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Preface

These lecture notes describe a course on distributed algorithms I taught in the department

of computer science at the Technion during Spring, 1993. The course consisted of thirteen

1.5 hour lectures.

My goal in the course was not to provide comprehensive coverage of the area of dis-

tributed systems, and not even of the (more restricted) area of theory of distributed al-

gorithms. Rather I wanted to present what I think are the rudiments of this area: the

fundamental models, the canonical problems, and the basic methods. In many cases, I

decided to present results that are not optimal when I thought they could shed light on the

inherent features of some model, problem, or technique. In most of these cases, I mention

the better results in the bibliographic notes at the end of the appropriate chapter.

The students have scribed the lectures based on my own notes and the original papers.

Almost in all cases, they have �lled in details and improved the rigor of the presentation.

In several cases, they have �xed bugs and suggested simpler ways to present the material.

Based on their scribed notes, I have prepared this manuscript. I have tried to unify notation

and terminology and to point out similarities and relationships in the material.

I would like to remark that these notes are in a very preliminary form and miss many

things. In particular, the credits in the bibliographic notes are not always complete or

precise. If you have any comments about these notes, please send electronic mail to

hagit@cs.technion.ac.il.

I would like to thank the students who took this course in Spring, 1993 for their excellent

work. The following students scribed lectures (in the order of lectures): Ophir Rachman,

Eyal Dagan and Eli Stein, Galia Givaty and Amnon Horowitz, Gitit Sadeh and Liat Harari,

Ido Barnea and Avi Telyas, Liviu Asnash and Boaz Shaham, Guy Bashkansky and Boris

Farizon, Simona Holstein and Osnat Arad, Irina Notkin and Alex Dubrovski, Martha Ben-

Michael and Rivki Matosevich. Roy Petrushka and Ori Dgani.

Ophir Rachman, the teaching assistant in the course, has gone through several versions
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of the notes scribed by the students. His perfectionism and diligence made them into a

very good starting point. Thanks also to Ran Canetti for his guest lecture on randomized

consensus algorithms.

I have consulted with Jennifer Welch several times during the preparation of the course

about choice of topics and content. Yehuda Afek, Amir Ben-Dor, Marios Mavronicolas,

Hadas Shachnai, and Jennifer Welch read early versions of these notes and the comments

they provided were most helpful in improving the presentation in several places. All the

mistakes that remain are entirely my own.

My work is supported by the US-Israel Binational Science Foundation, Technion

V.P.R.|Argentinian Research Fund, and the fund for the promotion of research in the

Technion. Part of my work on these notes was carried out during summer, 1993, when I

visited AT&T Bell Laboratories in Murray Hill, New Jersey.

Hagit Attiya

January, 1994

2



Contents

I Message Passing Systems 7

1 Introduction 9

1.1 De�nition of the Computation Model : : : : : : : : : : : : : : : : : : : : : : 10

1.2 Overview of this Part : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

1.3 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

2 Leader Election in Rings 13

2.1 The Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

2.2 Anonymous Rings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

2.3 Asynchronous Rings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

2.3.1 An O(n

2

) Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

2.3.2 An O(n logn) Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : 16

2.3.3 An 
(n logn) Lower Bound : : : : : : : : : : : : : : : : : : : : : : : 18

2.4 Synchronous Rings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

2.4.1 An O(n) Upper Bound : : : : : : : : : : : : : : : : : : : : : : : : : : 24

2.4.2 An 
(n logn) Lower Bound for Restricted Algorithms : : : : : : : : 28

2.5 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

2.6 Exercises : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

3



3 Leader Election in Complete Networks 39

3.1 An O(n logn) Upper Bound for Asynchronous Networks : : : : : : : : : : : 40

3.1.1 A Detailed Description of the Algorithm : : : : : : : : : : : : : : : : 40

3.1.2 Correctness and Complexity : : : : : : : : : : : : : : : : : : : : : : : 40

3.2 An 
(n logn) Lower Bound for Synchronous Networks : : : : : : : : : : : : 43

3.3 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

4 MST in General Networks 48

4.1 The Minimum Spanning Tree Problem : : : : : : : : : : : : : : : : : : : : : 49

4.2 Preliminaries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49

4.3 The Distributed MST Algorithm : : : : : : : : : : : : : : : : : : : : : : : : 50

4.3.1 Informal Description of the Algorithm : : : : : : : : : : : : : : : : : 51

4.3.2 Detailed Description of the Algorithm : : : : : : : : : : : : : : : : : 52

4.4 Proof of Correctness (Sketch) : : : : : : : : : : : : : : : : : : : : : : : : : : 56

4.5 Message Complexity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

4.6 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

4.7 Exercises : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

5 Synchronizers 62

5.1 Motivating Example: Constructing a Breath-First Tree : : : : : : : : : : : : 63

5.2 Notation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

5.3 Description of Synchronizers : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

5.3.1 Synchronizer � : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

5.3.2 Synchronizer � : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

5.3.3 Synchronizer  : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

5.4 The Partition Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

5.4.1 Outline of the Algorithm : : : : : : : : : : : : : : : : : : : : : : : : 69

5.4.2 The Cluster Creation Procedure : : : : : : : : : : : : : : : : : : : : 69

4



5.4.3 The Search for Leader Procedure : : : : : : : : : : : : : : : : : : : : 71

5.4.4 The Preferred Edges Selection Procedure : : : : : : : : : : : : : : : 72

5.4.5 Complexity of the Partition Algorithm : : : : : : : : : : : : : : : : : 73

5.5 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

5.6 Exercises : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

II Shared Memory Systems 77

6 Introduction 79

6.1 De�nition of the Computation Model : : : : : : : : : : : : : : : : : : : : : : 79

6.2 Overview of this Part : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 81

7 Mutual Exclusion using Read/Write Registers 82

7.1 The Bakery Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

7.2 A Bounded Mutual Exclusion Algorithm for Two Processors : : : : : : : : : 86

7.3 A Bounded Mutual Exclusion Algorithm for n Processors : : : : : : : : : : 89

7.4 Lower Bound on the Number of Read/Write Registers : : : : : : : : : : : : 92

7.5 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 97

7.6 Exercises : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 99

8 Mutual Exclusion Using Powerful Primitives 100

8.1 Binary Test&Set Registers : : : : : : : : : : : : : : : : : : : : : : : : : : : : 100

8.2 Read-Modify-Write Registers : : : : : : : : : : : : : : : : : : : : : : : : : : 102

8.3 Lower Bound on the Number of Memory States : : : : : : : : : : : : : : : : 103

8.4 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 104

8.5 Exercises : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 104

III Fault-Tolerance 105

9 Introduction 107

5



10Synchronous Systems I: Benign Failures 109

10.1 The Coordinated Attack Problem : : : : : : : : : : : : : : : : : : : : : : : : 109

10.2 The Consensus Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 111

10.2.1 A Simple Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : 112

10.2.2 Lower Bound on the Number of Rounds : : : : : : : : : : : : : : : : 113

10.3 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 120

10.4 Exercises : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 120

11Synchronous Systems II: Byzantine Failures 122

11.1 The Ratio of Faulty Processors : : : : : : : : : : : : : : : : : : : : : : : : : 123

11.2 An Exponential Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : 126

11.3 A Polynomial Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 129

11.3.1 The Authenticated Broadcast Primitive : : : : : : : : : : : : : : : : 129

11.3.2 Consensus Using Authenticated Broadcast : : : : : : : : : : : : : : : 130

11.3.3 An Implementation of Authenticated Broadcast : : : : : : : : : : : : 132

11.4 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 134

11.5 Exercises : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 135

12Asynchronous Systems 136

12.1 Impossibility of Deterministic Solutions : : : : : : : : : : : : : : : : : : : : 137

12.1.1 Shared Memory Model : : : : : : : : : : : : : : : : : : : : : : : : : : 137

12.1.2 Message Passing Model : : : : : : : : : : : : : : : : : : : : : : : : : 143

12.2 Randomized Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 146

12.2.1 The Building Blocks : : : : : : : : : : : : : : : : : : : : : : : : : : : 147

12.2.2 The Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 148

12.2.3 Proof of Correctness : : : : : : : : : : : : : : : : : : : : : : : : : : : 148

12.2.4 Implementation of the Building Blocks : : : : : : : : : : : : : : : : : 150

12.3 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 154

12.4 Exercises : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 154

6



Part I

Message Passing Systems
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Chapter 1

Introduction

In the �rst part of the course we focus onmessage passing systems, one of the most important

models for distributed systems. A message passing system is described by a communica-

tion graph, where the nodes of the graph represent the processors, and (undirected) edges

represent two-way communication channels between processors. Each processor is an inde-

pendent processing unit equipped with local memory, and is running a local program. The

local programs contain internal operations, sending messages (on some edges), and waiting

for messages (on some edges). An algorithm for the system is a collection of local programs

for the di�erent processors. An execution of the algorithm is the interleaved execution of

the local programs (under some restrictions).

Several variants of message passing systems have been studied in the theory of dis-

tributed computing. These variants are distinguished according to the following features:

The communication graph: The graph may be of some standard form, e.g., a ring, a

clique, or the graph may be arbitrary.

Degree of synchrony: The system can be synchronous, where the computation is per-

formed in rounds. At the beginning of a round each processor sends messages, and

waits to receive messages that were sent by its neighbors in this round. Upon receiv-

ing these messages, the processor performs some internal operations, and then decides

what messages to send in the next round. In an asynchronous system, processors op-

erate at arbitrary rates which might vary over time. In addition, messages incur an

unbounded and unpredictable (but �nite) delay. There are also intermediate models

of partially synchronous systems, which will not be discussed here.

Degree of symmetry: In an anonymous system, all the processors are completely iden-

tical, without individual names or id's. In other words, in an anonymous system, the
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local programs of all the processors are identical. In a system with distinct id's, each

processor has a distinct name, typically an integer number.

Uniformity: In a uniform system, a processor does not know the total number of pro-

cessors in the system. Consequently, a processor runs exactly the same program

regardless of the size of the system. On the other hand, in a non-uniform system, pro-

cessors know the size of the system, and can therefore use it to run di�erent programs

according to the size of the system.

The above characteristics and a few others specify the exact model of a message passing

system. As we shall see, in some cases, these characteristics have a great e�ect on the power

of the system. We shall see problems that may be solved easily in one model, while in another

model many resources are required to solve them. Moreover, we shall see problems that can

be solved in one model, but not in another.

1.1 De�nition of the Computation Model

Here we outline the basic elements of our formal model of message passing systems.

The computation in such systems proceeds through a sequence of con�gurations. In

the initial con�guration, processors are in an initial state, and all edges are empty. The

execution of the algorithm consists of events; the possible events are a processor executing

an internal operation, a message being sent on some edge, or a message delivered at its

destination. Each event either changes the state of some processor, or changes the state of

some edge, and thereby, changes the con�guration of the system.

