
1. Find the eigenvalues and eigenvectors of the following matrices.

a) A =
(

5 7
−3 −5

)
λ is an eigenvalue of A iff det(A− λI) = 0.

det(A− λI) = det
(

5− λ 7
−3 −5− λ

)
= (5− λ)(−5− λ)− 7 · (−3) = λ2 − 4.

Thus, det(A− λI) is zero for λ1 = 2 and λ2 = −2 only, so these are the eigenvalues of A.
In order to find the eigenvector that belongs to λ1 the system of linear equations (A−λ1E)x1 = 0
is solved by Gaussian elimination.(

5− λ1 7 0
−3 −5− λ1 0

)
=
(

3 7 0
−3 −7 0

)
∼
(

1 3/7 0
0 0 0

)
∼
(

1 3/7 0
)

That is the form of eigenvector x1 is: x1 =
(
−3/7y
y

)
, where y ∈ R arbitrary.

The subspace spanned by eigenvectors belonging to λ1 is:
{(
−3/7t
t

)
: t ∈ R

}
.

Similarly, to calculate the eigenvectors that belong to λ2 = −2 the system (A− λ2E)x2 = 0 is
solved using Gaussian elimination.(

5− λ2 7 0
−3 −5− λ2 0

)
=
(

7 7 0
−3 −3 0

)
∼
(

1 1 0
0 0 0

)
∼
(

1 1 0
)

That is the form of eigenvector x2 is: x2 =
(
−y
y

)
, where y ∈ R arbitrary.

The subspace spanned by eigenvectors belonging to λ2 is:
{(
−t
t

)
: t ∈ R

}
.

b) A =

0 0 −2
3 −2 −3
6 −6 1


λ is an eigenvalue of A iff det(A− λI) = 0.

det(A− λI) = det

−λ 0 −2
3 −2− λ −3
6 −6 1− λ

 = −λ((−2− λ)(1− λ)− (−6) · (−3))− 2(3 · (−6)−

6(−2− λ)) = −λ3 − λ2 + 8λ+ 12.
Easy to see that −2 is a root of the cubic polynomial above, hence by long division we obtain:
det(A− λI) = −λ3 − λ2 + 8λ+ 12 = (λ+ 2)(−λ2 + λ+ 6) = (λ+ 2)(−λ− 2)(λ− 3).
Thus the eigenvalues are: λ1 = −2 s λ2 = 3.
In order to find the eigenvectors that belong to λ1 the nonzero solutions of the system (A −
λ1E)x1 = 0 are determined using Gaussian elimination. −λ1 0 −2 0

3 −2− λ1 −3 0
6 −6 1− λ1 0

 =

 2 0 −2 0
3 0 −3 0
6 −6 3 0

 ∼
 1 0 −1 0

0 0 0 0
0 −6 9 0

 ∼
∼
(

1 0 −1 0
0 1 −3/2 0

)

So the form of eigenvector x1 is: x1 =

 z
3/2z
z

, where z ∈ R \ {0} arbitrary.

Thus the eigenspace of λ1 is:


 t

3/2t
t

 : t ∈ R

.

Similarly, the calculation of eigenvectors that belong to λ2 = −3: −λ2 0 −2 0
3 −2− λ2 −3 0
6 −6 1− λ2 0

 =

 −3 0 −2 0
3 −5 −3 0
6 −6 −2 0

 ∼
 1 0 2/3 0

0 −5 −5 0
0 −6 −6 0

 ∼
∼
(

1 0 2/3 0
0 1 1 0

)

Thus the form of x2 is: x2 =

 −2/3z
−z
z

, where z ∈ R \ {0} arbitrary.



The eigenspace that belongs to λ2 is:


 −2/3t

−t
t

 : t ∈ R

.

c) A =

5 0 0
0 1 2
0 1 3


λ is an eigenvalue of A iff det(A− λI) = 0.

det(A−λI) = det

5− λ 0 0
0 1− λ 2
0 1 3− λ

 = (5−λ)((1−λ)(3−λ)−1 ·2) = (5−λ)(λ2−4λ+1).

