
Graph Theory

Definition: A simple graph is a pair of sets: G = (V,E), where V 6= ∅ is the (finite) set of vertices of G,
and E is the set of edges, where an edge is an unordered pair (2-element set) of vertices.

Terminology: If e = {u, v} (e ∈ V (G), u, v ∈ E(G)), then:
- u and v are the endpoints of e,
- e is incident to u and v,
- u and v are adjacent (or connected) to each other, or they are neighbors.

Definition: A (general) graph is a pair of sets: G = (V,E), where V 6= ∅ is the (finite) set of vertices of
G, and E is a multiset of 2-element multisets of vertices.

Remark: So a graph G = (V,E) is simple ⇐⇒ it doesn’t contain loops (e = {v, v}) and multiple (or
parallel) edges (e1 = e2 = {u, v}).

Definition: The degree of a vertex v ∈ V (G) is the number of edges incident to v (loops are counted
twice).
Notation: deg(v).

Theorem: For any graph G = (V,E) the sum of all degrees in G is twice the number of edges, i.e.∑
v∈V (G) deg(v) = 2 · |E(G)|.

Corollary: In any graph the number of vertices of odd degree is even.

Definition: The complete graph on n vertices (n = 1, 2, . . . ), Kn, is a simple graph with |V (Kn)| = n,
and E(Kn) is the set of all pairs of (different) vertices.

Remark: |E(Kn)| =
(
n
2

)
= n(n−1)

2 , and deg(v) = n− 1 ∀v ∈ V (Kn).

Definition: The complement of the simple graph G = (V,E) is the graph G with the same vertex set as
G, and exactly with those edges which are not in E(G), i.e. V (G) = V (G), and E(G) = E(KV (G))\E(G).

Remark: If |V (G)| = n, then |E(G)| = n(n−1)
2 − |E(G)|, and degG(v) = n− 1− degG(v).

Definition: The subgraph of the graph G = (V,E) is the graph G′ = (V ′, E′), if V ′ ⊆ V , E′ ⊆ E, and
for every edge e′ ∈ E′ the two endpoints of e′ are in V ′.
In other words, G′ is obtained from G by deleting vertices (together with the edges adjacent to them)
and edges (without their endvertices).

Definition: An induced subgraph of the graph G = (V,E) is the graph G′ = (V ′, E′), if V ′ ⊆ V and E′
is the set of all the edges in G with both endpoints in V ′.
In other words, G′ is obtained from G by deleting only vertices.

Definition: A spanning subgraph of the graph G = (V,E) is the graph G′ = (V ′, E′), if V ′ = V and
E′ ⊆ E.
In other words, G′ is obtained from G by deleting only edges.

Definition: The graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, if there is a one-to one
mapping ϕ : V1 → V2 in such a way that the number of edges between two (not necessarily different)
vertices u, v ∈ V1 is equal to the number of edges between ϕ(u) and ϕ(v) in G2.
For simple graphs: the one-to one mapping ϕ : V1 → V2 preserves the edges, i.e. {u, v} ∈ E1 ⇐⇒
{ϕ(u), ϕ(v)} ∈ E2.
Notation: G1

∼= G2.
In both cases, we can relabel the vertices of G1 to obtain G2.
Informally: they are different drawings of the same graph.

Remark: If G1 and G2 are isomorphic graphs, then |V (G1)| = |V (G2)|, |E(G1)| = |E(G2)|, and the
degree-sequences of G1 and G2 are are the same; but the opposite implication is not true!

Definition: A walk in a graphG(V,E) is a sequence (of vertices and edges) v0, e1, v1, e2, v2, . . . , vk−1, ek, vk,
where ei = {vi−1, vi} for all i = 1, 2, . . . , k.
Remark: In a walk both the vertices and edges can be repeated.

Definition: A trail in a graph G(V,E) is a walk where the edges cannot be repeated (but the vertices
can).

Definition: A circuit in a graph G(V,E) is a closed trail, i.e. one for which v0 = vn.

Definition: A path in a graph G(V,E) is a walk where the vertices cannot be repeated (therefore the
edges cannot be repeated either).