In more detail, an algorithm consists of n processors p

1

; : : : ; p

n

. Each processor p

i

is

modeled as a (possibly in�nite) state machine with state set Q

i

. The state set Q

i

contains

a distinguished initial state, q

0;i

. We assume the state of processor p

i

contains a special

component, bu�

i

, in which incoming messages are bu�ered.

A con�guration is a vector C = (q

1

; : : : ; q

n

) where q

i

is the local state of p

i

. The initial

con�guration is the vector (q

0;1

; : : : ; q

0;n

). Processors communicate by sending messages

(taken from some alphabet M) to each other. A send action send(i; j;m) represents the

sending of message m from p

i

to p

j

. For any i, 1 � i � n, let S

i

denote the set of all send

actions send(i; j;m) for all m 2 M and all j, 1 � j � n.

We model a computation of the algorithm as a sequence of con�gurations alternating

with events. Each event is either a computation event, representing a computation step of

a single processor or a delivery event, representing the delivery of a message to a processor.
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A computation event is speci�ed by comp(i; S) where i is the index of the processor

taking the step and S is a �nite subset of S

i

. In the computation step associated with

event comp(i; S), the processor p

i

, based on its local state, performs the send actions in S

and possibly changes its local state. Each delivery event has the form del(i; j;m) for some

m 2 M. In the delivery step associated with event del(i; j;m) the message m from p

i

is

added to bu�

j

.

An execution segment � of an algorithm is a (�nite or in�nite) sequence of the following

form:

C

0

; �

0

; C

1

; �

1

; C

2

; �

2

: : :

where C

k

are con�gurations, and �

k

are events. Furthermore, the application of �

k

to C

k

results in C

k+1

, in the natural way. That is, if �

k

is a local computation event of processor

p

i

then the state of p

i

in C

k+1

and its message send events are the result of applying p

i

's

transition function to the state of p

i

in C

k

; if �

k

is a message sending or delivery event then

the state of appropriate edge is changed accordingly. (These are the only changes.)

We adopt the convention that a �nite execution segment ends with a con�guration. If

� is a �nite execution segment, then C

end

(�) denotes the last con�guration in �.

An execution is an execution segment C

0

; �

0

; C

1

; �

1

; C

2

; �

2

: : :, where C

0

is the initial

con�guration, With each execution we associate a schedule which is the sequence of events

in the execution, that is �

0

; �

1

; �

2

; : : :. Notice that if the local programs are deterministic,

then the execution is uniquely determined by the initial con�guration and the schedule.

In most cases, we would like to put further requirements on executions, e.g., that all

messages sent are eventually delivered. This is captured by the notion of admissibility.

In the asynchronous model, an execution is admissible if each processor has an in�nite

number of computation events, and there is a one-to-one mapping from the send actions to

later delivery events. (This guarantees that every message sent is delivered at some later

point in the execution.) We sometimes assume that processor p

i

has a computation event

immediately after each delivery event of the form del(j; i;m). In this case, we merge the

message delivery event and the computation event and refer to the computation taken by

the processor upon receiving the message.

In the synchronous model processors execute in lock-step. An execution is admissible if,

in addition to the asynchronous admissibility constraints mentioned earlier, the computation

events appear in rounds. We assume that each processor has exactly one computation event

in each round and that computation events of round r appear after all computation events

of round r � 1. Furthermore, we assume all messages sent in round r are delivered before

the computation events of round r+ 1.
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1.2 Overview of this Part

In the next chapters we discuss several basic algorithms and lower bounds, mostly on mes-

sage complexity, for computation in message-passing systems. We start with the problem

of electing a leader in ring-shaped networks, which represents a host of symmetry breaking

problems. We present upper and lower bounds for the number of messages required to

elect a leader, for synchronous and asynchronous models. The next chapter studies leader

election in complete networks. We then turn to message-passing systems with arbitrary

communication network. We discuss the problem of constructing a minimum spanning tree

in a general network. We then show how to construct several synchronizers in a general

network. A synchronizer allows one to run algorithms designed for synchronous systems on

asynchronous systems.

Throughout this part, we assume that processors and communication links are reliable

and function correctly. We will return to issues of fault-tolerance in a later part of these

lecture notes.

1.3 Bibliographic Notes

Our formal model of a distributed system is based on the I/O Automaton model of Lynch

and Tuttle [45], as simpli�ed for our purposes. The main di�erence is that our model does

not incorporate composition of automata, and does not address general issues of fairness in

the composed system. Our model borrows key components from papers such as [31, 32].
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Chapter 2

Leader Election in Rings

We start our discussion of message passing systems by studying message passing systems in

which the communication graph is a ring. Rings are a very convenient structure for message

passing systems and correspond to physical communication systems, e.g., token rings. We

investigate the leader election problem, in which the processors must \choose" one of the

processors to be the leader. The existence of a leader can simplify coordination among

processors and is helpful in achieving fault-tolerance and saving resources. Furthermore,

the leader election problem represents a general class of symmetry breaking problems; the

techniques we develop for it will be useful later for other problems.

2.1 The Problem

The leader election problem has several variants, and we de�ne the most general one below.

We assume the processors have no input values, and the last operation in each local program

of a processor must be a write to a Boolean variable, representing whether the processor

is the leader or not. In order for an algorithm to solve the leader election problem it is

required that when all the local programs terminate, exactly one processor sets the variable

to true; this processor is the leader elected by the algorithm. All other processors set the

variable to false.

Other variants of the problem exist. For example, in a system with distinct id's, one

may require that the leader must be the processor with the maximal id. Also one may

require that all processors will know the id of the elected leader.

We assume that the ring is oriented, that is, processors distinguish between the links to

their left and their right neighbors. Furthermore, if p

i

is p

j

's left neighbor then p

j

is p

i

's

13



right neighbor. (See the bibliographic notes.)

2.2 Anonymous Rings

We show that there is no deterministic leader election algorithm for anonymous rings. For

generality and simplicity, we prove the result for synchronous rings; this immediately implies

the same result for asynchronous rings.

In any algorithm for an anonymous ring, all processors are identical and execute the

same program. Recall that in a synchronous system, an algorithm proceeds in rounds, where

in each round a processor receives messages that were sent to it in that round, performs

a local computation and then sends messages. Note that the local programs in such an

algorithm have the following structure:

In the �rst round, a processor sends some initial set of messages. In the second round,

the processor receives the messages sent in the �rst round, and it executes some conditional

statement that decides what messages should be sent in the second round. This continues

until, at some round, after receiving messages the processor decides to terminate the pro-

gram. At this point the processor writes to the Boolean output variable either true (\I am

the leader") or false (\I am not the leader").

Intuitively, the idea is that in an anonymous ring, the symmetry between the processors

can always be maintained, so without some initial asymmetry (as provided by unique id's), it

cannot be broken. Speci�cally, all processors in the anonymous ring start in the same state.

Since they are identical, in every round each of them sends exactly the same messages; thus,

they all receive the same messages in each round. Consequently, if one of the processors

terminates its program by winning, then so do all processors. Hence, it is impossible to

have an algorithm that elects a single leader in the ring.

To formalize this intuition, consider an anonymous ring of size n > 1, and assume, by

way of contradiction, that there exists a deterministic algorithm, A, for electing a leader in

this ring. (We assume the algorithm is non-uniform, that is, n is known to the processors.)

Lemma 2.2.1 Let A be an anonymous non-uniform algorithm. For every round k, the

states of all the processors at the end of round k are the same.

Proof: The proof is by induction on k. The base case, k = 1, is straightforward since the

processors start the same program in the same initial state.
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For the induction step, assume the lemma holds for round k � 1. Since the processors

are in the same state in round k � 1, they all send the same message m

r

to the right, and

the same message m

`

to the left. In round k, every processor receives the message m

`

on

its right edge, and the message m

r

on its left edge. Thus, all the processors receive exactly

the same messages in round k, and since they execute the same program, they are in the

same state at the end of round k + 1.

The above lemma implies that if at the end of some round some processor announces

itself as a leader, so do all other processors. This contradicts the assumption that A is a

leader election algorithm and proves:

Theorem 2.2.2 There is no non-uniform algorithm for leader election in anonymous rings.

2.3 Asynchronous Rings

In this section we show upper and lower bounds for the leader election problem in asyn-

chronous rings. Following Theorem 2.2.2, we assume that processors have distinct id's.

We start with a very simple leader election algorithm for asynchronous rings that re-

quires O(n

2

) messages. This algorithm motivates a more e�cient algorithm that requires

O(n logn) messages. We show that this algorithm has optimal message complexity by prov-

ing a lower bound of 
(n logn) on the number of messages required for electing a leader.

2.3.1 An O(n

2

) Algorithm

In this algorithm, each processor sends a message with its id to its left neighbor, and then

waits for messages from its right neighbor. When it receives such a message, it checks the

id in this message. If the id is greater than its own id, it forwards the message to the left;

otherwise, it \swallows" the message and does not forward it. If a processor receives a

message with its own id, it declares itself a leader by sending a termination message to its

left neighbor, and exiting the algorithm as a leader. A processor that receives a termination

message forwards it to the left, and exits as a non-leader. Notice that the algorithm does

not use the size of the ring.

Note that only the message of the processor with the maximal id is never swallowed.

Therefore, only the processor with the maximal id receives a message with its own id and

will declare itself as a leader. All the other processors receive termination messages and are

not chosen as leaders. This implies the correctness of the algorithm.
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2

3

n

n� 1

n� 2

1

Figure 2.1: Label assignment.

Clearly, the algorithm never sends more than O(n

2

) messages. Moreover, there is an

execution in which the algorithm sends O(n

2

) messages: Consider the ring where the id's

of the processors are 1; : : : ; n, and they are ordered such that i is the left neighbor of i+ 1

(modulo n); see Figure 2.1. In this con�guration, the message of processor i is forwarded

exactly i times. Thus, the total number of messages (not including the n termination

messages) is

P

n�1

i=0

i = O(n

2

).

2.3.2 An O(n log n) Algorithm

The more e�cient algorithm is based on the same idea as the algorithm we have just seen.

Again, a processor sends its id around the ring, and the algorithm guarantees that only

the message of the processor with the maximal id traverses the whole ring and returns.

However, the algorithm employs a more clever method for forwarding id's, thus reducing

the worst case number of messages from O(n

2

) to O(n logn).