Thus the eigenvalues are λ1 = 5, and from the quadratic formula λ2,3 = 4±
√

12
2 , that is λ2 =

2 +
√

3 s λ3 = 2−
√

3.
Calculation of eigenvectors that belong to λ1: 5− λ1 0 0 0

0 1− λ1 2 0
0 1 3− λ1 0

 =

 0 0 0 0
0 −4 2 0
0 1 −2 0

 ∼ ( 0 1 −1/2 0
0 0 −3/2 0

)
∼

∼
(

0 1 0 0
0 0 −3/2 0

)

Thus x1 is: x1 =

 x
0
0

, where x ∈ R \ {0} arbitrary.

The eigenspace of λ1 is:


 t

0
0

 : t ∈ R

.

Calculation of eigenvectors that belong to λ2 = 2 +
√

3: we find the nonzero solutions of
(A− λ2E)x2 = 0 by Gaussian elimination. 5− λ2 0 0 0

0 1− λ2 2 0
0 1 3− λ2 0

 =

 3−
√

3 0 0 0
0 −1−

√
3 2 0

0 1 1−
√

3 0

 ∼
∼

 1 0 0 0
0 1 1−

√
3 0

0 0 2 + (1 +
√

3)(1−
√

3) 0

 ∼
 1 0 0 0

0 1 1−
√

3 0
0 0 0 0


Thus x2 is: x2 =

 0
(
√

3− 1)z
z

, ahol z ∈ R \ {0}.

The eigenspace of λ2 is:


 0

(
√

3− 1)t
t

 : t ∈ R

.

Similarly, calculation of eigenvectors that belong to λ2 = 2−
√

3: 5− λ3 0 0 0
0 1− λ3 2 0
0 1 3− λ3 0

 =

 3 +
√

3 0 0 0
0 −1 +

√
3 2 0

0 1 1 +
√

3 0

 ∼
∼

 1 0 0 0
0 1 1 +

√
3 0

0 0 2 + (1−
√

3)(1 +
√

3) 0

 ∼
 1 0 0 0

0 1 1 +
√

3 0
0 0 0 0


Thus, x3 is: x3 =

 0
(−
√

3− 1)z
z

, wher z ∈ R \ {0} arbitrary.

The eigenspace of λ3:


 0

(−
√

3− 1)t
t

 : t ∈ R

.

d) A =

1 1 0
0 1 0
0 1 1


λ is an eigenvalue of A iff det(A− λI) = 0.



det(A− λI) = det

1− λ 1 0
0 1− λ 0
0 1 1− λ

 = (1− λ)((1− λ)(1− λ)− 0) = (1− λ)3.

Thus the unique eigenvalue of matrix A is λ = 1.
Calculation of eigenvectors: 1− λ1 1 0 0

0 1− λ1 0 0
0 1 1− λ1 0

 =

 0 1 0 0
0 0 0 0
0 1 0 0

 ∼ ( 0 1 0 0
)

Thus the form of the eigenvector is: x =

 x
0
z

, where x, z ∈ R, furthermore at least one of x

and z is nonzero.

Thus the eigenspace of λ = 1 is:


 t1

0
t2

 : t1, t2 ∈ R

.

2. LetV be the vectorspace of real polynomials of degree at most 6. Determine the eigenvalues and
eigenvectors of the following linear transformations.

a) f(x)→ 0
The matrix of this transformation is the 6× 6 all-zero matrix (in arbitrary basis).
This transformation assigns to any polynomial the constant 0 polynomial, that is to f(x) the
polynomial 0 · f(x). This means the only eigenvalue is 0, and every nonzero plynomial is an
eigenvector, so the eigenspace of eigenvalue 0 is the whole space V .

b) f → f ′

The matrix of the transformation in the usual basis {x6, x5, . . . , x, 1} is:

0 0 0 0 0 0 0
6 0 0 0 0 0 0
0 5 0 0 0 0 0
0 0 4 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 1 0


This transformation assigns every polynomial its derivative. Since differentiation decreases the
degree of a polynomial (except for degree 0), f ′(x) = λf(x) can only hold if f(x) is of degree
0, that is a constant polynomial. The derivative of those is the constant 0 polynomial.
Thus, the only eigenvalue is 0, and every constant, but nonzero polynomial is an eigenvector.
The eigenspace belonging to eigenvalue 0 is {f(x) = c|c ∈ R}.

c) f → xf ′

The given transformation A assigns to polynomial f(x) = a6x
6 + a5x

5 + · · · + a1x + a0 the
polynomial

A(f(x)) = 6 · a6x
6 + 5 · a5x

5 + · · ·+ 1 · a1x, (1)

thus the matrix of A in the usual basis {x6, x5, . . . , x, 1} is:

