Exercise-set 4.

- 1. a) Is there a plane graph in which the number of vertices, edges and regions are all divisible by 3? b) Is there a connected graph with the above properties?
- 2. Is there a simple connected plane graph which has half as many vertices as regions?
- 3. In a simple, connected plane graph the degree of each vertex is 4, and the number of the edges is 16. Determine the number of regions of the drawing.
- 4. A convex polyhedron has 20 vertices and 12 faces. Each face of the polyhedron is bounded by the same number of edges. What is this common number?
- 5. Is there a simple planar graph in which the degree of each vertex is at least 6?
- 6. a) In the simple planar graph G the degree of each vertex is at least 5. Show that in this case G contains at least 12 vertices of degree 5.
 - b) Is the statement true with 13 instead of 12?
- 7. (MT++'05) Let G be a simple planar graph on 13 vertices. Prove that at least one of G and its complement \overline{G} is not planar.
- 8. (MT'15) At most how many edges can be added to the graph below in such a way that we get a simple planar graph? (We add edges only between already existing vertices.)

- 9. a) (MT+'05) Suppose that G = (V, E) is a simple graph whose set of edges E is the union of the disjoint sets of edges E_1 , E_2 and E_3 , where all the three subgraphs (V, E_1) , (V, E_2) and (V, E_3) are spanning trees of G. Show that in this case G is not planar.
 - b) (MT+'18) Let G be a simple, connected planar graph. Show that if we delete the edges of two edge-disjoint spanning trees from G then the remaining graph cannot be connected.
- 10. a) Show that in a drawing of K_8 in which three edges cannot go through a common point there are at least 10 edge-crossings.
 - b) At least how many edge-crossings are there in a drawing of $K_{4,4}$ if three edges cannot go through a common point?
- 11. Decide whether the following graphs are planar or not. If yes, then draw them with straight edges without crossing; if not, then prove it.

- 12. (MT+'06) In the graph G the degree of each vertex is at most 3. Furthermore we know that each cycle of G contains at most 5 edges. Show that G is a planar graph.
- 13. (MT++'16) The graph G doesn't contain a subgraph homeomorphic to $K_{2,3}$ (the complete bipartite graph on 2+3 vertices). Does it follow that G is planar?
- 14. a) Let G be a simple graph on at most 6 vertices. Pove that at least one of G and its complement \overline{G} is planar.
 - b) Give a simple graph G on 8 vertices such that neither G nor \overline{G} is planar.
- 15. (MT'19) A graph on 20 vertices has 18 edges and two components. Show that the graph is planar.