To describe the algorithm, we �rst de�ne the k-neighborhood of a processor p

i

in the

ring to be the set of processors that are at distance at most k from p

i

in the ring (either

to the left or to the right). Note that the k-neighborhood of a processor includes exactly

2k + 1 processors. The algorithm operates in phases. In the `th phase a processor tries to

be the temporary leader of its 2

`

-neighborhood. Only processors that are temporary leaders

in the `th phase continue to the (`+ 1)th phase. Thus, fewer processors proceed to higher

phases, until at the end, only one processor is elected as the leader of the whole ring.
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In more detail, in phase 0, each processor sends a message containing its id to its 1-

neighborhood, i.e., to each of its two neighbors. If the id of the neighbor receiving the

message is greater than the one in the message, it swallows the message; otherwise, it

returns the message. If the messages of a processor return from both its neighbors, then

the processor is the temporary leader of its 1-neighborhood, and continues to phase 1.

In general, in phase `, a processor p

i

that was a temporary leader in phase `� 1 sends

messages with its id to its 2

`

-neighborhood (one in each direction). Each such message

traverses 2

`

processors one by one. A message is swallowed by a processor if it contains

an id that is smaller than its own id. If the message arrives at the last processor in the

neighborhood without being swallowed, then that last processor returns the message to p

i

. If

p

i

's messages return from both directions, it is the temporary leader of its 2

`

-neighborhood,

and it continues to phase `+ 1. A processor that receives on its left edge a message that it

sent on its right edge (or vice versa), terminates the algorithm as the leader, and sends a

termination message around the ring.

Notice that in order to implement the algorithm the last processor in a 2

`

-neighborhood

must return the message rather than forward it. Thus, we have three �elds in each message:

The id, the phase number `, and a hop counter. The hop counter is initialized to 0, and is

incremented whenever a processor forwards the message. If a processor receives a phase `

message with a hop counter 2

`

, then it is the last processor in the 2

`

-neighborhood.

The correctness of the algorithm follows in the same manner as in the simple algorithm,

since they have the same swallowing rules. It is clear that the messages of the processor with

the maximal id are never swallowed; therefore, this processor will terminate the algorithm

as a leader. On the other hand, it is also clear that no other message can traverse the whole

ring without being swallowed. Therefore, the processor with the maximal id is the only

leader elected by the algorithm.

To analyze the worst case number of messages that is sent during the algorithm, we �rst

prove:

Lemma 2.3.1 For any ` > 1, the number of processors that are temporary leaders in phase

` is less than or equal to

n

2

`�1

.

Proof: Note that if processor p

i

continues to phase `, then it is guaranteed that all the

processors in p

i

's 2

`�1

-neighborhood have id's smaller then p

i

. Otherwise, one of them

would have swallowed p

i

's message in phase ` � 1. Therefore, no processor in p

i

's 2

`�1

-

neighborhood is a temporary leader in phase ` � 1. Hence, between any two consecutive

processors that are temporary leaders in phase ` there are at least 2

`�1

processors that are
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not. Thus, the total number of processors that are temporary leaders in phase ` is at most

n

2

`�1

.

To complete the analysis, notice that each of the two messages that are sent by a

temporary leader in phase `, is forwarded at most to distance 2

`

, and then returns the same

distance. Thus, each processor that starts phase ` is responsible for at most 4 � 2

`

messages.

By Lemma 2.3.1, the number of processors that start phase ` is at most

n

2

`�1

. Thus, the

total number of messages sent in each phase is at most 8n. Since there are n processors,

there are at most dlog ne phases and therefore, the total number of messages that are sent

in the algorithm is at most 8n logn.

1

To conclude, we have shown a leader election algorithm whose message complexity is

O(n logn). Notice that, in contrast to the simple algorithm of the previous section, we use

the fact that the ring is bidirectional.

2.3.3 An 
(n log n) Lower Bound

In this section, we show that the leader election algorithm of the previous section is optimal.

That is, we show that any algorithm for electing a leader in an asynchronous ring sends at

least 
(n logn) messages. The lower bound we prove is for uniform rings where the size of

the ring is unknown. The same lower bound holds for non-uniform rings as well, but the

proof is much more involved, and is not presented here; see the bibliographic notes at the

end of this chapter.

We prove the lower bound for a special variant of the leader election problem, where the

elected leader must be the processor with the maximal id in the ring; in addition, all the

processors must know who is the elected leader. That is, before terminating each processor

writes to a special variable the identity of the elected leader. The proof of the lower bound

for the more general de�nition of the leader election problem follows by reduction and is

left as an exercise to the reader.

Assume we are given a uniform algorithm A that solves the above variant of the leader

election problem. We will show that there exists an execution of A in which 
(n logn)

messages are sent. Intuitively, this is done by building a wasteful execution of the algorithm

for rings of size n=2, in which many messages are sent. Then, we \paste" together two

di�erent rings of size n=2 to form a ring of size n, in such a way that we can combine

the wasteful executions of the smaller rings and force �(n) additional messages to be sent.

1

This is not the optimal bound, in terms of constant factors; see the bibliographic notes at the end of

this chapter.
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Before presenting the details of the lower bound proof, we �rst de�ne executions that can

be \pasted" together.

De�nition 2.3.1 An execution � is open if there exists an edge e such that in � no message

is delivered over the edge e; e is the disconnected edge of �.

Intuitively, since the processors do not know the size of the ring, we can paste two open

executions of two small rings to form an open execution of a larger ring. Note that this

argument relies on the fact that the algorithm is uniform and works in the same manner

for every ring size. We start with the following lemma that considers rings of size 2, and

provides the induction base for the recursive pasting process.

Lemma 2.3.2 For every ring R of size 2, there exists an open execution of A in which at

least one message is sent.

Proof: Assume R contains processors p

1

and p

2

. Let � be an in�nite execution of A on

the ring, and let �

0

be the shortest pre�x of � in which both processors are in their �nal

states.

Assume, without loss of generality, that p

1

is chosen as the leader in �

0

; thus, p

2

must

terminate by writing \The leader is p

1

". Note that at least one message must be sent in

�

0

; otherwise, if p

2

does not get a message from p

1

it does not know the id of p

1

, and can

not write out \The leader is p

1

". Let �

00

be the shortest pre�x of �

0

that includes the �rst

event of sending a message. Since no message arrives at its destination in �

00

, and since one

message is sent in �

00

, it is clearly an open execution that satis�es the requirements of the

lemma.

For clarity of presentation, we assume that n is an integral power of 2 for the rest of the

proof. Standard padding techniques can be used to prove the lower bound for other values

of n.

As mentioned before, the general approach is to take two open executions (on smaller

rings) in which many messages are sent, and to paste them together into an open execution

(on the bigger ring) in which the same messages plus extra messages are sent. Intuitively,

one can see that two open executions can be pasted together and still behave the same (this

will be proved formally below). The key step, however, is forcing the additional messages

to be sent. The intuitive idea is that after the two smaller rings are pasted together, at

least one half must learn about the leader of the other half. We unblock the messages
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delayed on the connecting edges, continue the execution, arguing that many messages must

be sent. Our main problem is how to do that in a way that will yield an open execution

on the bigger ring (so that the lemma can be applied inductively). The di�culty is that if

we pick in advance which of the two edges connecting the two parts to unblock, then the

algorithm can choose to wait for information on the other edge. To avoid this problem,

we �rst create a \test" execution, learning on which of the two edges the algorithm will

transfer the information between the two connected parts. We then go back to our original

pasted execution and only unblock that edge.

Before proceeding with the formal proof we need one additional de�nition. We say that

two rings (i.e., assignments of id's to processors) R

1

and R

2

are compatible if the sets of id's

in R

1

and R

2

are disjoint. Intuitively, two compatible rings can be combined to produce a

legal assignment of id's to a larger ring. The next lemma provides the inductive step of the

above pasting process.

Lemma 2.3.3 Let R

1

and R

2

be two compatible rings of size k. Assume that there is an

open execution of A on R

1

in which at least M(k) messages are sent and similarly for R

2

.

Then there is a ring R of size 2k with id's from the set R

1

[ R

2

, such that there exists an

open execution of A on R in which at least 2M(k) +

k�1

2

messages are sent.

Proof: Let �

1

and �

2

be open executions of A on R

1

and R

2

, respectively, in which M(k)

messages are sent. Let e

1

and e

2

be the disconnected edges of �

1

and �

2

, respectively.

Denote the processors adjacent to e

1

by p

1

and q

1

, and the processors adjacent to e

2

by p

2

and q

2

. Paste R

1

and R

2

together by connecting p

1

to p

2

with edge e

0

1

and q

1

to q

2

with

edge e

0

2

; denote the ring we obtain by R. (This is illustrated in Figure 2.2.)

We now show how to construct an open execution � of A on R in which 2M(k) +

k�1

2

messages are sent.

Consider �rst the execution �

1

�

2

. That is, we let each of the smaller rings execute

its wasteful open execution separately. We �rst apply the events of �

1

to R. Since the

processors in R

1

can not distinguish in �

1

whether R

1

is an independent ring or a sub-ring

of R, they execute the events of �

1

exactly as if R

1

was independent. We then apply the

events of �

2

to R. Again, since no messages are delivered on the edges that connect R

1

and

R

2

, processors in R

2

again can not distinguish in �

2

whether R

2

is an independent ring or

a sub-ring of R. Thus, �

1

�

2

is an execution on R in which at least 2M(k) messages are

sent. We now show how to force the algorithm into sending

k�1

2

additional messages by

unblocking either e

0

1

or e

0

2

.
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q

2

e
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p

2

p

1

q

1

e

1

e

0

2

e

0

1

R

1

R

2

Figure 2.2: Pasting R

1

and R

2

into R.
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Before proceeding to unblock e

0

1

and e

0

2

we �rst bring the ring into a quiescent con�gu-

ration, that is, a state in which there are no messages in transit, except on the disconnected

edges.

Claim 2.3.4 There exists a �nite execution �

1

�

2

�

3

such that C

end

(�

1

�

2

�

3

) is quiescent

and not all processors have terminated in �

1

�

2

�

3

.

Proof: Let �

0

3

be an arbitrary in�nite execution extending �

1

�

2

in which no message is

delivered on e

0

1

or e

0

2

. All messages not on e

0

1

or e

0

2

are delivered immediately.

If �

1

�

2

�

0

3

does not contain a quiescent con�guration, then the number of messages sent

in �

1

�

2

�

0

3

is unbounded. Since no messages are delivered on e

0

1

or e

0

2

, there is a pre�x of

�

1

�

2

�

0

3

which is the desired open execution of the algorithm, completing the proof of the

lemma.

Otherwise, �

1

�

2

�

0

3

contains a quiescent con�guration, so let �

1

�

2

�

3

be the shortest

pre�x of it that contains a quiescent con�guration. We claim that A is not terminated at

C

end

(�

1

�

2

�

3

). Otherwise, we derive a contradiction in the same way as in the proof of

Lemma 2.3.2: Without loss of generality, we assume the elected leader is in R

1

. Since no

message is delivered from R

1

to R

2

, processors in R

2

do not know the id of the leader, and

therefore can not terminate.