A =



6 0 0 0 0 0 0
0 5 0 0 0 0 0
0 0 4 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


In order to find the eigenvalues, the roots of det(A− λI) are determined:

det(A− λI) = det



6− λ 0 0 0 0 0 0
0 5− λ 0 0 0 0 0
0 0 4− λ 0 0 0 0
0 0 0 3− λ 0 0 0
0 0 0 0 2− λ 0 0
0 0 0 0 0 1− λ 0
0 0 0 0 0 0 −λ


=



= (6− λ)(5− λ) · · · (1− λ)(−λ)
Thus the eigenvalues of A are 6, 5, 4, 3, 2, 1and 0. In order to find the eigenvectors, one has to
consider that by (1) the image of polynomial f(x) = a6x

6 + a5x
5 + · · · + a1x + a0 is 6-times

itself exactly if a5 = a4 = · · · = a0 = 0. Thus the eigenvectors that belong to eigenvalue λ1 = 6
are polynomials of the form f(x) = cx6 where c is arbitrary nonzero constant.
It can be seen completely analogously that the eigenvectors that belong to eigenvalue i (i =
5, 4, 3, 2, 1, 0) are the polynomials in the form f(x) = cxi where c ∈ R \ 0.

3. Prove that if λ is an eigenvalue of matrix A, then it is an eigenvalue of the transpose AT of A, as
well.

The statement follows from the fact that for any square matrix B one has det(B) = det(BT ).

Thus, λ is an eigenvalue of A iff det(A− λI) = 0 that is det((A− λI)T ) = det(AT − λI) = 0. This
last equation is exactly the condition of λ being an eigenvalue of AT , thus λ is an eigenvalue of A iff
it is an eigenvalue of AT , as well.

4. Prove that if λ is an eigenvalue of the invertible matrix A, then λ 6= 0 and 1
λ is an eigenvalue of A−1.

If λ is an eigenvalue of A, then det(A − λI) = 0. In case of λ = 0 this gives det(A) = 0, which
contradicts to A being invertible.

Let v be an eigenvector of A that belongs to λ, that is Av = λv. Multiplying this equatin by A−1

from the left, we obtain:

A−1Av = A−1λv, that is v = λA−1v.

After division by λ (λ 6= 0), A−1v = 1
λv is obtained, which exactly means that 1

λ is an eigenvalue of
A−1.

5. Determine all real p, such that the following matrix has two distinct real eigenvalues. Calculate the
eigenvalues for p = 6.

A =
(

2 −1
p −3

)
Calculate the eigenvalues of A as functions of p:

det(A− λI) = det
(

2− λ −1
p −3− λ

)
= (2− λ)(−3− λ)− (−1) · p = λ2 + λ+ p− 6.

Mivel a sajtrtkek ennek a polinomnak a gykei, ezrt pontosan akkor lesz kt klnbz vals sajtrtke A-nak,
ha a msodfok kifejezs diszkriminnsa pozitv, azaz The eigenvalues are the roots of this quadratic
polynomial, thus they are distinct real numbers iff the discriminant 1 − 4 · (p − 6) > 0. Hence the
values of p that satisfy the requirements are as follows: p < 25

4 .

In case of p = 6 the eigenvalues are the roots of λ2 + λ = λ(λ+ 1), that is λ1 = 0 s λ2 = −1.

6. Find such 2× 2 and 3× 3 real matrices that have no real eigenvalues.

A good 2× 2 matrix is, for example, the marix of the 90 degree rotation of the plane vectors, since
it maps only the zero vector to a constant multiple of itself, since it changes the direction of every

other vector. A =
(

0 −1
1 0

)
.

Since det(A− λI) = (−λ)2 − (−1) · 1 = λ2 + 1 is never 0 for real λ, there is no real eigenvalue.

However, in case of 3 × 3 matrices the characteristic polynomial det(A − λI) is a cubic polynomial
of λ, where the coefficient of λ3 is −1. Consequently the limit of this polynomial at −∞ is ∞, and
at +∞ is −∞. Thus every such cubic polinomial has a real root, that is every 3× 3 has at least one
real eigenvalue.

7. The quadratic matrix A satisfies A = A3. Prove that A has an eigenvector, and its eigenvalues are
in the set {−1, 0, 1}.
A = A3 can be written as: A(A2 − I) = A(A + I)(A − I) = 0. Since the determinant of the zero
matrix is zero, using the product theorem of determinants we obtain that the determinant of at least
one of the matrices A, A+ I and A− I is 0.

