplest
model, called the finite state machine or finite automaton.

]]

FINITE AUTOMATA

Finite automata are good models for computers with an extremely limited
amount of memory. What can a computer do with such a small memory? Many

AILARARANRL L 22T YV ilou Ladl o LU RS Ava2 S AL &£ o2l1822 RAACAAIWY

useful things! In fact, we interact with such computers all the time, as they lie at
the heart of various electromechanical devices.
As shown in the following figures, the controller for an automatic door is one

example of such a device. Often found at supermarket entrances and exits, auto-
matic doors swing open when sensing that a person is approaching. An automatic

31

32 CHAPTER 1/ REGULAR LANGUAGES

door has a pad in front to detect the presence of a person about to walk through
the doorway. Another pad is located to the rear of the doorway so that the con-
troller can hold the door open long enough for the person to pass all the way
through and also so that the door does not strike someone standing behind it as
it opens.

front rear

pad pad

door

FIGURE 1.1
"lop view of an automatic door

The controller is in either of two states: “OPEN” or “CLOSED,” representing
the corresponding condition of the door. As shown in the following figures, there
are four possible input conditions: “FRONT” (meaning that a person is standing
on the pad in front of the doorway), “REAR” (meaning that a person is standing on
the pad to the rear of the doorway), “BOTH” (meaning that people are standing
on both pads), and “NEITHER” (meaning that no one is standing on either pad).

REAR FRONT
BOTH REAR
NEITHER BOTH
FRONT
CLOSED OPEN
NEITHER

FIGURE 1.2
State diagram for automatic door controller

1.1 FINITE AUTOMATA 33

input signal

| NEITHER FRONT REAR BOTH
state CLOSED | CLOSED OPEN CLOSED CLOSED
OPEN CLOSED OPEN OPEN OPEN

FIGURE 1.3
State transition table for automatic door controller

The controller moves from state to state, depending on the input it receives.
When in the CLOSED state and receiving input NEITHER or REAR, it remains in
the CLOSED state. In addition, if the input BOTH is received, it stays CLOSED
because opening the door risks knocking someone over on the rear pad. But if
the input FRONT arrives, it moves to the OPEN state. In the OPEN state, if input
FRONT, REAR, or BOTH is received, it remains in OPEN. If input NEITHER
arrives, it returns to CLOSED.

For example, a controller might start in state CLOSED and receive the fol-
lowing series of input signals: FRONT, REAR, NEITHER, FRONT, BOTH,
NEITHER, REAR, NEITHER. It then would go through the series of states:
CLOSED (starting), OPEN, OPEN, CLOSED, OPEN, OPEN, CLOSED, CLOSED,

CLOSED.
’T“"\Iﬂ]}'1 (I‘ Of

cause that suggests standard ways of representation as in Flgures 1. 2 and 1 3. ThlS
controller is a computer that has just a single bit of memory, capable of recording
which of the two states the controller is in. Other common devices have con-
trollers with somewhat larger memories. In an elevator controller a state may
represent the floor the elevator is on and the inputs might be the signals received
from the buttons. This computer might need several bits to keep track of this
information. Controllers for various household appliances such as dishwashers
and electronic thermostats, as well as parts of digital watches and calculators, are
additional examples of computers with limited memories. The design of such
devices requires keeping the methodology and terminology of finite automata in
mind.

Finite automata and their probabilistic counterpart Markov chains are useful
tools when we are attempting to recognize patterns in data. These devices are
used in speech processing and in optical character recognition. Markov chains
have even been used to model and predict price changes in financial markets.

We will now take a close look at finite automata from a mathematical perspec-
tive. We will develop a precise definition of a finite automaton, terminology for
describing and manipulating finite automata, and theoretical results that describe
their power and limitations. Besides giving us a clearer understanding of what fi-
nite automata are and what they can and cannot do, the theoretical development
allows us to practice and become more comfortable with mathematical defini-
tions, theorems, and proofs in a relatively simple setting.

34 CHAPTER 1 / REGULAR LANGUAGES

In beginning to describe the mathematical theory of finite automata, we do so
in the abstract, without reference to any particular application. The following
figure depicts a finite automaton called M.

FIGURE 1.4
A finite automaton called M; that has three states

Figure 1.4 is called the state diagram of M. It has three states, labeled ¢y, go,
and qz. The start state, q,, is indicated by the arrow pointing at it from nowhere.
The accept state, q2, is the one with a double circle. The arrows going from one
state to another are called transitions.

When this automaton receives an input string such as 1101, it processes that
string and produces an output. The output is either accept or reject. We will
consider only this yes/no type of output for now to keep things simple. The pro-
cessing begins in A, ’s start state. The automaton receives the symbols from the
input string one by one from left to right. After reading each symbol, M; moves
from one state to another along the transition that has that symbol as its label.
When it reads the last symbol, M; produces its output. The output is accept if
M is now in an accept state and reject if it is not.

For example, when we feed the input string 1101 to the machine M, in Fig-
ure 1.4, the processing proceeds as follows.

. start in state qi;
. read 1, follow transition from ¢, to go;

- read 1, follow transition from ¢ to ga;

1
2
3
4. read 0, follow transition from ¢z to ¢s;
5. read 1, follow transition from g5 to go;
6

. accepi because M is in an accept state g at the end of the input.

Experimenting with this machine on a variety of input strings reveals that it
accepts the strings 1, 01, 11, and 0101010101. In fact, M, accepts any string that
ends with a 1, as it goes to its accept state go whenever it reads the symbol 1. In
addition, it accepts strings 100, 0100, 110000, and 0101000000, and any string
that ends with an even number of 0s following the last 1. It rejects other strings,
such as 0, 10, 101000. Can you describe the language consisting of all strings that
Mj accepts? We will do so shortly.