Assume now, without loss of generality, that the processor with the maximal id in R is

in the sub-ring R

1

. We claim that in every admissible execution extending �

1

�

2

�

3

, every

processor in the sub-ring R

2

must receive at least one additional message before terminating.

This holds since a processor in R

2

can learn the id of the leader only through messages that

arrive fromR

1

. Since in �

1

�

2

�

3

no message is delivered between R

1

and R

2

, such a processor

will have to receive another message before it can terminate.

The above argument clearly implies that an additional 
(k) messages must be sent on

R. However, we cannot conclude our proof here since the above claim assumes that both

e

0

1

and e

0

2

are unblocked (since the execution has to be admissible), and thus the resulting

execution is not open. We cannot claim a priori that if we unblock e

0

1

many messages will

be sent, since the algorithm might decide to wait for messages on e

0

2

. However, we can prove

that it su�ces to unblock only one of e

0

1

or e

0

2

(we do not know which in advance) and still

force the algorithm to send 
(k) messages. This is done in the next claim.

Claim 2.3.5 There exists a �nite execution segment �

4

in which

k�1

2

message are sent,

such that �

1

�

2

�

3

�

4

is an open execution, in which either e

0

1

or e

0

2

is disconnected.
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Proof: Let �

00

4

be an arbitrary extension of �

1

�

2

�

3

in which messages are delivered on e

0

1

and e

0

2

and the algorithm terminates. As we argued before, since each of the processors in

R

2

must receive a message before termination, at least k messages are sent in �

00

4

before A

terminates. Let �

0

4

be the shortest pre�x of �

00

4

in which at least k � 1 messages are sent.

Consider all the processors in R

2

that received messages in �

0

4

. Since we started from a

quiescent con�guration in which messages were delayed only on e

0

1

and e

0

2

, these processors

form two consecutive sets of processors P and Q; P contains p

2

, while Q contains q

2

. Since

at most k � 1 processors are included in these sets and the sets are consecutive, it follows

that the two sets are disjoint. Furthermore, the number of messages delivered to processors

in one of the sets is at least

k�1

2

. Without loss of generality, assume this set is P , i.e.,

the one containing p

2

. Let �

4

be the subsequence of �

0

4

that contains only the events

on processors in P . Since in �

0

4

there is no communication between processors in P and

processors in Q, �

1

�

2

�

3

�

4

is an execution. By assumption, at least

k�1

2

messages are sent

in �

4

. Furthermore, by construction, no message is delivered on e

0

2

. Thus �

1

�

2

�

3

�

4

is the

desired open execution.

To summarize, we started with two separate executions on R

1

and R

2

, in which 2M(k)

messages were sent. We then forced the ring into a quiescent con�guration. Finally, we

showed that we can force the ring to send

k�1

2

additional messages from the quiescent

con�guration, while keeping either e

0

1

or e

0

2

disconnected. Thus, we have constructed an

open execution in which the number of messages sent is at least 2M(k) +

k�1

2

.

Lemma 2.3.3 and Lemma 2.3.2 imply that for any ring of size n, there is an execution of

A in which the number of messages sent is M(n), where M(n) is a function that satis�es:

M(2) � 1 and M(2n) � 2M(n) +

n� 1

2

(for n > 2) :

The reader can verify that M(n) is 
(n logn).

2.4 Synchronous Rings

We now turn to study the problem of electing a leader in a synchronous ring. Again, we

present both upper and lower bounds. For the upper bound, two leader election algorithms

that require O(n) messages are presented. Obviously, the message complexity of these

algorithms is optimal. However, they are not time bounded, and they use processors' id's

in an unusual way. For the lower bound, we show that any algorithm that is restricted to

use only comparisons of id's, or is restricted to be time bounded, requires at least 
(n logn)

messages.
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2.4.1 An O(n) Upper Bound

The proof of the 
(n logn) lower bound for leader election in an asynchronous ring, pre-

sented in the previous section, heavily relied on delaying messages for arbitrarily long period.

It is natural to wonder whether better results can be achieved in the synchronous model,

where message delay is �xed. As we shall see, in the synchronous model, information can be

obtained not only by receiving a message but also by not receiving a message in a certain

round.

In this section, two algorithms for electing a leader in a synchronous ring are presented.

Both algorithms require O(n) messages. The algorithms are presented for a unidirectional

ring, where communication is in clockwise direction. Of course, the same algorithms can

be used for bidirectional rings. Both algorithms assume that id's are non-negative integers.

The �rst algorithm is non-uniform, and requires all processors in the ring to start (wake-up)

at the same round. The second algorithm is uniform, and processors may start in di�erent

rounds.

The Non-Uniform Algorithm

The non-uniform algorithm elects the processor with the minimal id to be the leader. It

works in phases, each consisting of n rounds. In phase i, if there is a processor with id i,

it is elected as the leader, and the algorithm terminates. Therefore, the processor with the

minimal id is elected.

In more detail, the ith phase includes rounds n(i� 1)+ 1; n(i� 1)+ 2; : : : ; n(i� 1)+ n.

At the beginning of the ith phase, if a processor's id is i, and it has not terminated yet, the

processor sends a message around the ring and terminates as a leader. If the processor's id

is not i and it receives a message in phase i, it forwards the message and terminates the

algorithm as a non-leader.

Since id's are distinct, it is clear that the unique processor with the minimal id terminates

as a leader. Moreover, exactly n messages are sent in the algorithm; these messages are sent

in the phase the winner is found. The number of rounds, however, depends on the minimal

id in the ring. More precisely, if i is the minimal id, the algorithm takes n � i rounds.

Note that the algorithm depends on the requirements mentioned|knowledge of n and

synchronized start. The next algorithm overcomes these restrictions.
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The Uniform Algorithm

In the uniform algorithm the size of the ring is not known, and furthermore, the processors

do not necessarily start the algorithm simultaneously. More precisely, a processor either

wakes up spontaneously in an arbitrary round, or wakes up upon receiving a message from

another processor.

The uniform algorithm uses two new ideas. First, messages that originate at di�erent

processors are forwarded at di�erent rates. More precisely, a message that originates at

processor with id i, is delayed 2

i�1

rounds at each processor it arrives to, before it is

forwarded clockwise to the next processor. Second, to overcome the unsynchronized starts,

a preliminary wake-up phase is added. In this phase, processors that wake up send a message

around the ring; this message is forwarded without delay. A processor that receives a wake-

up message before starting the algorithm does not participate in the algorithm, and will

only act as a relay, forwarding or swallowing messages. After the preliminary phase the

leader is elected among the set of participating processors.

The algorithm: Each processor that wakes up spontaneously sends a \wake-up" message

containing its id. This message travels at a regular rate (one edge per round) and eliminates

all the processors that are not awake when receiving the message. When a wake-up message

from processor i reaches an awake processor, the message starts to travel at rate 2

i

(each

processor that receives such a message delays it for 2

i�1

rounds before forwarding it). A

message is in the �rst phase as long as it is forwarded at regular rate, and is in the second

phase when it is forwarded at a rate of 2

i

.

Throughout the algorithm, processors forward messages. However, as in previous leader

election algorithms we have seen, processors sometimes swallow messages without forward-

ing them. In this algorithm, messages are swallowed according to the following rules:

1. A participating processor swallows a message if the id in the message is larger than

the minimal id it had seen so far (including its own id).

2. A relay processor swallows a message if the id in the message is not the minimal id it

had seen so far (not including its own id).

As we prove below, n rounds after the �rst processor wakes up, only second phase

messages are left, and the leader is elected among the participating processors. The swal-

lowing rules guarantee that only the participating processor with the smallest id receives

its message back, and terminates as a leader. This is proved in the next lemma.
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Lemma 2.4.1 Only the processor with the smallest id among the participating processors

receives its own message back.

Proof: Let p

i

be the participating processor with the smallest id, i, and denote its message

by msg

i

. (Note that at least one processor must participate in the algorithm.) Clearly, no

processor (participating or not) can swallow msg

i

. Furthermore, since msg

i

is delayed a

�nite time at each processor (at most 2

i

rounds), p

i

will eventually receive its message back.

Assume, by way of contradiction, that some other processor p

j

, j 6= i, also receives back

its message msg

j

. Thus, msg

j

must have passed through all the processors in the ring,

including p

i

. But i < j, and since p

i

is a participating processor, it will not forward msg

j

.

A contradiction.

The above lemma implies that exactly one processor receives its message back. Thus

this processor will be the only one to declare itself a leader, implying the correctness of

the algorithm. We now analyze the number of messages sent during an execution of the

algorithm.

Note that since i is the minimal id, no processor forwards a message after it forwards

msg

i

. Once msg

i

returns to p

i

, all the processors in the ring had already forwarded it. Thus

we have:

Lemma 2.4.2 No message is forwarded after msg

i

returns to p

i

.

In order to calculate the number of messages sent during an execution of the algorithm

we divide them into three categories: (a) �rst phase messages, (b) second phase messages

sent before the message of the eventual leader enters its second phase, and (c) second phase

messages sent after the message of the eventual leader enters its second phase.

Lemma 2.4.3 The total number of messages in the �rst category is at most n.

Proof: We show that at most one �rst phase message is forwarded by each processor,

which implies the lemma.

Assume, by way of contradiction, that p

k

forwarded two messages in their �rst phase,

msg

i

and msg

j

. Assume, without loss of generality, that p

i

is closer to p

k

then p

j

. Thus,

msg

j

must pass p

i

before it arrives to p

k

. If msg

j

arrives to p

i

after it woke up and sent

msg

i

, msg

j

continues as a second phase message (at a rate of 2

j

); otherwise, p

i

will not

participate and msg

i

will not be sent. Thus, either msg

j

arrives to p

k

as a second phase

message, or msg

i

is not sent. A contradiction.
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Let r be the �rst round in which some processor started executing the algorithm, and let

p

i

be one of these processors. To bound the number of messages in the second category, we

�rst show that n rounds after the �rst processor starts executing the algorithm, all messages

are in their second phase.

Lemma 2.4.4 If p

j

is at (clockwise) distance k from p

i

, then a �rst phase message is

received by p

j

no later than round r + k,

Proof: The proof is by induction on k. The base case, k = 1, is obvious since p

i

's neighbor

receives p

i

's message in round r+1. For the induction step, assume that at round (r+k�1)

the processor at (clockwise) distance k � 1 from p

i

receives a �rst phase message. If this

processor was already awake, it had already sent a �rst phase message to its neighbor p

j

,

otherwise it will forward the �rst phase message to p

j

in round (r+ k).

