Intro to CS Test #1 October 27, 2006

- 1. Decide if the point P = (2,7,3) lies on the line connecting the two points Q = (6,3,5) and R = (12,-3,8).
- 2. Assume that the vectors v_1, v_2, \ldots, v_n span the vector space V. Let $u \in V$ be any nonzero vector. Show that there exists an *i*, such that the vectors $v_1, \ldots, v_{i-1}, u, v_{i+1}, \ldots, v_n$ also span the space V.
- 3. Determine all real number c, such that this system of linear equations has solution. When the system is solvable, determine all solutions.

$-x_1$	_	$3x_2$	+	x_3	_	$4x_4 =$	1
$5x_1$	+	$15x_{2}$	—	$2x_3$	+	$26x_4 =$	4
$2x_1$	+	$6x_2$	+			$c \cdot x_4 =$	4
$4x_1$	+	$12x_{2}$	+	x_3	+	$(c+14) \cdot x_4 =$	11

- 4. Let $\pi(1), \pi(2), \ldots, \pi(n)$ be a permutation of the numbers $1, 2, \ldots, n$. Let A be the following $n \times n$ matrix: in the i^{th} row of A the first $\pi(i) 1$ entries are 0 and the others are 1 (starting from position $\pi(i)$ in the row). Compute the determinant of A.
- 5. Let A be a 100×100 matrix, such that for every row the sum of the entries in that row is 1. Let B denote the 100×100 matrix in which every entry is 2. Determine the matrix $A \cdot B$.
- 6. What is the inverse of this matrix?

1	1	2	5	
	1	2	4	
	1	3	7	Ϊ

- 7. In a matrix A every row is an arithmetic progression. Show that $r(A) \leq 2$. (A sequence of numbers x_1, x_2, \ldots, x_n is an arithmetic progression if there exists a number t, such that $x_2 = x_1 + t$, $x_3 = x_1 + 2t$, \ldots , $x_n = x_1 + (n-1) \cdot t$.)
- 8. Let A be an n × n matrix. True or false:
 (a) If A · B = 0 for some n × n matrix B then det A = 0.
 (b) If det A = 0 then there is an n × n matrix B, such that A · B = 0.
 (Here 0 denotes the zero matrix.)