1.1 FINITE AUTOMATA 35

FORMAL DEFINITION OF A FINITE AUTOMATON

In the preceding section we used state diagrams to introduce finite automata.

Now we define finite automata formally. Though state diagrams are easier to

grasp intuitively, we need the formal definition, too, for two specific reasons.
First, a formal definition is precise. It resolves any uncertainties about what

is allowed in a finite automaton. If you were uncertain about whether finite au-
tomata were allowed to have 0 accept states or whether they must have exactly
one transition exiting every state for each possible input symbol, you could con-

a formal definition provides notation. Good notation helps you think and express
your thoughts clearly.

The language of a formal definition is somewhat arcane, having some similar-
ity to the language of a legal document. Both need to be precise, and every detail
must be spelled out.

A finite automaton has several parts. It has a set of states and rules for going
from one state to another, depending on the input symbol. It has an input al-
phabet that indicates the allowed input symbols. It has a start state and a set of
accept states. The formal definition says that a finite automaton is a list of those
five objects: set of states, input alphabet, rules for moving, start state, and accept
states. In mathematical language a list of five elements is often called a 5-tuple.
Hence we define a finite automaton to be a 5-tuple consisting of these five parts.

We use something called a transition function, frequently denoted 6, to define
the rules for moving. If the finite automaton has an arrow from a state x to a
state y labeled with the input symbol 1, that means that, if the automaton is in
state £ when it reads a 1, it then moves to state yy. We can indicate the same thing
with the transition function by saying that §(z, 1) = y. This notation is a kind of
mathematical shorthand. Putting it all together we arrive at the formal definition

of finite automata.

DEFINITION I T T PPt e R T e R
A finite automaton is a 5-tuple (Q, %, 8, g9, F'), where

1. Q) is a finite set called the states,

2. ¥ is a finite set called the alpbabet,

3. 6: Q) x —Q is the transition function,'
4. gy € Q is the start state, and

5. F C @ is the set of accept states.’

The formal definition precisely describes what we mean by a finite automa-
ton. For example, returning to the earlier question of whether 0 accept states is

IRefer back to page 7 if you are uncertain about the meaning of §: @ x £—— Q.
2Accept states sometimes are called final states.

36 CHAPTER 1| / REGULAR LANGUAGES

allowable, you can see that setting F to be the empty set @ yields 0 accept states,
which is allowable. Furthermore the transition function § specifies exactly one
next state for each possible combination of a state and an input symbol. That an-
swers our other question affirmatively, showing that exactly one transition arrow
exits every state for each possible input symbol.

We can use the notation of the formal definition to describe individual finite
automata by specifying each of the five parts listed in Definition 1.1. For example,
let’s return to the finite automaton Af; depicted in Figure 1.4.

FIGURE 1.5
The finite automaton M,

We can describe M| formally by writing M, = (Q,X, 6, q1, F), where
L. @ ={q1,42,43},

2. % = {0,1},

3. 6 is described as

| v 1
|1 g2
92| q
q3 | 42 G2

4. ¢ is the start state, and
5. F = {QQ}

If A is the set of all strings that machine M accepts, we say that A is the lan-
guage of machine M and write L(M) = A. We say that M recognizes A or
that M accepts A. Because the term accept has different meanings when we refer
to machines accepting strings and machines accepting languages, we prefer the
term recognize for languages in order to avoid confusion.

A machine may accept several strings, but it always recognizes only one lan-

guage. If the machine accepts no strings, it still recognizes one language, namely,
the empty language §.

1.1 FINITE AUTOMATA 37

A = {w| w contains at least one 1 and

an even number of 0s follow the last 1}.

Then L(M;) = A, or equivalently, M; recognizes A.

ES OF FINITE AUTOMATA

B R e RV LI 2 8

EXAMPLE 1 .2 ..

The following is the state diagram of finite automaton Mo.

Y
D
nD

FIGURE 1.6
State diagram of the two-state finite automaton Ms

In the formal description M, = ({ql, g2}, {0,1}, 6, ¢, {qg}). The transition
function 6 is

o 1
@ e g
G2 |a ¢

Remember that the state diagram of M3 and the formal description of M5 con-
tain the same information, only in different form. You can always go from one to
the other if necessary.

A good way to begin understanding any machine is to try it on some sample
input strings. When you do these “experiments” to see how the machine is work-
ing, its method of functioning often becomes apparent. On the sample string
1101 the machine M, starts in its start state 1 and proceeds first to state ¢ after
reading the first 1, and then to states gz, g1, and go after reading 1, 0, and 1. The
string is accepted because the state g2 is an accept state. But string 110 leaves M»
in state g1, so it is rejected. After trying a few more examples, you would see that
Mz accepts all strings thatend ina 1. Thus L(M;) = {w|wendsina 1}. &

38 CHAPTER 1 / REGULAR LANGUAGES

EXAMPLE I .3 ..

Consider the finite automaton Ms.

FIGURE 1.7
State diagram of the two-state finite automaton M;

Machine M3 is similar to My except for the location of the accept state. As
usual, the machine accepts all strings that leave it in an accept state when it has
finished reading. Note that, because the start state is also an accept state, Mj
accepts the empty string €. As soon as a machine begins reading the empty string
itis at the end, so if the start state is an accept state, ¢ is accepted. In addition to
the empty string, this machine accepts any string ending with a 0. Here,

L(M3) = {w| w is the empty string & or ends in a 0}.

EXAMPLE 1.4 ..

