1. Let the vertices of the graph G be the all the $0-1$ sequences of length 5 , and two sequences be adjacent if they differ in eactly one position. Is the graph G a bipartite graph?
2. Let the vertex set of the graph G be $V(G)=\{1,2, \ldots, 30\}$. Let the vertices $x, y \in V(G)$ be adjacent in G if the difference of the numbers x and y is at least 7 . Determine $\chi(G)$, the chromatic number of G.
3. Let the two vertex classes of the bipartite graph $G(A, B ; E)$ be $A=\left\{a_{1}, a_{2}, \ldots, a_{8}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{8}\right\}$. For each $1 \leq i, j \leq 8$ let a_{i} and b_{j} be adjacent if the entry in the i th row and j th column of the matrix below is 1 . Determine $\nu(G)$, the maximum number of independent edges, $\rho(G)$, the minimum number of covering edges, and give a maximum matching and a minimum covering set of edges in G.

$$
\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

4. The chromatic number of the simple graph G is $\chi(G)=3$ and there is a coloring of the vertices of G with 3 colors in which one of the colors appears on one vertex only. Show that $\tau(G) \leq \nu(G)+1$ holds for G, where $\tau(G)$ is the minimum number of covering vertices and $\nu(G)$ is the maximum number of independent edges in G.
5. Let the vertex set of the graph G be $V(G)=\{1,2, \ldots, 30\}$. Let the vertices $x, y \in$ $V(G)$ be adjacent in G if $x \neq y$ and $x \cdot y$ is divisible by 7. Determine $\chi_{e}(G)$, the edge-chromatic number of G.
6. Determine a maximum flow and a minimum cut in the network below.

Total work time: 90 min .
The full solution of each problem (including explanations) is worth 10 points.
Grading: $0-23$ points: $1,24-32$ points: 2 , $33-41$ points: 3 , $42-50$ points: $4,51-60$ points: 5 .