Lemma 2.4.5 The total number of messages in the second category is at most n.

Proof: By the proof of Lemma 2.4.3, at most one �rst phase message is sent on each edge.

Since by round (r+ n) one �rst phase message was sent on every edge, it follows that after

round (r+n) no �rst phase messages are sent. By Lemma 2.4.4, the message of the eventual

leader enters its second phase at most n rounds after the �rst message of the algorithm is

sent. Thus, messages from the second category are sent only in the n rounds following the

round in which the �rst processor woke up.

A message in its second phase with id i is delayed 2

i

rounds before being forwarded.

Thus, a message with id i is sent at most

n

2

i

times in this category. Since processors with

smaller id's send more messages, the maximal number of messages is obtained when all the

processors participate, and when the id's are as small as possible, that is, 0; 1; : : : ; (n� 1).

Also, second phase message of the eventual leader (in our case, 0) are not counted. Thus,

an upper bound on the number of messages in this category is at most

P

n�1

i=1

n

2

i

� n.

Lemma 2.4.6 The total number of messages in the third category is at most 2n.

Proof: Let p

i

be the eventual leader with id i, and let p

j

be some other participating

processor with id j. By Lemma 2.4.1, i < j. By Lemma 2.4.2, there are no messages

in the ring after p

i

receives its message back. Since msg

i

is delayed 2

i

rounds at each

processor, n2

i

rounds are needed for msg

i

to return to p

i

. Therefore, messages in the third

category are sent only during n2

i

rounds. During these rounds, msg

j

is forwarded at most

1

2

j

n2

i

= n2

i�j

times. Hence, the total number of messages transmitted in this category is

at most

P

j an id

n

2

j�i

. By the same argument as in the proof of Lemma 2.4.5, this is less

than or equal to

P

n�1

j=0

n

2

j

� 2n.
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Lemmas 2.4.3, 2.4.5, and 2.4.6 imply:

Theorem 2.4.7 There is a synchronous leader election algorithm whose message complex-

ity is 4n.

By Lemma 2.4.2, the computation ends when the elected leader receives its message

back. This happens within O(n2

i

) rounds, where i is the id of the elected leader.

2.4.2 An 
(n log n) Lower Bound for Restricted Algorithms

In the previous section, we presented two algorithms for electing a leader in synchronous

rings whose worst-case message complexity is O(n). Both algorithms have two undesired

properties. First, they use the id's in a non-standard manner (to decide how long should a

message be delayed). Second, the number of rounds in each execution depends on the id's

of processors.

In this section, we show that both these properties are inherent for any message-e�cient

algorithm. Speci�cally, we show that if an algorithm uses the id's only for comparisons it

requires 
(n logn) messages. Then we show, by reduction, that if an algorithm is restricted

to use a bounded number of rounds, then it also requires 
(n logn) messages.

Comparison Based Algorithms

In this section, we formally de�ne the concept of comparison-based algorithms that only

compare processors' id's.

For the purpose of the lower bound, we assume that all processors begin their execution

at the same round.

Note that in the synchronous model an execution of the algorithm is completely de�ned

by the initial con�guration (there is no choice of message delay). The initial con�guration

of the system, in turn, is completely de�ned by the id assignment, that is, the sequence of

id's obtained by listing the id's clockwise, starting with the minimal id. Two processors, p

1

in ring R

1

and p

2

in ring R

2

, are matching if they have the same position in the respective

id assignments. Note that matching processors are at the same distance from the processor

with the smallest id in the respective id assignments.

Intuitively, an algorithm is comparison based if it behaves the same on rings that have the

same order pattern. Formally, two id assignments, x

1

; : : : ; x

n

and y

1

; : : : ; y

n

, are order equiv-

alent if for every i; j, x

i

< x

j

if and only if y

i

< y

j

; two rings, R

1

and R

2

, are order equivalent
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if their id assignments are order equivalent. Recall that the k-neighborhood of a processor p

i

in a ring is the sequence of 2k+1 id's of processors p

i�k

; : : : ; p

i�1

; p

i

; p

i+1

; : : : ; p

i+k

(all indices

are calculated modulo n). We extend the notion of order equivalence to k-neighborhoods

in the obvious manner.

We now de�ne what it means to \behave the same". Intuitively, we would like to claim

that in the executions on order-equivalent rings R

1

and R

2

, the same messages are sent and

the same decisions are made. In general, however, messages sent by the algorithm contain

id's of processors; thus, messages sent on R

1

will be di�erent from messages sent on R

2

.

For our purpose, however, we concentrate on the message pattern, that is, when and where

messages are sent, rather than their content, and on the decisions. Speci�cally, consider

two executions �

1

and �

2

and two processors p

i

and p

j

. We say that the behaviors of p

i

in

�

1

is similar in round k to the behavior of p

j

in �

2

if the following conditions are satis�ed:

1. p

i

sends a message to its left (right) neighbor in round k in �

1

if and only if p

j

sends

a message to its left (right) neighbor in round k in �

2

, and

2. p

i

decides it is a leader in round k of �

1

if and only if p

j

decides it is a leader in round

k of �

2

.

We say that that the behaviors of p

i

in �

1

and p

j

in �

2

are similar if they are similar in all

rounds k � 0. We can now formally de�ne comparison based algorithms.

De�nition 2.4.1 An algorithm A is comparison based if for any pair of order equivalent

rings R

1

and R

2

, any pair of matching processors have similar behaviors in the respective

executions of A on R

1

and R

2

.

Lower Bound for Comparison Based Algorithms

Let A be a comparison based leader election algorithm. The proof goes by considering an

id assignment that is highly symmetric in its order patterns, that is, an id assignment in

which there are many order equivalent neighborhoods. Intuitively, as long as two processors

have order equivalent neighborhoods they behave the same under A. We derive the lower

bound by executing A on a highly symmetric ring, and arguing that if a processor sends

a message in a certain round, then all processors with order equivalent neighborhoods also

send a message in that round.

A crucial point in the proof is to distinguish rounds in which information is obtained by

processors from rounds in which no information is obtained. Recall that in a synchronous
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ring it is possible for a processor to obtain information even without receiving a message.

For example, in the non-uniform algorithm, the fact that no message is received in rounds

1; : : : ; n implies that no processor in the ring has the id 1. The key to the proof that

follows is the observation that the nonexistence of a message in a certain round r is useful

to processor p

i

only if a message could have been received in this round (in a di�erent id

assignment). For example, in the non-uniform algorithm, if some processor in the ring had

the id 1, a message would have been received in rounds 1; : : : ; n. Thus, a round in which

no message is sent on any order-equivalent ring is not useful. Such useful rounds are called

active, as de�ned below:

De�nition 2.4.2 A round r is active in the execution on a ring R if some processor sends

a message in round r. We denote by r

k

the index of the kth active round.

2

Recall that, by de�nition, a comparison based algorithm generates similar behaviors on

order equivalent rings. This implies that, for order equivalent rings R

1

and R

2

, a round is

active on R

1

if and only if it is active on R

2

.

It is fairly obvious that the state of a processor after round k depends only on its k-

neighborhood. We have, however, a stronger property that the state of a processor after the

kth active round depends only on its k-neighborhood. This captures the above intuition that

information is obtained only in active rounds, and is formally proved in the next lemma.

Note that the lemma does not require that the processors are matchings (otherwise the

claim follows immediately from the de�nition), but does require that their neighborhoods

are identical.

Lemma 2.4.8 Let R

1

and R

2

be order equivalent rings, and let p

1

in R

1

and p

2

in R

2

be

two processors with identical k-neighborhoods. Then p

1

and p

2

are in the same state after

rounds 1; : : : ; r

k

.

Proof: Informally, the proof shows that after k active rounds, a processor may learn only

about processors that are at most k away from itself.

The formal proof follows by induction on k. For the base case k = 0, note that two

processors with identical 0-neighborhood have the same id's, and thus they are in the same

state.

For the induction step, assume that any two processors with identical (k � 1)-

neighborhood are in the same state after the (k � 1)th active round. Since p

1

and p

2

2

Recall that once the initial id assignment is �xed, the whole execution is determined since the system is

synchronous.
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have identical k-neighborhoods, they also have identical (k � 1)-neighborhoods; therefore,

by the induction hypothesis, p

1

and p

2

are in the same state after the (k�1)th active round.

Furthermore, their respective neighbors have identical (k�1)-neighborhoods. Therefore, by

the induction hypothesis, their respective neighbors are in the same state after the (k�1)th

active round.

In the rounds between the (k� 1)th active round and the kth active round (if there are

any) no processor receives any message and thus p

1

and p

2

remain in the same state as each

other, and so do their respective neighbors. (Note that p

1

might change its state during the

non-active rounds, but since p

2

has the same transition function, it makes the same state

transition.) In the kth active round, if both p

1

and p

2

do not receive messages they are in

the same states at the end of the round. If p

1

receives a message from its right neighbor,

p

2

also receives an identical message from its right neighbor, since the neighbors are in the

same state, and similarly for the left neighbor. Hence, p

1

and p

2

are in the same state at

the end of the kth active round, as needed.

The next lemma carries the above claim from processors with identical k-neighborhoods

to processors with order equivalent k-neighborhoods. It relies on the fact the A is compar-

ison based. Furthermore, it requires that the id's in R's id assignment are spaced, which

intuitively means that for any two id's in R there are n id's between them. Formally, a set

of id's X is spaced if for every id x 2 X , it holds that x� i 62 X , for i = 1; : : : ; n. Note that

the next lemma does not require that the two processors are matching processors in order

equivalent rings.

Lemma 2.4.9 Let R be a ring with a spaced id assignment, and let p

1

and p

2

in R be two

processors with order equivalent k-neighborhoods. Then p

1

and p

2

have similar behaviors in

rounds 1; : : : ; r

k

.

Sketch of proof: Let ~x be p

1

's k-neighborhood and let ~y be p

2

's k-neighborhood; by

assumption, ~x and ~y are order equivalent. We embed the ~x in an id assignment for a ring

R

0

which is order equivalent to R, such that ~x corresponds to ~y. This implies that p

1

in

R

0

is matching to p

2

in R. R

0

is created by considering the permutation that sorts the id

assignment of R (with ~y as pre�x), and using it to extend ~x. Since the id assignment of R

is spaced, we can always �nd values to match. Furthermore, we can do it while avoiding

the id's in ~x. It follows that the id's in R

0

are unique and that R

0

is order equivalent to R.

(See an example in Figure 2.3.)

By Lemma 2.4.8, both p

1

in R

0

and p

1

in R are in the same state after rounds 1; : : : ; r

k

. In

particular, their behaviors are similar in rounds 1; : : : ; r

k

. Since the algorithm is comparison
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Figure 2.3: Example for the proof of Lemma 2.4.9; k = 1.

based and p

1

in R

0

is matching to p

2

in R, they have similar behaviors in rounds 1; : : : ; r

k

.