The following figure shows a five-state machine M,

FIGURE 1.8
Finite automaton M,

1.1 FINITE AUTOMATA 39

My has two accept states, g, and r; and operates over the alphabet > = {a, b}.
Some experimentation shows that it accepts strings a, b, aa, bb, and bab, but not
strings ab, ba, or bbba. This machine begins in state s, and after it reads the first
symbol in the input, it either goes left into the g states or right into the r states.
In either case it can never return to the start state (in contrast to the previous
examples), as it has no way to get from any other state back to s. If the first symbol
in the input string is a, then it goes left and accepts when the string ends with an
a. Similarly, if the first symbol is a b, the machine goes right, and accepts when
the string ends in b. So My accepts all strings that start and end with a, or that
start and end with b. In other words, My accepts strings that start and end with

the same symbol.

EXAMPLE I.s ..

"The following diagram shows machine A;, which has a four-symbol input alpha-

bet, ¥ = {(RESET), 0, 1,2}. We treat (RESET) as a single symbol.

FIGURE 1.9
Finite automaton Mj;

M5 keeps a running count of the sum of the numerical input symbols it reads,
modulo 3. Every time it receives the (RESET) symbol it resets the count to 0. It
i is 0, , Ori er words, if the sum is a multiple of 3.

EXAMPLE T st ess s s essesase s s ses s sasassms sesss esavessessssonn

Describing a finite automaton by state diagram is not possible in some cases.
That may occur when the diagram would be too big to draw or if, as in this ex-
ample, the description depends on some unspecified parameter. In these cases we
resort to a formal description to specify the machine.

40 CHAPTER 1| / REGULAR LANGUAGES

Consider a generalization of Example 1.5 using the same four symbol alpha-
bet 3. For each ¢ > 1 let A; be the language of all strings where the sum of the
numbers is a multiple of ¢, except that the sum is reset to 0 whenever the symbol
(RESET) appears. For each A; we give a finite automaton B; recognizing A;. We
describe the machine B; formally as follows: B, = (Q;. %, 8, qo, {qo}), where Q,
is the set of 7 states {qo,q1,¢2, ... , ¢ 1}, and we design the transition function
é; so that for each j, if B; isin ¢;, the running sum is j, modulo i. For each ¢; let

6? (qJ> 0) = 4qj,

6;{g;,1) = qx where k = j + 1 modulo i,
6i(gj,2) = qx where k = j + 2 modulo ¢, and
bi(

(g5, (RESET)) = qo.

FORMAL DEFINITION OF COMPUTATION

So far we have described finite automata informally, using state diagrams, and
with a formal definition, as a S-tuple. The informal description is easier to grasp
at first, but the formal definition is useful for making the notion totally precise,
resolving any ambiguities that may have occurred in the informal description.
Next we do the same for a finite automaton’s computation. We already have an
informal idea of the way it computes, and we now formalize it mathematically.

Let M = (Q.%,6,q0,F) be a finite automaton and w = wiws--- w,,
be a string over the alphabet £. Then M accepts w if a sequence of states
T0sT1, - -+ , Ty €Xxists in @ with the following three conditions:

1. ry = qq,

2. 8(ri,wis1) =7rip1 fori=0,... ,n—1,and

3.7, € F.

Condition 1 says that the machine starts in the start state. Condition 2 says that
the machine goes from state to state according to the transition function. Condi-
tion 3 says that the machine accepts its input if it ends up in an accept state. We
say that Al vecognizes langnage A if A = {w| M accepts w}.

DEFINITION o7 e nisssss reassssras s ssssssrsscsssisesesesssreesmsss ressmsssss senses

Alanguage is called a regular language if some finite automaton recognizes it.

1.1 FINITE AUTOMATA 41

EXAMPLE T.8 oo i ssersmsessesems s s s s smsts s sms s e oo s e
'Take machine M; from Example 1.5. Let w be the string
10(RESET)22(RESET)012

Then Mj accepts w according to the formal definition of computation because
the sequence of states it enters when computing on w is

90, 91, 41, 90, 92, 41, 40, 90, 91 o,
which satisfies the three conditions. The language of M is

L{M;) = {w| the sum of the symbols in w is 0 modulo 3,
except that (RESET) resets the count to 0}.

As M; recognizes this language, it is a regular language.

DESIGNING FINITE AUTOMATA

Whether it be of automaton or artwork, design is a creative process. As such it

cannot be reduced to a simple recipe or formula. However, you might find a par-

ticular approach helpful when designing various types of automata. That is, put

yourself in the place of the machine you are trying to design and then see how
ou would go about performing the machine’ i

machine is a psychological trick that helps engage your whole mind in the design

process.

Let’s design a finite automaton using the “reader as automaton” method just
described. Suppose that you are given some language and want to design a finite
automaton that recognizes it. Pretending to be the automaton, you receive an
input string and must determine whether it is a member of the language the au-
tomaton is supposed to recognize. You get to see the symbols in the string one
by one. After each symbol you must decide whether the string seen so far is in
the language. The reason is that you, like the machine, don’t know when the end
of the string is coming, so you must always be ready with the answer.

First, in order to make these decisions, you have to figure out what you need to
remember about the string as you are reading it. Why not simply remember all
you have seen? Bear in mind that you are pretending to be a finite automaton and
that this type of machine has only a finite number of states, which means a finite
memory. Imagine that the input is extremely long, say, from here to the moon, so
that you could not possibly remember the entire thing. You have a finite memory,
say, a single sheet of paper, which has a limited storage capacity. Fortunately, for
many languages you don’t need to remember the entire input. You only need
to remember certain crucial information. Exactly which information is crucial
depends on the particular language considered.