Definition: A cycle in a graph G(V,E) is a closed path, i.e. one for which v0 = vn, but otherwise the
vertices are all different.



Definition: The length of a walk/trail/path/circuit/cycle is the number of edges in it.

Definition: A graph G(V,E) is connected, if there is a path (/walk/trail) between any pair of its vertices.

Lemma: There is a path between u, v ∈ V (G) ⇐⇒ there is a walk between u, v.

Definition: A (connected) component in a graph G(V,E) is a maximal induced connected subgraph of
G. (I.e. a component C of G is an induced connected subgraph of G and there is no edge {u, v} ∈ E(G)
for which u ∈ V (C), v 6∈ V (C).)

Remark: G is connected ⇐⇒ it has only one component.

Definition: The graph T is a tree, if it is connected and cycle-free. (Then it must be simple.)

Theorem: A tree on n vertices (n ≥ 2) contains at least 2 vertices of degree 1.

Lemma: If we add a new edge {u, v} to a graph G, then either
a) if u and v are in the same component of G then we create a new cycle (and the number of components
doesn’t change), or
b) if u and v are in different components of G then the new graph will have one less components than G
(but number of cycles doesn’t change).

Theorem: Let G be a graph with n vertices and e edges. Then
a) if G is connected, then e ≥ n− 1,
b) if G is cycle-free, then e ≤ n− 1,
c) if G is a tree, then e = n− 1.

Corollary: The following are equivalent for a graph G:
a) G is a tree (i.e. connected and cycle-free),
b) G is connected and has n− 1 edges,
c) G is cycle-free and has n− 1 edges,
d) G is connected but if we delete any edge of it it will not be connected,
e) G is cycle-free and if we add any edge to it then it will contain a cycle.

Definition: The graph F is a forest, if it is cycle-free.

Remark: The components of a forest are trees. If a forest has k components, then the number of its
edges is n− k.

Definition: The spanning tree of a graph G = (V,E) is a spanning subgraph of it (i.e. it contains all
the vertices of G) which is also a tree.

Theorem: A graph G contains a spanning tree if and only if it is connected.

Remark: Non-connected graphs have spanning forests (a spanning tree in each component).

Data structures for graphs:
- Adjacency matrix: n× n matrix, entries are the number of edges between the given vertices. Size: n2.
- Adjacency list: for each vertex, we list the vertices adjacent to it. Size: c(n+ e).

Polynomial algorithm: An algorithm is polynomial, if there are constants c, k, such that the algorithm
stops after at most c · nk steps for all inputs of size n.

BFS (breadth-first-search) algorithm

We start from an arbitrary vertex (called the root), then visit/explore its neighbors, then its se-
cond neighbors, third neighbors, etc. If the graph is not connected then start again from a yet unvisi-
ted/unexplored vertex.
Can be used for directed graphs as well.
Uses a queue (or FIFO (First-in-First-Out) list).
Time complexity: uses at most c(n+e) steps (using the adjacency list). That is, the BFS is a polynomial
(linear) algorithm.

Outcome:
- Deciding the connectedness of a graph (and finding the components of it if it is not).
- Determining the distances of all the vertices from the root vertex (for directed graphs as well).
- Finding a spanning tree of the graph (BFS-tree).

Definition: A graph G = (V,E) is directed, if the edges of it are ordered pairs of vertices: e = (u, v)
(u, v ∈ V (G)) for all e ∈ E(G).
In this case u is the starting vertex of e and v is the end/final vertex of e (or tail and head of the arrow).

Definition: The distance of two vertices u, v ∈ V (G) is the length of (one of) the shortest path(s)
between them, or infinity, if there is no such path.



Notation: d(u, v) is the distance of u and v.
Remark: For directed graphs, we use directed paths, and in this case d(u, v) can be different from
d(v, u).

Minimum weight spanning trees

Let w be a weight (cost) function on the edges of the graph G = (V,E), i.e. w : E(G)→ R.

Definition: The weight of the subgraph G′ = (V ′, E′) of G is the sum of the weights of the edges of G′,
i.e. w(G′) =

∑
e∈E′ w(e).