Thus, p

1

and p

2

in R have similar behaviors in rounds 1; : : : ; r

k

.

Given this lemma, we proceed to show that a comparison based algorithm sends many

messages on highly symmetric rings. We �rst precisely de�ne highly symmetric rings.

De�nition 2.4.3 Let a and b be two nonnegative real numbers. A ring is (a; b)-fooling if

for every k < an, and for every k-neighborhood on the ring, there are at least d

bn

2k+1

e order

equivalent k-neighborhoods on the ring.

We proceed by showing how we can force A to send many messages when it is executed

on an (a; b)-fooling ring. Later we show that such rings exist.

Theorem 2.4.10 Let a and b be two nonnegative real numbers, and assume

bn

2an+1

> 1. If

R is an (a; b)-fooling ring, with a spaced id assignment, then at least

bn

3

ln an messages are

sent in the execution of A on R.

Proof: Let T be the number of active rounds in the execution of A on R.

Claim 2.4.11 T � an.
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Proof: Assume, by way of contradiction, that T < an. Assume that the leader elected

by A is p

i

. Since the ring is (a; b)-fooling, and since T < an, there are at least d

bn

2T+1

e order

equivalent T -neighborhoods on the ring. Since

bn

2an+1

> 1, there exists another processor p

j

,

such that the T -neighborhoods of p

i

and p

j

are order equivalent. By Lemma 2.4.9, p

i

and

p

j

have similar decisions until the T th active round. Thus, p

j

also terminates as a leader.

A contradiction.

By de�nition, in each active round at least one processor sends a message. Let p

i

be

a processor which sends a message in the kth active round, for some k � an. Since R is

(a; b)-fooling and k � an, there are at least

bn

2k+1

processors whose k-neighborhood is order

equivalent to p

i

's. By Lemma 2.4.9, these processors have similar behaviors in the kth

active round and thus, all send a message in the kth active round. Therefore, at least

bn

2k+1

messages are sent at the kth active round.

Summing over all k, 1 � k < an, we get that the total number of messages sent during

the execution on R is at least

an�1

X

k=1

bn

2k+ 1

�

bn

3

an

X

k=0

1

k

�

bn

3

ln an :

To complete the proof of the lower bound we have to show that there exist (a; b)-fooling

rings. The construction of such rings for general n is quite complex and relies on techniques

from formal languages theory (see the bibliographic notes). Here we only construct (a; b)-

fooling rings of size n, where n is an integral power of 2. In this case, a =

1

4

and b =

1

2

.

The rings are obtained by assigning to each processor an id which is the reverse of the bi-

nary representation of its index (using a reperesentation of �xed length, log n). Speci�cally,

let rev(j) denote the integer whose binary representation (taken as a string of binary digits)

is the reverse of the binary representation of j. (See the special case n = 8 in Figure 2.4.)

Lemma 2.4.12 Let R be a ring whose id assignment is rev(0); rev(1); : : : ; rev(n�1). Then

R is a (

1

4

;

1

2

)-fooling ring.

Proof: In R, the i most signi�cant bits of processor id's repeatedly cycle through the 2

i

possible arrangements. Thus, in every sequence of 2

i

consecutive processors, each id di�ers

from any other id (their i most signi�cant bits are di�erent).

To prove the lemma we must show that for every k <

n

4

, and for every k-neighborhood

on the ring, there are at least d

1

2

n

2k+1

e order equivalent k-neighborhoods on the ring.
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Figure 2.4: Example for n=8.

Let S be an arbitrary sequence of 2

i

id's in the ring. Any other sequence of id's of length

2

i

starting at a processor which is c2

i

away from the �rst processor in S, for some positive

integer c, is order equivalent to S. Thus, there are

n

2

i

such sub-sequences, including S itself,

that are order equivalent.

To prove the claim for an arbitrary k <

n

4

, we use padding arguments. Speci�cally, pick

i such that 2

i

� k < 2

i+1

.

Since k < 2

i+1

, 2k + 1 < 2

i+2

. Thus any k-neighborhood is contained in some sequence

of 2

i+2

id's. As shown previously, there are at least

n

2

i+2

order equivalent neighborhoods of

size 2

i+2

. Obviously, in each such neighborhood there is a sequence of 2k + 1 id's which is

order equivalent to the original k-neighborhood. Thus, for every k-neighborhood there are

at least

n

2

i+2

� d

1

2

n

2k + 1

e

order equivalent k-neighborhoods.

Formally, to conclude the lower bound we need to take a fooling ring with a spaced id

assignment. This is easily achieved by taking the fooling ring constructed in the previous

lemma and \blowing it up". Note that (n+ 1)rev(0); (n+ 1)rev(1); : : : ; (n+ 1)rev(n� 1) is

a (

1

4

;

1

2

)-fooling ring, with a spaced id assignment.
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Lower Bound for Time-Bounded Algorithms

We now prove the lower bound for time-bounded algorithms, by reduction to comparison

based algorithms. We �rst show how to map from time-bounded algorithms to comparison

based algorithms. Then we use the lower bound of 
(n logn) messages for comparison

based algorithms to obtain a lower bound on the number of messages sent by time-bounded

algorithms.

In order to map from time-bounded to comparison based algorithms, we require de�ni-

tions describing the behavior of an algorithm during a bounded amount of time.

De�nition 2.4.4 An algorithm A is t-comparison based if for any two order equivalent

rings, R

1

and R

2

, any pair of matching processors have similar behaviors in rounds 1; : : : ; t.

Intuitively, a t-comparison based algorithm is an algorithm that behaves as a comparison

based algorithm in the �rst t rounds.

The �rst step is to show that any time bounded algorithm behaves as a comparison

based algorithm on a subset of its inputs, provided that the input set is su�ciently large.

To do this we use the �nite version of Ramsey's theorem. Informally, the theorem states

that if we take a large set of elements and we color each subset of size k with one of r colors,

then we can �nd some subset of size l such that all its subsets of size k have the same color.

If we think of the coloring as partitioning into equivalence classes (two subsets of size k

belong to the same equivalence class if they have the same color), then the theorem says

that there is a set of size l such that all its subsets of size k are in the same equivalence

class. Later, we shall color id assignments with the same color if the behavior of a leader

election algorithm on them is similar (in the sense de�ned earlier).

For completeness, we repeat Ramsey's theorem:

Ramsey's Theorem (�nite version): For all integers k, l and r there exists an integer

f(k; l; r) such that for every integer n � f(k; l; r), and any r-coloring of the k-subsets of n,

some l-subset of n has all its k-subsets with the same color.

In the next lemma, we use Ramsey's theorem to map any time bounded algorithm to a

comparison based algorithm.

Lemma 2.4.13 Fix n and t, and let A be a t-bounded algorithm over id space X, where

jX j � g(n; t) (for some function g that is determined by the function in Ramsey's theorem).

There exists a subset C of X, jCj � 2n(n+ 1), such that A is t-comparison based on rings

of size n with id's from C.
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Proof: Let Y and Z be any two n-subsets of X . We say that Y and Z are equivalent if

matching processors have similar behaviors in rounds 1; : : : ; t in the execution of A on any

two order equivalent rings, R

y

with id's from Y , and R

z

with id's from Z. This partitions

the n-subsets of X into �nitely many equivalence classes, because there is a �nite number

of executions within t rounds and there is a �nite number of rings that can be created over

n id's. We color the n-subsets such that two n-subsets have the same color if and only if

they are in the same equivalence class.

By Ramsey's theorem, if we take r to be the number of equivalence classes (colors), l to

be 2n(n+ 1), and k to be n, then if jX j � f(n; 2n(n+ 1); r) (f as in the statement of the

theorem), then there exists a subset C of X of cardinality 2n(n+1), such that all n-subsets

of C belong to the same equivalence-class. (Since r can be bounded by a function of n and

t we can write jX j � g(n; t) for some function g(n; t).)

We claim that A is a t-comparison based algorithm on rings of size n, with id's from

C. Consider two order equivalent rings, R

1

and R

2

, of size n with id's from C. Let Y be

the set of the id's of R

1

and Z be the set of the id's of R

2

. Z and Y are n-subsets of C,

therefore they belong to the same equivalence class. Thus, matching processors have similar

behaviors in rounds 1; : : : ; t in the execution of A on every order equivalent rings with id's

from Y and Z, respectively; in particular, on R

1

and R

2

. Therefore, A is a t-comparison

based algorithm on inputs from C.

The reader might be tempted to apply Lemma 2.4.13 to prove the lower bound by

arguing that a time bounded algorithm is a comparison based algorithm on a subset of its

inputs appealing to the lower bound proved for comparison algorithms. However, this is

incorrect, since the lower bound for comparison based algorithms holds for a fooling ring

with a speci�c spaced id assignment, say x

1

; : : : ; x

n

. The subset C that was built in Lemma

2.4.13 does not necessarily include those speci�c id's. Furthermore, we need to assume that

A is comparison based not only on x

1

; : : : ; x

n

, but on id's between them. This is handled

in the next theorem by applying a translation from the speci�c id assignment to C.

Theorem 2.4.14 Fix n and t, and let X be an arbitrary id space with at least g(n; t)

elements (g is the same as in Lemma 2.4.13). Let A be any algorithm over X that elects a

leader in a synchronous ring of size n within time t. The worst-case message complexity of

A is 
(n logn).

Proof: Assume, by way of contradiction, that there exists an algorithm A over X that

elects a leader in synchronous ring of size n within t rounds, and sends o(n logn) messages.
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Let C be the set guaranteed by Lemma 2.4.13, and let c

1

; c

2

; : : : ; c

2n(n+1)

be the elements

of C in increasing order.

Let R be some fooling ring with spaced id assignment, and let x

1

; x

2

; : : : ; x

n

, be the id's

of R in increasing order. The proof of Theorem 2.4.10 relies on the fact that an algorithm

is comparison based only on the rings with id's x

j

� i, i = 0; : : : ; n. Note that since R's id

assignment is spaced this sequence contains exactly 2n(n+ 1) distinct id's.

We de�ne an algorithm A

0

that is comparison based on rings with id's from the set

Y = fx

j

� iji; j = 1; : : : ; ng. Let y

1

; : : : ; y

2n(n+1)

be the id's in Y in increasing order; A

processor with id y

i

executes A as if it had the id c

i

. Since A is t-comparison based on

inputs from C and since A is t-bounded, it follows that A

0

is comparison based on rings

with id's from the set X . By the assumption on A, A

0

sends o(n logn) messages on R. This

is a contradiction to Theorem 2.4.10.