For example, suppose that the alphabetis {0,1} and that the language consists
of all strings with an odd number of 1s. You want to construct a finite automaton
£ to recognize this language. Pretending to be the automaton, you start getting

42 CHAPTER 1 / REGULAR LANGUAGES

an input string of 0s and 1s symbol by symbol. Do you need to remember the
entire string seen so far in order to determine whether the number of 1s is odd?
Of course not. Simply remember whether the number of 1s seen so far is even
or odd and keep track of this information as you read new symbols. If you read
a 1, flip the answer, but if you read a 0, leave the answer as is.

But how does this help you design £;? Once you have determined the neces-
sary information to remember about the string as it is being read, you represent
this information as a finite list of possibilities. In this instance, the possibilities
would be

1. even so far, and

2. odd so far.

Then you assign a state to each of the possibilities. These are the states of F, as
shown in the following figure.

Godd

FIGURE 1.10
The two states geven and gyqq

Next, you assign the transitions by seeing how to go from one possibility to
another upon reading a symbol. So, if state ¢een represents the even possibility
and state g,qq represents the odd possibility, you would set the transitions to flip
state on a 1 and stay put on a 0, as shown in the following figure.

FiIicure 1.11

AT S I e 5 =

Transitions telling how the possibilities rearrange

Next, you set the start state to be the state corresponding to the possibility
associated with having seen 0 symbols so far (the empty string €). In this case the
start state corresponds to state geven because 0 is an even number. Last, set the
accept states to be those corresponding to possibilities where you want to accept
the input string. Set go4q to be an accept state because you want to accept when

1.1 FINITE AUTOMATA 43

you have seen an odd number of 1s. These additions are shown in the following
figure.

FIGURE 1.12
Adding the start and accept states

EXAMPLE 1.9 --

This example shows how to design a finite automaton E» to recognize the regu-
lar language of all strings that contain the string 001 as a substring. For example,
0010, 1001, 001, and 11111110011111 are all in the language, but 11 and 0000
are not. How would you recognize this language if you were pretending to be E»?
As symbols come in, you would initially skip over all 1s. If you come to a 0, then
you note that you may have just seen the first of the three symbols in the pattern
001 you are seeking. If at this point you see a 1, there were too few 0s, so you
go back to skipping over 1s. But if you see a 0 at that point, you should remem-
ber that you have just seen two symbols of the pattern. Now you simply need to
continue scanning until you see a 1. If you find it, remember that you succeeded
in finding the pattern and continue reading the input string until you get to the
end.
So there are four possibilities: You

1. haven’t just seen any symbols of the pattern,
2. have just seen a 0,

3. have just seen 00, or

4

. have seen the entire pattern 001.

ign the states g, ¢ 00,-ANd Jpos to these possibilities. You can assign the
transitions by observing that from ¢ reading a 1 you stay in g, but reading a 0 you
move to Go. In ¢ reading a 1 you return to g, but reading a 0 you move to ggo.
In gop, reading a 1 you move to goo, but reading a 0 leaves you in ¢go. Finally, in
goo1 reading a O or a 1 leaves you in goo1. The start state is g, and the only accept
state is goo1, as shown in the following figure.

44 CHAPTER 1 / REGULAR LANGUAGES

1T 12
FIGURE Hel D
Accepts strings containing 001

THE REGULAR OPERATIONS

In the preceding two sections we introduced and defined finite automata and reg-
ular languages. We now begin to investigate their properties. Doing so will help
develop a toolbox of techniques to use when you design automata to recognize
particular languages. The toolbox also will include ways of proving that certain
other languages are nonregular (i.e., beyond the capability of finite automata).
In arithmetic, the basic objects are numbers and the tools are operations for

manipulating them, such as + and x. In the theory of computation the objects are
languages and the tools include operations specifically designed for manipulating
them. We define three operations on languages, called the regular operations,
and use them to study properties of the regular languages.

DEFINITION '|.'|o ..

Let A and B be languages. We define the regular operations union, concatena-
tion, and star as follows.

* Union: AUB = {z|z € Aorz € B}.
* Concatenation: Ao B = {zy|z € Aand y € B}.

¢ Star: A* = {z122 ... 2] k > 0 and each x; € A}.

You are already familiar with the union operation. Tt simply takes all the strings
in both A and B and lumps them together into one language.

The concatenation operation is a little trickier. It attaches a string from 4 in
front of a string from B in all possible ways to get the strings in the new language.

The star operation is a bit different from the other two because it applies to a
single language rather than two. That is, the star operation is a unary operation
instead of a binary operation. It works by attaching any number of strings in A
together to get a string in the new language. Because “any number” includes 0
as a possibility, the empty string € is always a member of A*, no matter what A
is.

1.1 FINITE AUTOMATA 45

EXAMPLE '|.'|'| R L e 2 LSRR YR P s8R SRR BER AR R e ara e e

Let the alphabet X be the standard 26 letters {a,b, ... ,z}. If 4 = {good, bad}
and B = {boy, girl}, then

AU B = {good, bad, boy, girl},
Ao B = {goodboy, goodgirl, badboy, badgirl}, and

A* = {e, good, bad, goodgood, goodbad, badgood, badbad,
goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ... }.

Let V= {1,2,3,... } be the set of natural numbers. When we say that A is
closed under multiplication we mean that, for any = and y in NV, the product z x y
alsoisin V. In contrast \ is not closed under division, as 1 and 2 are in A" but 1/2
is not. (enerally speaking, a collection of objects is closed under some operation
if applying that operation to members of the collection returns an object still in
the collection. We show that the collection of regular languages is closed under
all three of the regular operations. In Section 1.3 we show that these are useful
tools for manipulating regular languages and understanding the power of finite

THEOREM 1.12 ...