Kruskal’s algorithm for finding a minimum weight spanning tree in G:
1. Order the edges of G: e1, e2, . . . , em (m = |E(G)|) in non-decreasing order of the weights: w(e1) ≤
w(e2) ≤ · · · ≤ w(em).
2. Go over the edges in this order, and if the next one forms a cycle with the previously chosen edges,
then throw it away, otherwise add it to the tree.

Remark: It is a greedy algarithm.

Theorem: Kruskal’s algorithm produces a minimum weight spanning tree in a connected graph G.

Time complexity: at most c · n2 steps, but this can be improved. That is, Kruskal’s algorithm is a
polynomial algorithm.

Euler circuits and trails

Definition: An Euler circuit/trail in a graph G(V,E) is a circuit/trail containing all the edges of G
(therefore exactly once).

Theorem (Euler): A graph G contains an Euler circuit if and only if G is connected (apart from isolated
vertices) and all the vertices have even degrees.

Theorem (Euler): A graph G contains an Euler trail if and only if G is connected (apart from isolated
vertices) and there are 0 or 2 vertices of odd degree.

Hamilton cycles and paths

Definition: A Hamilton cycle/path in a graph G(V,E) is a cycle/path containing all the vertices of G
(therefore exactly once).

Necessary conditions

Proposition: If a graph contains a Hamilton cycle and we delete k of its vertices, then the remaining
graph can have at most k components, for k = 1, 2, . . . , n/2.

Proposition: If a graph contains a Hamilton path and we delete k of its vertices, then the remaining
graph can have at most k + 1 components, for k = 1, 2, . . . , n/2.

Sufficient conditions

Theorem (Ore): If G is a simple graph on n ≥ 3 vertices, and deg(x) + deg(y) ≥ n holds for any pair
of nonadjacent vertices x, y, then G contains a Hamilton cycle.

Theorem (Dirac): If G is a simple graph on n ≥ 3 vertices, and deg(v) ≥ n/2 holds for each vertex v,
then G contains a Hamilton cycle.

Colorings of Graphs
Vertex Coloring

Definition: The coloring (of the vertices) of a graph G is an assignment of colors to the vertices of G in
such a way that adjacent vertices get different colors.

Remarks: 1. Instead of colors we can use numbers.
2. If G contains a loop, it cannot be colored.
3. Multiple edges don’t matter in the vertex-coloring.



Definition: The chromatic number of the graph G, χ(G) is the minimum number of colors needed to
color the vertices of G.
In other words, χ(G) = k if and only if G can be colored using k colors, but it cannot be colored with
k − 1 colors.

Proposition: χ(G) = 1 if and only if G is the empty graph (i.e. E(G) = ∅).

Theorem: χ(G) = 2 if and only if G is bipartite (and not the empty graph).

Definition: a graph G = (V,E) is bipartite, if the vertices of it can be partitioned into two sets A,B
(i.e. V (G) = A∪B, s.t. A and B are disjoint), s.t. edges only go between A and B (and not inside A or
B).

Theorem: A graph is bipartite if and only if it contains no odd cycles.

Lower bounds on the chromatic number

1: χ(G) ≥ ω(G), where ω(G) is the clique-number of G, i.e. the size of the largest cligue in G, where a
clique is a complete subgraph of G.

Remark: This bound is sharp in many cases, e.g. complete graphs, bipartite graphs, interval graphs.
(A graph is an interval graph if the vertices of it are closed intervals on the real line, and and two vertices
are adjacent if and only if the corresponding intervals intersect.)

But for some graphs it can be very bad:
Theorem (Zykov’s constuction): There is an infinite sequence of graphs, G2, G3, ... with the property
that χ(Gk) = k, but ω(Gk) = 2 for all k = 2, 3, ....

2: χ(G) ≥ |V (G)|/α(G), where α(G) is the independence number of G, i.e. the size of the largest
independent set of vertices in G, where an independent set is an induced empty subgraph of G, i.e. a set
of pairwise non-adjacent vertices in G.