2.5 Bibliographic Notes

Leader election in rings was studied in numerous papers, and we shall not list all of them

here. The impossibility of choosing a leader in an anonymous ring (Theorem 2.2.1) was

proved by Angluin [2]. The simple O(n

2

) algorithm for leader election in asynchronous rings

is due to LeLann [43], who was the �rst to study the leader election problem. An O(n logn)

algorithm for leader election in asynchronous rings �rst appeared in [38]. Currently, the

message complexity of the best algorithm is 1:271n logn+ O(n) [39].

The algorithm we presented here assumes that the ring is bidirectional; O(n logn) algo-

rithms for the unidirectional case appear in [24, 51]. The issue of orientation is discussed

at length in [7].

The lower bound for the asynchronous case is due to Burns [16] and has been simpli�ed

for the purpose of our presentation. The lower bound for the synchronous case, as well

as the linear algorithms are taken from [32]; our formal treatment of comparison based

algorithms is somewhat di�erent from theirs. Constructions of fooling rings of size n, where

n is not an integral power of 2, appear in [7, 32].

2.6 Exercises

1. Consider the following algorithm for leader election in an asynchronous ring: Each

processor sends its id to its right neighbor; every processor forwards a message (to its

right neighbor) only if it includes an id larger than its own.
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Prove that the average number of messages sent by this algorithm is O(n logn), as-

suming that ids are uniformly distributed integers.

2. In Section 2.3.3, we have seen a lower bound of 
(n logn) on the number of messages

required for electing a leader in an asynchronous ring. The proof of the lower bound

relies on two additional properties: (a) the processor with the maximal id is elected,

and (b) all processors have to know the id of the elected leader.

Prove that the lower bound holds also when these two requirements are omitted.

3. Give a randomized algorithm for electing a leader in an anonymous ring; assume that

the ring is synchronous. The algorithm should always be correct, i.e., never elect two

leaders. The expected number of messages sent by the algorithm should be O(n),

each containing one bit. (You may assume that n is known.)

4. Assume that processors start with binary inputs. Present a synchronous algorithm

for computing the AND of these bits; the algorithm should send O(n) messages in the

worst case.
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Chapter 3

Leader Election in Complete

Networks

We now turn to study another special topology|a clique, that is, systems with a complete

communication graph. In such systems, every processor is connected by n� 1 bidirectional

edges, numbered 1 : : :n � 1, to all other processors. We consider both synchronous and

asynchronous complete networks, as de�ned in Section 1.1. We present a leader election

algorithm for a complete asynchronous network whose message complexity is O(n logn)

messages. We show that this bound is tight, by proving an 
(n logn) lower bound for

electing a leader even in a synchronous complete network, assuming that processors do not

start executing the algorithms simultaneously.

1

In this section we assume that a processor does not know the id's of processors that are

adjacent to it. Clearly, if a processor knows these id's then it knows all id's in the network

and choosing a leader becomes trivial.

Unlike the lower bound proved for leader election in synchronous rings, the lower bound

proof in this section does not put any restrictions on the algorithm (e.g., that it is comparison

based or time bounded). Note that this implies that the message cost of electing a leader

in a complete network is essentially the same in synchronous and asynchronous systems.

The upper bound has another interesting implication. It shows that it is not necessary

to explore each and every edge in the system. That is, although the number of edges in a

complete graph is O(n

2

), a leader can be elected with as few as O(n logn) messages.

1

If processors start simultaneously, there is a synchronous algorithm with O(n) message complexity; we

leave this algorithm as an exercise to the reader.
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3.1 An O(n logn) Upper Bound for Asynchronous Networks

Each processor that wakes up spontaneously attempts to \collect" other processors. We use

a somewhat \feudal" terminology and refer to these processors as the processor's kingdom.

If, while collecting, the processor reaches a processor that belongs to a larger kingdom, the

processor with smaller kingdom \dies". If both processors have kingdoms with equal size,

we use the identity to break symmetry; we henceforth ignore the case of kingdoms of equal

size.

When processor p

j

tries to collect p

i

, a processor in p

k

's kingdom, p

i

sends a message to

p

k

, to �nd out which processor has a larger kingdom. If p

k

has larger kingdom, no response

is sent, thus e�ectively killing the collect of p

j

. On the other hand, if p

k

has smaller kingdom

then p

k

is killed.

3.1.1 A Detailed Description of the Algorithm

We now present the pseudo-code for the algorithm to be carried out by processor p

i

. The

algorithm uses two types of messages:

Collect(j,s): message of processor p

j

with s processors in its kingdom, trying to collect a

new processor.

Join(j,s): an acknowledgement sent to join the kingdom of processor p

j

with s processors

in its kingdom.

Check(j,s): a message sent when processor p

j

with s processors in its kingdom is trying

to collect a new processor, checking the size of the kingdom it currently belongs to.

Ack(j,s): an acknowledgement that the size of p

j

's kingdom is larger.

Each processor p

i

keeps the kingdom it belongs to in the variable K

i

(the kingdom is

identi�ed by the id of the processor that owns this kingdom), initially ?, and the size of its

kingdom in the variable KS

i

. Also, it records in a variable waiting

i

, initially ?, the identity

of a processor that is trying to claim it (while checking with its current owner). The code

of the algorithm for processor p

i

appears in Figure 3.1.

3.1.2 Correctness and Complexity

Consider the \killed by" ordering relation on processors, in which p

j

is killed by p

i

if p

i

collects a processor previously belonging to p

j

's kingdom. Note that in this case p

j

stops
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if a processor wakes up spontaneously then

K

i

:= i ; KS

i

:= 1 ; waiting := i ;

send Collect(i; 1) on some edge ;

while KS

i

< n do /* Case on the type of message received */

if received Collect(j; s) then

if K

i

= ? then /* no king yet */

K

i

:= j ; KS

i

:= s + 1 ;

send Ack(j; s) to p

j

else waiting

i

:= j

send Check(j; s) to K

i

;

if received Check(j; s) from p

l

then

if KS

i

< s then

waiting

i

:= ? ;

K

i

:= ? ;

send Ack(j; s) to p

l

;

/* otherwise, the collect is killed */

if received Ack(j; s) then

waiting

i

:= ?;

send Join(j; s) to p

j

;

if received Join(i; s) then

if waiting 6= ? then

KS

i

:= KS

i

+ 1 ;

send collect(j;KS

i

) on some unused edge ;

end while

Figure 3.1: Leader election algorithm for a complete graph (code for p

i

).
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collecting processors for its kingdom. Note that a collect process can only be killed by

a processor with kingdom size bigger than or equal to its own. Note that the maximal

elements in this ordering relation will eventually collect n processors; thus, we have:

Lemma 3.1.1 At least one collect succeeds in obtaining n processors.

The converse is also true:

Lemma 3.1.2 At most one collect succeeds in obtaining n processors.

Sketch of proof: Assume, by way of contradiction, that two processors, p

i

and p

j

, collect

n processors. Let p

l

be the last processor collected by p

i

. Since p

j

collected n processors,

it must have collected p

l

. But this means that either p

i

checked with p

j

or vice versa. In

both cases, only one processor survives and continues to collect processors.

The following lemma asserts that the number of messages sent within the kingdom of

a processor during its lifetime amounts to at most a constant number times the size of the

kingdom; its proof is trivial.

Lemma 3.1.3 The total number of messages used by the collect of p

i

before it is killed is

at most 4(k + 1), where k is the number of processors in p

i

's kingdom when it is killed.

The next lemma bounds the number of big kingdoms.

Lemma 3.1.4 For any k, the number of processors with kingdoms of size n=k or more

(when they are killed) is at most k.

Proof: Consider the tree of processors induced by the \killed by" relation, de�ned above.

Clearly, unordered processors in the tree own disjoint sets of processors. Also, if a processor

p

i

owns more than n=k processors when it is killed by p

j

, then its parent in the tree, p

j

,

owns at least n=k disjoint processors when it kills p

i

. This follows from considering the

relation between the kingdom sizes of p

i

and p

j

, when p

j

acquires the �rst processor in p

i

's

kingdom. By induction on the tree, processors with kingdoms of size � n=k must have at

least n=k disjoint processors in their kingdom, which implies the lemma.

Corollary 3.1.5 The largest killed processor owned at most n=2 processors, the next largest

at most n=3, etc.
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Using the above algorithm and the lemmas we prove our main result.

Theorem 3.1.6 There is an election algorithm that elects a leader on a complete graph

using at most O(n logn) messages.

Proof: Exactly one processor will terminate owning n processors, and will be the elected

leader, which implies the correctness of the algorithm. Now, order the processors by the

\killed by" relation and look at their respective kingdom sizes. By Corollary 3.1.5, this

sequence is n; n=2; : : : ; n=i; : : : ; 1, in the worst case. By Lemma 3.1.3, in a kingdom of

size

n

k

at most 4(

n

k

+ 1) messages are sent. Summing over all kingdoms gives a total of

4

P

n�1

k=1

(

n

k

+ 1) = O(n logn) messages.

3.2 An 
(n logn) Lower Bound for Synchronous Networks

In this section we present the lower bound proof. The proof assumes that processors do

not start executing the algorithm simultaneously. That is, a processor starts executing the

algorithm either by waking up spontaneously, or by receiving a message from another pro-

cessor. It is assumed that a processor does not know which edges lead to which processors.

Thus, a processor cannot distinguish among edges on which no message was sent.

The key to the proof is the ability to choose to which processor an unused edge goes.

Using this property, we inductively construct an execution in which the graph representing

the communication among processors is partitioned into connected components, such that

two distinct components have not yet exchanged messages. Furthermore, we control the

number of components so as to maximize the message complexity.

To implement this intuition, we introduce several de�nitions and notations.

Consider an execution of some algorithm A. With each event of sending a message from

p

i

to p

j

, we associate a pair (p

i

; p

j

). For each round r of the algorithm, we denote the set

of message sending events that occurred in round r by E

r

, that is, the set of pairs just

de�ned for round r. Note that the execution is completely characterized by the sequence

E

0

; E

1

; : : :. Denote by �

r

the pre�x E

0

; E

1

; :::; E

r

, for any r � 0.

A cluster of �

r

is a connected component in the graph whose edges are the pairs in

[

r

i=0

E

i

. Intuitively, clusters are maximal sets of processors that know about each other,

either directly or through other processors in the set.

In the proof of the lower bound, we have processors in some cluster C of �

r�1

skip

round r. While this kind of execution is formally not admissible, roughly speaking, it is
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equivalent to an admissible execution in which processors in C do not skip a round but wake

up one round later. Thus, the lower bound proof can concentrate on executions in which

clusters skip rounds, and still be applicable to admissible executions. We now formalize this

technique.