The class of regular languages is closed under the union operation.

In other words, if A; and A, are regular languages, so is 4; U As.

PROOF IDEA We have regular languages A; and A5 and want to show that

A1 I ‘42 also is regular. Because 4 and A are reoular. we know that some fini

1
Qio%7 22 it giial. DLl auot s 2] @iils a7 ailc Leguidly YL ALy LIldl JULIIC LILAL

automaton M) recognizes A; and some finite automaton M5 recognizes 4. To
prove that A; U A, is regular we demonstrate a finite automaton, call it M, that
recognizes A1 U As.

This is a proef by construction. We construct M from M; and M,. Machine
M must accept its input exactly when either M; or M, would accept it in order
to recognize the union language. It works by simulating both M, and M, and
accepting if either of the simulations accept.

How can we make machine M simulate M and M,? Perhaps it first simulates
M, on the input and then simulates M; on the input. But we must be careful
here! Once the symbols of the input are read and used to simulate A, we cannot
“rewind the input tape” to try the simulation on M,. We need another approach.

Pretend that you are M. As the input symbols arrive one by one, you simulate
both M; and M, simultaneously. That way only one pass through the input is
necessary. But can you keep track of both simulations with finite memory? All
you need to remember is the state that each machine would be in if it had read

46 CHAPTER 1 / REGULAR | ANGUAGES

up to this point in the i input, Therefore you need to remember a pair of states.
How many p0551ble pairs are there? If A/; has ky states and Mo has ko states, the
number of pairs of states, one from M; and the other from AMa, is the product
k1 x ka. This product will be the number of states in A/, one for each pair. The
transitions of M go from pair to pair, updating the current state for both A/ and
M,. The accept states of M are those pairs wherein either My or Al is in an
accept state.

PROOF

Let M recognize Aq, where My = (Q1,%,81,¢1, Fy), and
M, recognize Ay, where My = (Q2, X, 89, qo, Fh).

Construct M to recognize A; U Ag, where M = (Q, 3,8, qn, F).

1. Q = {(r1,r2)|r1 € Q1 and r5 € Qo }.
This set is the Cartesian product of sets ()1 and Q, and is written Q1 X Qs.
It is the set of all pairs of states, the first from @1 and the second from Q5.

. L l.llC dlpIIdUCL is LIIC Sarmne as in lVIl dnu 1\/12 lrl fﬂl5 mCOfcIl1 dnu 111 dll buL)—
sequent similar theorems, we assume for simplicity that both M and M>
have the same input alphabet 3. The theorem remains true if they have
different alphabets, ¥; and ¥5. We would then modify the proof to let
Y=3%UXa

3. 4, the transition function, is defined as follows. For each (r1,r2) € @ and

eacha € X, let

[\

(5((r1,r2),a) = (61(r1,a),62(r2,a)).
Hence ¢ gets a state of M (which actually is a pair of states from A7; and
M>), together with an input symbol, and returns M’s next state.

4. gy is the pair (g1, ¢2).
5. Fis the set of pairs in which either member is an accept state of M7 or M.

We can write it as
F= {(Tl,T2)| ri € Frorrs € FQ}

This expression is the same as F = (I, x (J2) U (Q1 x F). (Note that it is
not the same as F' = F; x Fy. What would that give us instead??)

This concludes the construction of the finite automaton M that recognizes the
union of A; and A,. This construction is fairly simple, and thus its correctness
is evident from the strategy that is described in the proof idea. More compli-
cated constructions require additional discussion to prove correctness. A formal

3This expression would define M’s accept states to be those for which both members of the
pair are accept states. In this case M would accept a string only if both My and Ms accept
it, so the resulting language would be the intersection and not the union. In fact, this result
proves that the class of regular languages is closed under intersection.

1.2 NONDETERMINISM 47

correctness proof for a construction of this type usually proceeds by induction.
For an example of a construction proved correct, see the proof of Theorem 1.28.
Most of the constructions that you will encounter in this course are fairly simple
and so do not require a formal correctness proof.

We have just shown that the union of two regular languages is regular, thereby
proving that the class of regular languages is closed under the union operation.
We now turn to the concatenation operation and attempt to show that the class

operation, too.

THEOREM 'l.'la ...

The class of regular languages is closed under the concatenation operation.

In other words, if A; and Aj are regular languages then so is 4; o 4.

To prove this theorem let’s try something along the lines of the proof of the
union case. As before, we can start with finite automata A; and M, recognizing
the regular languages A; and A,. But now, instead of constructing automaton M
to accept its input if either M) or M, accept, it must accept if its input can be bro-
ken into two pieces, where M) accepts the first piece and M, accepts the second
piece. The problem is that M doesn’t know where to break its input (i.e., where
the first part ends and the second begins). To solve this problem we introduce a
new technique called nondeterminism.

1.2

NONDETERMINISM

Nondeterminism is a useful concept that has had great impact on the theory of
computation. So far in our discussion, every step of a computation follows in a
unique way from the preceding step. When the machine is in a given state and
reads the next input symbol, we know what the next state will be—it is deter-
mined. We call this deterministic computation. In a nondeterministic machine,
several choices may exist for the next state at any point.

Nondeterminism is a generalization of determinism, so every deterministic fi-
nite automaton is automatically a nondeterministic finite automaton. As the fol-
lowing figure shows, nondeterministic finite automata may have additional fea-
tures.