Upper bounds on the chromatic number

1: χ(G) ≤ |V (G)|.

Remark: This is sharp only for the complete graph.

2: χ(G) ≤ ∆(G) + 1, where ∆(G) is the maximum degree in G. (this can be proved using the greedy
coloring)

Remark: This bound is sharp for the complete graph and odd cycles, but for no other (connected)
graph. (This is Brooks’ theorem.)

Coloring of interval graphs

Definition: A graph G = (V,E) is an interval graph if the vertices of it correspond to closed (finite)
intervals on the real line, and and two vertices are adjacent if and only if the corresponding intervals
intersect.

Theorem: For an interval graph G χ(G) = ω(G) holds, and the optimal coloring can be found using the
greedy coloring (the ordering of the vertices is the increasing order of the left endpoints of the intervals
representing them).

Edge Coloring

Definition: The edge-coloring of a graph G is an assignment of colors to the edges of G in such a way
that adjacent edges get different colors.

Remarks: 1. Instead of colors we can use numbers.
2. If G contains a loop, it cannot be colored.
3. Multiple edges do matter in the edge-coloring! (They all have to get different colors.)

Definition: The edge-chromatic number (or chromatic index) of the graph G, χe(G) is the minimum
number of colors needed to color the edges of G.
In other words, χe(G) = k if and only if the edges of G can be colored using k colors, but they cannot
be colored with k − 1 colors.

Lower bounds on the edge-chromatic number

1: χe(G) ≥ ∆(G).

2: χe(G) ≥ |E(G)|/ν(G), where ν(G) is the matching number of G, i.e. the size of the largest independent
set of edges in G, where an independent set of edges is a set of pairwise non-adjacent edges in G.



Upper bounds on the edge-chromatic number

Theorem (Vizing): If G is a simple graph, then χe(G) ≤ ∆(G) + 1.

Theorem (Shannon): If G is an arbitrary graph, then χe(G) ≤ 3/2 ·∆(G).

Theorem (König): If G is a bipartite graph, then χe(G) = ∆(G).

Independent and covering sets

Definition: A matching in a graph G is a set of independent edges, i.e. a set of edges which share no
endpoints.

Definition: The matching number of the graph G, ν(G) is the size of a maximum matching in G.

Remarks: 1. ν(G) ≤ |V (G)|/2 in any graph.
2. In a bipartite graph ν(G) ≤ min{|A|, |B|}.

Definition: A matching of the graph G is perfect, if it covers all the vertices of G (i.e. ν(G) = |V (G)|/2).

Definition: An independent (or stable) set in a graph G is a set of independent vertices, i.e. a set of
vertices such that there are no edges between them.

Definition: The independence (or stability) number of a graph G, α(G), is the size of a largest indepen-
dent set of vertices in G.

Definition: An edge cover in a graph G is a set of edges which cover all the vertices, i.e. the set of all
their endpoints is V (G).

Definition: ρ(G) is the size of a minimum edge cover in G.

Definition: A vertex cover in a graph G is a set of vertices which cover all the edges, i.e. at least one
endpoint of each edge belongs to this set.

Definition: The covering number of the graph G, τ(G) is the size of a minimum vertex cover in G.

Proposition: ν(G) ≤ τ(G) in any graph G.

Proposition: τ(G) ≤ 2ν(G) in any graph G without loops.

Proposition: α(G) ≤ ρ(G) in any graph G without isolated vertices.

Theorem (Gallai 1): If G is a graph without loops, then α(G) + τ(G) = |V (G)|.

Theorem (Gallai 2): If G is a graph without isolated vertices, then ν(G) + ρ(G) = |V (G)|.

Matchings in bipartite graphs

Definition: An alternating path in a graph G with respect to a matchingM is a path whose every second
edge belongs to M .

Definition: An augmenting path in a graph G with respect to a matching M is an alternating path
whose endpoints are not covered by M .

Theorem (berge): A matching in (any) graph G is maximum if and only if there is no augmenting
path to it.

Theorem (König): In a bipartite graph G, ν(G) = τ(G) .