If det(A) = 0, then 0 is an eigenvalue, since det(A− 0 · I) = 0.

If det(A+ I) = det(A− (−1) · I) = 0, thus −1 is an eigenvalue of A.

If det(A− I) = det(A− (1) · I) = 0,thus 1 is an eigenvalue of A.



In order to see that there is no other eigenvalue of A, let v be an arbitrary eigenvector of A, that is
Av = λv. Since A = A3, Av = A3v = A2λv = λA2v = λA(Av) = λ2Av = λ3v is obtained.
Comparing the two equations, λv = λ3v follows. Since vis not the zero vector, this implies λ = λ3,
that is λ(λ2 − 1) = λ(λ+ 1)(λ− 1) = 0.

8. Consider the linear transformation A that moves the basis vectors of the four dimensional space
cyclically to each other. What are the eigenvalues and eigenvectors of A?
Let the basis vectors be v1, v2, v3, v4 so that A(vi) = vi+1 for i = 1, 2, 3 while A(v4) = v1. The
matrix of A is:

P =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


The characteristic equation is: det(P−λI) = (−λ)4−14 = λ4−1. Here we used that in the expansion
of det(P−λI) there are only two nonzero terms. Thus λ is an eigenvalue iff λ4−1 = (λ2+1)(λ2−1) =
(λ2 + 1)(λ+ 1)(λ− 1) = 0, that is the eigenvalues are: λ1 = 1 s λ2 = −1.
In order to determine the eigenvectors belonging to λ1 we solve the sytem of equations (P −λ1I)v1 =
0:
−λ1 0 0 1 0

1 −λ1 0 0 0
0 1 −λ1 0 0
0 0 1 −λ1 0

 =


−1 0 0 1 0
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0

 ∼


0 0 0 0 0
1 0 0 −1 0
0 1 0 −1 0
0 0 1 −1 0

 ∼
∼

 1 0 0 −1 0
0 1 0 −1 0
0 0 1 −1 0



Thus the form of the eigenvectors that belong to λ1 = 1 is: x = y = z = w, that is v1 =


t
t
t
t

,

where t ∈ R \ {0}.
In case of λ2 the system (P − λ2I)v2 = 0 needs to be solved:
−λ2 0 0 1 0

1 −λ2 0 0 0
0 1 −λ2 0 0
0 0 1 −λ2 0

 =


1 0 0 1 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0

 ∼


1 0 0 1 0
0 1 0 −1 0
0 0 1 1 0
0 0 0 0 0

 ∼
∼

 1 0 0 1 0
0 1 0 −1 0
0 0 1 1 0



So the form of eigenvectors that belong to λ2 = −1 is: −x = y = −z = w, that is v1 =


t
−t
t
−t

,

where t ∈ R \ {0}.

9. Calculate the eigenvectors and eigenvalues of Ak for all 1 ≤ k ≤ n− 1, if A satisfies

A ·


x1

x2

...
xn

 =


0
x1

...
xn−1

.

Applying the transformation whose matrix is Ak to an arbitrary vector:

Ak ·


x1

x2

x3

...
xn

 = Ak−1 ·


0
x1

x2

...
xn−1

 = Ak−2 ·


0
0
x1

...
xn−2

 = · · · =



0
...
0
x1

...
xn−k


.



Thus, matrix Ak can be written as

Ak =



0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
...

... · · ·
...

... · · ·
...

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

. . .
...

0 0 · · · 1 0 · · · 0


The first k rows and last k columns of Ak are all 0, the lower left (n − k) × (n − k) submatrix is
an identity. Thus the characteristic polynomial is det(Ak − λI) = (−λ)n−k, since Ak − λI is a lower
triangular matrix for all possible k.

Hence, the only eigenvalue of Ak is 0. The eigenvector x that belongs to it satisfies

Ak ·



x1

...
xk
xk+1

...
xn


=



0
...
0
x1

...
xn−k


=



0
...
0
0
...
0



so x1 = x2 = · · · = xn−k = 0. Thus the eigenvectors that belong to eigenvalue 0 are



0
...
0

cn−k+1

...
cn


,

where ci ∈ R (n− k + 1 ≤ i ≤ n) such that not all ci constants are 0.