48 CHAPTER 1 / REGULAR LANGUAGES

FIGURE 1.14
The nondeterministic finite automaton N,

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately appar-
ent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The nondeterministic automaton shown in Fig-
ure 1.14 violates that rule. State ¢; has one exiting arrow for 0, but it has two for
1; g2 has one arrow for 0, but it has none for 1. In an NFA a state may have zero,
one, or many exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label . In general, an NFA may have arrows
labeled with members of the alphabet or €. Zero, one, or many arrows may exit
from each state with the label e.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state ¢; in NFA Ny and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows #// the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an € symbol on an exiting arrow is encountered, something sim-
ilar happens. Without reading any input, the machine splits into multiple copies,
one following each of the exiting e-labeled arrows and one staying at the current
state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
several “processes” can be running concurrently. When the NFA splits to follow
several choices, that corresponds to a process “forking” into several children, each
proceeding separately. If at least one of these processes accepts then the entire
computation accepts.

Another way to think of 2 nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the com-
putation branches ends in an accept state, as shown in the following figure.

- 1.2 NONDETERMINISM— 49

Deterministic Nondeterministic
computation computation

Q. start (o 1

. Ay

(i

N reject Ty

g- accept or reject * accept

FIGURE 1.15
Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA V; shown in Figure 1.14. Oninput
010110 start in the start state g, and read the first symbol 0. From ¢, there is only
one place to go on a 0, namely, back to ¢, so remain there.

Next read the second symbol 1. In ¢; on a 1 there are two choices: either stay
in ¢; or move to ¢3. Nondeterministically, the machine splits in two to follow
cach choice. Keep track of the possibilities by placing a finger on each state where
a machine could be. So you now have fingers on states ¢; and ¢;. An £ arrow exits
state g, so the machine splits again; keep one finger on g2, and move the other
to ¢3. You now have fingers on ¢y, ¢z, and gs.

When the third symbol 0 is read, take each finger in turn. Keep the finger
on ¢ in place, move the finger on ¢ to g3, and remove the finger that has been
on ¢3. That last finger had no 0 arrow to follow and corresponds to a process that
simply “dies.” At this point you have fingers on states ¢; and g¢s.

When the fourth symbol 1 is read, split the finger on ¢ into fingers on states
q1 and g, then further split the finger on ¢s to follow the & arrow to ¢3, and move
the finger that was on g3 to ¢4. You now have a finger on each of the four states.

When the fifth symbol 1 is read, the fingers on ¢, and g3 result in fingers on
states q1, g2, ¢3, and qq, as you saw with the fourth symbol. The finger on state
g2 1s removed. The finger that was on ¢4 stays on ¢4. Now you have two fingers
On ¢4, SO remove one, because you only need to remember that g4 is a possible
state at this point, not that it is possible for multiple reasons.

Nhen the N-and-fana amalatal NA Vs caen the bnoe

50 CHAPTER 1 / REGULAR LANGUAGES

place. You are now at the end of the string, and you accept if some finger is on an
accept state. You have fingers on states g1, g3, and ¢4, and as g4 is an accept state,
N accepts this string. The computation of N} on input 010110 is depicted in
Figure 1.16.

What does Ny do on input 0107 Start with a finger on g. After reading the 0
you still have a finger only on ¢, but after the 1 there are fingers on ¢1, g, and
q3 (don’t forget the & arrow). After the third symbol 0, remove the finger on g3,
move the finger on ¢ to ¢s, and leave the finger on ¢; where it is. At this point
you are at the end of the input, and as no finger is on an accept state, N; rejects

this input.
v

“iil>y 222

Symbol read @ Start

o
® W

()
W @ @

FIGURE 1.16
The computation of Ny on input 010110

By continuing to experiment in this way, you will see that Ny accepts all strings
that contain either 101 or 11 as a substring.

Nondeterministic finite automata are useful in several respects. As we will
show, every NFA can be converted into an equivalent DFA, and constructing NFAs
is sometimes easier than directly constructing DFAs. An NFA may be much smaller
than its deterministic counterpart, or its functioning may be easier to understand.
Nondeterminism in finite automata is also a good introduction to nondetermin-
ism in more powerful computational models because finite automata are espe-
cially easy to understand. Now we turn to several examples of NFAs.

1.2 NONDETERMINISM 51

(=0 =N, 0 = I S T T

Let A be the language consisting of all strings over {0,1} containing a 1 in the
third position from the end (e.g., 000100 is in A but 0011 is not). The following
four-state NFA N, recognizes A.

FIGURE 1.17
The NFA N; recognizing 4

One good way to view the computation of this NFA is to say that it stays in the
start state ¢; untl it “guesses” that it is three places from the end. At that point,
if the input symbol is a 1, it branches to state g, and uses g3 and g, to “check” on
whether its guess was correct.

As mentioned, every NFA can be converted into an equivalent DFA, but some-
times that DFA may have many more states. The smallest DFA for A contains eight
states. Furthermore, understanding the functioning of the NFA is much easier, as

you may see by examining the following figure for the DFA.

FIGURE 1.18
A DFA recognizing A

Suppose that we added € to the labels on the arrows going from g, to gs and
from g3 to q4 in machine N, in Figure 1.17. In other words, both arrows would
then have the label 0, 1, € instead of just 0, 1. What language would N, recognize
with this modification? ‘Try modifying the DFA in Figure 1.18 to recognize that
language. a

52 CHAPTER 1 / REGULAR LANGUAGES

EXAMPL-E 1.15 ..

Consider the following NFA N3 that has an input alphabet {0} consisting of a sin-
gle symbol. An alphabet containing only one symbol is called a #nary alphabet.