By (the proof of) König’s theorem, the following algorithm can be used to find a maximum matching
in a bipartite graph:
1. select independent edges, as long as we can.
2. use augmenting paths to get larger matchings.
3. if there are no more augmenting paths, then the matching is maximum, and we can prove it by finding
a vertex cover of the same size.

Corollary (of König’s theorem and Gallai’s theorems): α(G) = ρ(G) in a bipartite graph G
without isolated vertices.

Theorem (Hall): A bipartite graph G has a matching covering A if and only if |N(X)| ≥ |X| for every
subset X of A, where N(X) denotes the set of neighbors of X (in B).

Corollary (Frobenius’ theorem): A bipartite graph G has a perfect matching if and only if |A| = |B|
and |N(X)| ≥ |X| for every subset X of A.



Flows in Networks

Definition: A network (G, s, t, c) is a directed graph G(V,E) with two special vertices s and t, the
source and the sink (or producer and consumer), and a nonnegative capacity function on the edges,
c : E(G)→ R+

0 .

Definition: A flow in a network (G, s, t, c) is a function f : E → R+
0 satisfying

1) 0 ≤ f(e) ≤ c(e) for each edge e ∈ E(G),
2) for each vertex v 6= s, t : f−(v) =

∑
u∈V f(uv) =

∑
w∈V f(vw) = f+(v) (i.e. the amount into v =

amount out of v; conservation law or Kirchhoff’s law).

Definition: The value of the flow f is m(f) =
∑

v∈V f(sv)(−
∑

w∈V f(ws)) = f+(s)(−f−(s)), i.e. the
(net) amount flowing out of s.

Definition: A s, t-cut C in a network is the set of edges between X and V \X, where X is a subset of
the vertices containing s but not containing t.

Definition: The the capacity of the s, t-cut C is c(C) =
∑

u∈X,v∈V \X c(uv) = c+(X).

Proposition: 1.) m(f) =
∑

v∈V f(vt)(−
∑

w∈V f(tw)) = f−(t)(−f+(t)) (the (net) amount into t),
2.) m(f) =

∑
u∈X,v∈V \X f(uv) −

∑
w∈V \X,z∈X f(wz) = f+(X) − f−(X) for any s, t-cut C (the (net)

amount through C),
3.) m(f) ≤ c(C) for any s, t-cut C.

Definition: An augmenting path for the flow f is a (not necessarily directed) path from s to t, on which
the forward edges are not full (i.e. f(e) < c(e) for these) and the backward edges are not empty (i.e.
f(e) > 0 for those).
We can increase the value of the flow on an augmenting path by
min {min{c(e)− f(e) : e is a forward edge}, min{f(e) : e is a backward edge}}.

Theorem: The following are equivalent:
1.) f is a maximum flow.
2.) There is no augmenting path for f .
c.) There is an s, t-cut C such that m(f) = c(C).

Theorem (Ford-Fulkerson or maxflow-mincut thm): max m(f) = min c(C).

An algorithm to find the maximum flow in a graph:
1. start form the all 0 flow.
2. use augmenting paths.
3. if there are no more augmenting paths, then the flow is maximum, and we can prove it by finding a
minimum cut by taking X to be all the vertices on the „beginnings of augmenting paths” from s.

Theorem (Edmonds-Karp): if in each step we choose (one of) the shortest augmenting path(s), then
the algorithm terminates in a polynomial (of the number of vertices) number of steps.

Proposition (Integrality lemma): If in a network the capacity of each edge is an integer then there
is a maximum flow whose value on each edge is an integer.

Generalisations of flows

1. More sources (s1, . . . , sk), more sinks (t1, . . . , tl): construct a new network (G′, S, T, c′), where
V (G′) = V (G)∪{S, T}, E(G′) = E(G)∪ (

⋃k
i=1(Ssi))∪ (

⋃l
j=1(tjT )) and c′(e) = c(e) for edges of G, and

c′(Ssi) ≥
∑

v∈V (G) c(siv), ∀i = 1, . . . , k; c′(tjT ) ≥
∑

v∈V (G) c(vtj), ∀j = 1, . . . , l.

