Exercise-set 7. Solutions

- 1. a) Vertices of the same color are independent.
 - b) It is a good coloring, if each vertex in the complement of a maximum independent set of vertices gets a different color.
- 2. No (counterexample).
- 3. a) It is an interval graph (∃ a representation of the vertices with intervals).
 - b) It is not an interval graph, since $\chi(G) \neq \omega(G)$.
 - c) It is not an interval graph, since there is no representation of the vertices with intervals.
 - d) It is an interval graph.
 - e) It is not an interval graph (the 5-cycle cannot be represented with intervals).
 - f) It is an interval graph.
- 4. It is an interval graph (\exists a representation of the vertices with intervals).
- 5. $\chi(G) = \omega(G) = 11$ (=max. # of intervals though a point)
- 6. $\omega = 10$ in the original graph. We can delete at most 2 vertices from a clique $\implies \chi = \omega \ge 8$.
- 7. $\chi(G) = 3$, $\nu(G) = 9$, $\tau(G) = 12$, $\alpha(G) = 6$, $\rho(G) = 9$.
- 8. a) $\nu(G) = 4$, $\tau(G) = 4$, $\alpha(G) = 6$, $\rho(G) = 6$.
 - b) $\nu(G) = 5$, $\tau(G) = 5$, $\alpha(G) = 7$, $\rho(G) = 7$.
 - a) $\nu(G) = 4$, $\tau(G) = 4$, $\alpha(G) = 6$, $\rho(G) = 6$.
- 9. $G = K_{668} \cup K_{668,669} \implies \chi(G) = 668, \ \nu(G) = 334 + 668 = 1002, \ \tau(G) = 667 + 668 = 1335, \ \alpha(G) = 1 + 669 = 670, \ \rho(G) = 334 + 669 = 1003.$
- 10. $\nu(G) = 20 = \tau(G)$.
- 11. $\alpha(G) = 86$, $\tau(G) = 14$, $\nu(G) = 14$, $\rho(G) = 86$.
- 12. $\nu(G) = 25$, $\alpha(G) = 75$.
- 13. a) $\{b, c, g, h\}$ $(\nu(G) = 4)$.
 - b) $\{b, d, f, h\}$ $(\nu(G) = 4)$.
- 14. $\nu(G) = 4 = \tau(G)$.
- 15. a) By contradiction: otherwise the matching would not be maximum.
 - b) Follows from a).
 - c) Follows from b) and Gallai's theorem.
- 16. a) True.
 - b) False.
 - c) No.
- 17. G contains a Hamilton cycle $\implies \nu(G) \ge |2k+1/2| = k$, and $\nu(G) \le (2k+1)/2 = k$.
- 18. If we add the edge $\{u, v\}$ to G then it contains a Hamilton cycle.
- 19. If we add two new vertices (connected to all the old ones) to G then the new graph contains a Hamilton cycle.
- 20. det $M \neq 0 \implies \exists$ a nonzero elementary product, corresponding to a perfect matching.
- 21. $|E(G)| \le {20 \choose 2} + 20 \cdot 80 = 1790$, and this is possible (example).
- 22. $\nu(G) = 10 = \tau(G)$.