FIGURE 1.19
The NFA N3

This machine demonstrates the convenience of having & arrows. It accepts
all strings of the form 0% where k is a multiple of 2 or 3. (Remember that the
superscript denotes repetition, not numerical exponentiation.) For example, N
accepts the strings &, 00, 000, 0000, and 000000, but not 0 or 00000.

Think of the machine operating by initially guessing whether to test for a mul-
tiple of 2 or a multple of 3 by branching into either the top loop or the bottom
loop and then checking whether its guess was correct. Of course, we could re-
place this machine by one that doesn’t have € arrows or even any nondeterminism
at all, but the machine shown is the easiest one to understand for this language.

i

mMPLE 'i.'io ..

We give another example of an NFA in the following figure. Practice with it to
satisfy yourself that it accepts the strings €, a, baba, and baa, but that it doesn’t
accept the strings b, bb, and babba. Later we use this machine to illustrate the
procedure for converting NFAs to DFAs.

1.2 NONDETERMINISM 53

FIGURE 1.20
The NFA N,

FORMAL DEFINITION OF A
NONDETERMINISTIC FINITE AUTOMATON

"The formal definition of a nondeterministic finite automaton is similar to that of
a deterministic finite automaton. Both have states, an input alphabet, a transition
function, a start state, and a collection of accept states. However, they differ in
one essential way: in the type of transition function. In a DFA the transition func-
tion takes a state and an input symbol and produces the next state. In an NFA the
transition function takes a state and an input symbol or the empty string and pro-
duces the set of possible next states. In order to write the formal definition, we need

to set up some additional notation. For any set Q we write P(Q) to be the collec-

tion of all subsets of Q. Here P(Q) is called the power set of Q. For any alphabet
> we write X to be X U {e}. Now we can easily write the formal description of
the type of the transition function in an NFA. Itis §: Q x £.—P(Q), and we
are ready to give the formal definition.

DEFINITION 'I.'l7 ..
A nondeterministic finite automaton is a 5 -tuple (@, %, 6, qo, F'), where

1. @ is a finite set of states,

2. Y is a finite alphabet,

3. 6: Q x L.—P(Q) is the transition function,
4. qo € @ is the start state, and

5. F C @ is the set of accept states.

54 CHAPTER 1 / REGULAR LANGUAGES

EXAMPLE 1.18 ..
Recall the NFA N;:

0,1

The formal description of Ny is (@, 3,6, g1, F'), where

Y

1. Q = {Q1=QZ,Q3aQ4},
2.5 = {0,1},

3. 6 is given as

0 i €

a | {n} {a, 92} 0
g2 | {a3}) {g3} ,
g | 0 {q4} 0
ga | {aa} {aqa} 0

4. ¢, is the start state, and
5. F = {Q4}.

‘The formal definition of computation for an NFA also is similar to that for a

DFA. Let N = (@, X, 6, o, F') be an NFA and w a string over the alphabet 3. Then
we say that IV accepts w if we can write w as w = y1y2 - - Ym, where each y;
is a member of X, and a sequence of states vy, 7y, ... , 7, exists in @ with the
following three conditions:

L. Ty = qo,
2. 141 €6(riyyipq), fori=0,...,m—1,and
3.7, € F.

Condition 1 says that the machine starts out in the start state. Condition 2 says
that state 7,4 is one of the allowable next states when N isin state r; and reading
Yi+1- Observe that 6(r;, yi+1) is the sez of allowable next states and so we say that
Tit+1 1s a member of that set. Finally, Condition 3 says that the machine accepts
its input if the last state is an accept state.

EQUIVALENCE OF NFAS AND DFAS

Deterministic and nondeterministic finite automata recognize the same class of
languages. Such equivalence is both surprising and useful. Itis surprising because
NFAs appear to have more power than DFAs, so we might expect that NFAs recog-
nize more languages. It is useful because describing an NFA for a given language
sometimes is much easier than describing a DFA for that language.

Say that two machines are equivalent if they recognize the same language.

1.2 NONDETERMINISM 55

THEOREM 1.19 ...

Every nondeterministic finite automaton has an equivalent deterministic finite
automaton.

PROOF IDEA If a language is recognized by an NFA, then we must show the
existence of a DFA that also recognizes it. ‘The idea is to convert the NFA into an
equivalent DFA that simulates the NFA.

Recall the “reader as automaton” strategy for designing finite automata. How
would you simulate the NFA if you were pretending to be a DFA? What do you
need to keep track of as the input string is processed? In the examples of NFAs
you kept track of the various branches of the computation by placing a finger on
each state that could be active at given points in the input. You updated the fingers
by moving, adding, and removing them according to the way the NFA operates.
All you needed to keep track of was the set of states with fingers.

If k£ is the number of states of the NFA, it has 2" subsets of states. Each subset
corresponds to one of the possibilities that DFA must remember, so the DFA sim-
ulating the NFA will have 2* states. Now we need to figure out which will be the
start state and accept states of the DFA, and what will be its transition function.
We can discuss this more easily after setting up some formal notation.

PROOF Let N = (Q,%,,qo, F'} be the NFA recognizing some language A,
We construct a DFA M recognizing A. Before doing the full construction, let’s
first consider the easier case wherein N has no & arrows. Later we take the &
arrows into account.

Construct M = (@, 2,8, qo’, F').
1. Q' =P(Q).

Every state of M is a set of states of N. Recall that P(Q) is the set of subsets
of Q.

2. ForReQ anda € Xlet§'(R,a) = {g € Q| g € 6(r,a) for some r € R}.
If R is a state of M, it is also a set of states of N. When M reads a symbol
a in state R, it shows where a takes each state in R. Because each state may
go to a set of states, we take the union of all these sets. Another way to write
this expression is

§'(R,a) = U 5(r,a).
reR
3. 90’ = {qo}.
M starts in the state corresponding to the collection containing just the
start state of V.