2. Vertex capacities: If v ∈ V (G) has capacity c(v), then „pull v apart”: instead of v add 2 new
vertices v′ and v′′ and the edge (v′v′′) of capacity c(v), and instead of the edges (uv) the edges (uv′),
instead of edges (vw) the edges (v′′w), with the same capacities.

3. Undirected edges: Instead of the undirected edge {u, v} add the two (oppositely) directed edges
(u, v) and (v, u) with the same capacities.

Menger’s Theorems

Theorem (Menger 1): For (any) two vertices s, t in a directed graph G, the maximum number of
edge-disjoint directed paths from s to t is equal to the minimum number of edges covering all the directed
paths from s to t.

Theorem (Menger 2): For (any) two vertices s, t in a directed graph G for which (s, t) is not and edge,
the maximum number of vertex-disjoint directed paths from s to t is equal to the minimum number of
vertices (without s and t) covering all the directed paths from s to t.



Theorem (Menger 3): For (any) two vertices s, t in a(n undirected) graph G, the maximum number
of edge-disjoint paths between s and t is equal to the minimum number of edges covering all the s − t
paths.

Theorem (Menger 4): For (any) two vertices s, t in a(n undirected) graph G for which {s, t} is not and
edge, the maximum number of vertex-disjoint paths between s and t is equal to the minimum number of
vertices (without s and t) covering all the s− t paths.

Higher Connectivity of Graphs

Definition: A graph G is k-vertex-connected (or k-connected for short) if no matter how we delete k− 1
of its vertices, the remaining graph is connected, and it has at least k + 1 vertices.

Definition: The vertex connectivity number, κ(G) of a graph G is the largest integer k for which G is
k-vertex-connected.
In other words, κ(G) = k if and only if the deletion of any set of k− 1 vertices doesn’t disconnect G, but
there is a set of k vertices whose deletion disconnects G.

Definition: A graph G is l-edge-connected if no matter how we delete l − 1 of its edges, the remaining
graph is connected.

Definition: The edge connectivity number, λ(G) of a graph G is the largest integer l for which G is
l-edge-connected.
In other words, λ(G) = l if and only if the deletion of any set of l − 1 edges doesn’t disconnect G, but
there is a set of l edges whose deletion disconnects G.

Remarks: 1. A graph is 1-vertex-connected = 1-edge-connected = connected in the old sense.
2. κ(G), λ(G) ≤ min deg(G).

Theorem (Menger 5): A graph is k-vertex-connected if and only if there are at least k vertex-disjoint
paths between any two of its vertices and it has at least k + 1 vertices.

Theorem (Menger 6): A graph is l-edge-connected if and only if there are at least l edge-disjoint paths
between any two of its vertices.

Corollary: If a graph is k-vertex-connected then it is also k-edge-connected, i.e. κ(G) ≤ λ(G) for every
graph G.

Shortest Path Algorithms

Let w be a weight function on the edges of the directed graph G = (V,E), i.e. w : E(G)→ R.

Definition: The length of a path P is the sum of the weights of the edges in P , i.e. w(P ) =
∑

e∈P w(e).
The distance d(u, v) of u, v ∈ V (G) is the length of the shortest path from u to v (if there is no such
path, then ∞.)

Goal: to find the distances (and the shortest paths) from s ∈ V (G) to the other werices.

Definition: The the weighting w is conservative if there are no negative directed cycles in G.

Proposition: If w is a conservative weighting, then the shortest walk from s to v can be chosen to be a
path.

Corollary: If w is a conservative weighting, P is a shortest path from s to v and u ∈ P then the initial
segment of P is a shortest path from s to u.

Bellman-Ford algorithm:
Let dk(v) =length of the shortest path from s to v with at most k edges.
Then d0(v) = 0 if v = s, and ∞ otherwise.
Recursively: dk+1(v) = min{dk(u) + w(u, v), (u, v) ∈ E(G)}.
Result: dn−1(v)
Checking: w is conservative if and only if dn(v) = dn−1(v) for all v ∈ V (G).
Time complexity: at most c · n3 steps.