4. F' = {R € Q'| R contains an accept state of N'}.
The machine M accepts if one of the possible states that N could be in at
this point is an accept state.

4The notation U,cr 6(r, @) means: the union of the sets §(r, a) for each possible r in R.

56 CHAPTER 1 / REGULAR LANGUAGES

Now we need to consider the £ arrows. To do so we set up an extra bit of
notation. For any state R of M we define F(R) to be the collection of states that
can be reached from R by going only along e arrows, including the members of
R themselves. Formally, for R C @ let

E(R) = {q| ¢ can be reached from R by traveling along 0 or more & arrows}.

Then we modify the transition function of M to place additional fingers on all

states that can be reached by going along e arrows after every step. Replacing
8(r,a) by E(6(r, a)) achieves this effect. Thus

8 (R,a) ={q € Q|q € E(6(r,a)) for some r € R}.

Additionally we need to modify the start state of M to move the fingersinitially
to all possible states that can be reached from the start state of N along the
arrows. Changing ¢y’ to be E({qo}) achieves this effect. We have now completed
the construction of the DFA Af that simulates the NFA N,

The construction of M obviously works correctly. At every step in the com-
putation of M on an inpug, it clearly enters a state that corresponds to the subset
of states that NV could be in at that point. Thus our proof is complete.

If the construction used in the preceding proof were more complex we would
need to prove that it works as claimed. Usually such proofs proceed by induction
on the number of steps of the computation. Most of the constructions that we use
in this book are straightforward and so do not require such a correctness proof.
To see an example of a more complex construction that we do prove correct turn
to the proof of Theorem 1.28.

Theorem 1.19 states that every NFA can be converted into an equivalent DFA.
Thus nondeterministic finite automata give an alternative way of characterizing

egular languages. Ve state this fact as a corollary o heorem S,

A language is regular if and only if some nondeterministic finite automaton rec-
ognizes it.

One direction of the “if and only if” states that a language is regular if some
NFA recognizes it. Theorem 1.19 shows that any NFA can be converted into an
equivalent DFA, so if an NFA recognizes some language, so does some DFA, and
hence the language is regular. The other direction states that a language is regular

only if some NFA recognizes it. ‘That is, if a language is regular, some NFA must
be recognizing it. Ohvinnclyi this condition is true because a recular lqnguage

12N UIDVIONUSE 15 COlAaItion} tuc Decalse a regilar an

has a DFA recognizing it and any DFA is also an NFA.

1.2 NONDETERMINISM 57

EXAMPLE 1.21 ..

Let’s illustrate the procedure of converting an NFA to a DFA using the machine
Ny that was given in Example 1.16. For clarity, we have relabeled the states of
Ny to be {1,2,3}. Thus in the formal description of Ny = (@, {a,b},¢,1,{1}),
the set of states @ is {1, 2, 3} as shown in the following figure.

To construct a DFA D that is equivalent to N4, we first determine D’s states.
Ny has three states, {1,2,3}, so we construct D with eight states, one for each
subset of N4’s states. We label each of D’s states with the corresponding subset.
‘Thus D’s state set is

{0, {1}, {2}, {3}, {1.2}, {13}, {2,3}, {1,2.3} }.

BN

a,

FIGURE 1.21
The NFA N4

Next, we determine the start and accept states of D. The start state is E({1}),
the set of states that are reachable from 1 by traveling along & arrows, plus 1 itself.
An g arrow goes from 1 to 3, so E({1}) = {1, 3}. The new accept states are those
containing N,’s accept state; thus {{1}, {1,2}, {1,3},{1,2.3} }.

Finally, we determine D’s transition function. Each of D’ states goes to one
place on input a, and one place on input b. We illustrate the process of determin-
ing the placement of D’ transition arrows with a few examples.

In D, state {2} goes to {2,3} on input a, because in Ny, state 2 goes to both
2 and 3 on input a and we can’t go farther from 2 or 3 along € arrows. State {2}
goes to state {3} on input b, because in Ny, state 2 goes only to state 3 on input
b and we can’t go farther from 3 along € arrows.

State {1} goes to {} on a, because no a arrows exit it. It goes to {2} on b.

State {3} goes to {1,3} on a, because in Ny, state 3 goes to 1 on a and 1in turn
goes to 3 with an € arrow. State {3} on b goes to 0.

State {1,2} on a goes to {2,3} because 1 points at no states with a arrows and
2 points at both 2 and 3 with a arrows and neither point anywhere with £ arrows.
State {1,2} on b goes to {2,3}. Continuing in this way we obtain the following
diagram for D.

58 CHAPTER 1 / REGULAR LANGUAGES

FIGURE 1.22
A DFA D that is equivalent to the NFA Ny

We may simplify this machine by observing that no arrows point at states {1}
and {1, 2}, so they may be removed without affecting the performance of the ma-
chine. Doing so yields the following figure.

FIGURE 1.23
DFA D after removing unnecessary states

CLOSURE UNDER THE REGULAR OPERATIONS

Now we return to the closure of the class of regular languages under the regu-
lar operations that we began in Section 1.1. Our aim is to prove that the union,
concatenation, and star of regular languages are still regular. We abandoned the
original attempt to do so when dealing with the concatenation operation was too

complicated. The use of nondeterminism makes the proofs much easier.

First, let’s consider again closure under union. Earlier we proved closure un-
der union by simulating deterministically both machines simultaneously via a