An execution � is a stopping execution if for some round r, processors in some cluster C

of �

r

do not perform steps in round r. Note that processors in C do not receive a message

in any round < r from a processor not in C. We say that the processors in C are frozen in

round r of �. A k-stopping execution is a stopping execution in which k rounds are skipped

by some cluster of processors. Clearly, a 0-stopping execution is an admissible execution in

the synchronous model.

The following lemma shows that any k-stopping execution corresponds to a (k � 1)-

stopping execution.

Lemma 3.2.1 If there exists a k-stopping execution in which M messages are sent, then

there exists a (k � 1)-stopping execution in which M messages are sent.

Sketch of proof: We show the stronger property that for any k-stopping execution �,

there exists a (k�1)-stopping execution �

0

which contains exactly the same message sending

pairs as � (perhaps at di�erent rounds).

Let l be the minimum round in which a cluster C is frozen in �. We construct �

0

by

shifting one round forward all the events in � that occurred before round l and involve

processors in C. More formally, for every r, 0 � r � l, E

0

r

contains all events (p

i

; p

j

) 2 E

r

where p

i

62 C and all events (p

i

; p

j

) 2 E

r�1

where p

i

2 C, and for r > l, E

0

r

= E

r

. (See an

example in Figure 3.2; in the �gure, we draw processors vertically, while rounds progress

from the left to the right.)

Clearly M messages are sent in �

0

. The details of the proof that �

0

is a (k� 1)-stopping

execution are left to the reader.

Applying the lemma k times yields a 0-stopping execution, which is admissible by de�-

nition, and hence:

Corollary 3.2.2 If there exists a k-stopping execution in which M messages are sent, then

there exists an admissible execution in which M messages are sent.

We now turn to the proof of the lower bound. In general, at the end of any election

algorithm all processors should know who the leader is. Hence, the messages sent by such

44



C

Rounds 1 2 3

(a) �{nodes in C are frozen in round 3.

C

Rounds 1 2 3

(b) �

0

{nodes in C start one round later.

Figure 3.2: Shifting a frozen cluster.

algorithm must cover a set of edges which spans the communication graph of the system.

In other words, at the end of the algorithm, the whole graph must be contained in one

cluster. Thus, no cluster in the algorithm can inde�nitely defer the sending of messages to

processors outside the cluster.

In the following proof of the lower bound, we use an adversary argument to construct

a stopping execution which contains at least

1

2

n logn events. At the beginning of each

round, the adversary determines which clusters to freeze, and determines the destination

of messages sent in this round over unused edges. As mentioned earlier, when a message

is sent over a previously unused edge, the adversary has the power to determine the other

endpoint of the edge since all unused edges are indistinguishable. Freezing clusters is used

to delay the formation of larger clusters until later rounds in the run; this keeps the same

rate for clusters' growth. By determining the destination of unused edges, we force the

algorithm to send as many messages as possible within one cluster; the adversary tries to

direct unused edges to processors within the cluster of the sending processor.

Let �

r

be a pre�x of an execution �. The degree of processor p

i

in �

r

is the number of

di�erent edges used in events of �

r

that are incident to p

i

. The potential degree of processor

p

i

in �

r

is the degree of p

i

in �

r

plus the number of events in E

r+1

in which p

i

is a source.

That is, the potential degree of a processor is the degree it would have after the next round

if it is not frozen. The potential degree of a set of processors is the maximum potential
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degree among its processors.

We assume without loss of generality that n = 2

k

, for some k; otherwise, standard

padding techniques can be used.

Lemma 3.2.3 There exists a stopping execution �, such that for every l, 0 � l � k,

there exists a pre�x �

i

l

of � and a partition of the processors into

n

2

l

pairwise disjoint sets

P

1

; P

2

; :::; P

n=2

l
, such that:

1. any cluster of �

i

l

is contained within one set (from P

1

; P

2

; :::; P

n=2

l
), and

2. the potential degree of each set P

1

; P

1

; :::; P

n=2

l

in E

i

l

is at least 2

l

.

Proof: The proof is by induction on l. For the base case, l = 0, let P

1

; P

2

; : : : ; P

n

be the

singleton sets P

i

= fp

i

g. Consider the execution in which any processor whose potential

degree is at least 1 is frozen until there is no processor with potential degree 0. Any processor

must eventually send a message in this execution, since it might be the only processor that

woke up spontaneously. Take �

i

0

to be the execution in which all processors are awake and

the potential degree of each processor is at least 1.

For the induction step, observe that by the induction hypothesis there exists a pre�x

�

i

l

, and a partition of the processors P

1

; P

2

; :::; P

n=2

l
in which the potential degree of every

subset P

j

is at least 2

l

. Consider the following partition of the processors P

0

1

= P

1

[P

2

; P

0

2

=

P

3

[ P

4

; : : : ; P

0

n=2

l+1

= P

n=2

l

�1

[ P

n=2

l
; that is, each subset contains two subsets from the

current partition. Clearly, each subset contains exactly 2

l+1

processors.

We now describe how to construct �

i

l+1

. We extend �

i

l

by letting each processor in

subset P

0

j

send messages only to processors in P

0

j

until the potential degree of P

0

j

is at least

2

l+1

. That is, the source and destination processors of any message are both in the same

subset; this is possible as long as the potential degree of the sending processors is smaller

than 2

l+1

. We continue in this manner until the potential degree of P

0

j

is greater than 2

l+1

.

At this point, we freeze P

0

j

until the construction of �

i

l+1

is complete, which happens when

all subsets are frozen. Clearly �

i

l+1

satis�es the inductive assumptions.

Theorem 3.2.4 Any algorithm for electing a leader in a synchronous complete network

sends at least

n

2

logn messages.

Proof: Fix some algorithm A for leader election in a complete network. Let � be the

stopping execution provided by Lemma 3.2.3.
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For any l, 1 � l � k, consider �

i

l

provided by the lemma. There are

n

2

l

pairwise disjoint

sets of processors whose potential degree is at least 2

l

in �

i

l

. Thus, there are at least

n

2

l

processors whose potential degree is at least 2

l

in �

i

l

; pick an arbitrary set S

l

of

n

2

l

processors

whose potential degree is at least 2

l

in �

i

l

. Let �

0

be the extension of �

i

k

with one more

round in which every processor takes a step. In the last round of �

0

processors in S

l

realize

their potential degree and thus, their degree is at least 2

l

in �

0

.

To complete the proof, we sum the degrees of processors in S

1

; : : : ; S

k

. However, it is

possible that the sets are contained within each other, that is, S

l+1

� S

l

, and the algorithm

is charged more than once for each message. To avoid this problem, we can work our way

backwards, removing the processors of S

l+1

; : : : ; S

k

from S

l

. That is, we de�ne S

0

l

= S

l

�S

l+1

,

for every l, 1 � l < k, and S

0

k

= S

k

. Note that jS

0

l

j =

n

2

l+1

and that S

0

1

; : : : ; S

0

k

are pairwise

disjoint (we have assume that n = 2

k

). Thus, the total number of messages sent in �

0

is at

least

k

X

l=1

n

2

l+1

2

l

=

n

2

k�1

X

l=0

1 =

n

2

logn :

3.3 Bibliographic Notes

E�cient algorithms for leader election in complete graphs �rst appeared in [40, 53]. Later

work that improves on the time complexity of these algorithms appears in [1]. The algorithm

we presented here is a specialized version of a general algorithm from [3]. The main lemma

for the complexity analysis (Lemma 3.1.4) is inspired by [34, 35].

The lower bound was originally proved in the asynchronous model by Korach, Moran

and Zaks [40] and later extended to the synchronous model with asynchronous starts by

Afek and Gafni [1].
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Chapter 4

Minimum-Weight Spanning Tree in

a General Network

In this chapter and the next one, we deal with graph theoretic problems related to dis-

tributed systems. In these problems, the computation is applied to the communication

graph of the system, which is the graph induced by the communication links among pro-

cessors. In these chapters, we often adopt a graph theoretic terminology and associate

processors with nodes , and communication links with edges.

In this chapter, we consider asynchronous systems with an arbitrary (connected) com-

munication graph. We assume that edges have unique (positive) weights, and we consider

the problem of �nding a minimum spanning tree (MST) of the communication graph. An

MST simpli�es solutions for many control problems in the network, for example, leader

election. Moreover, a designated MST allows messages to be sent along cheapest routes,

in case each edge's weight represents the cost of sending messages along the corresponding

link.

In this section we present an algorithm for �nding the MST of a system with commu-

nication graph G(V;E); the total message complexity of the algorithm is O(n logn +m),

where n = jV j is the number of nodes, and m = jEj is the number of edges.

Below, we �rst de�ne the MST problem and present some properties of spanning trees

that are crucial for the algorithm. Then we describe the distributed algorithm and discuss

its correctness and message complexity.
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4.1 The Minimum Spanning Tree Problem

Consider a system with an arbitrary undirected, connected communication graph G(V;E)

with n nodes and m edges. With each edge e 2 E we associate a weight w(e), a unique

real number. The system is asynchronous, and we further assume that the edges follow a

FIFO policy, that is, messages arrive in the order they were sent. At the beginning of the

algorithm, a processor knows only the weights of the edges adjacent to it. Processors start

the algorithm either spontaneously or upon receiving a message from a neighbor.

The problem is to �nd the spanning tree of G with the minimum weight, that is, the

spanning tree with the minimum sum of its edges' weights. This tree is called a minimum

spanning tree (MST). At the end of the algorithm, each processor should know which of its

adjacent edges belong to the MST.

It is necessary to assume that either edges have distinct weights or nodes have unique

id's. Otherwise, there is no distributed algorithm for �nding an MST. To see why consider,

for example, an anonymous ring with equal weight edges. An MST of this graph implies a

leader for the ring, since the node with no parent in the MST can be chosen as the leader.

This is impossible, as we have shown in Theorem 2.2.2.

4.2 Preliminaries

Before presenting the distributed algorithm, we present some de�nitions and lemmas.

Lemma 4.2.1 If the edges of a connected graph G(V;E) have distinct weights, then G has

a unique MST.

Proof: Assume, by way of contradiction, that T

1

=(V

1

; E

1

) and T

2

= (V

2

; E

2

) are two

di�erent minimum spanning trees of G. Let e be the minimum edge that belongs to one

tree but not to the other. Without loss of generality, e 2 E

1

and e 62 E

2

. Thus, E

2

[ feg

must contain a cycle, and at least one edge on this cycle, e

0

, is not in E

1

since T

1

contains

no cycles. Since e

0

is in E

2

but not in E

1

and since the edges' weights are distinct, it follows

that w(e) < w(e

0

). Thus, E

2

[ feg � fe

0

g forms a spanning tree with smaller weight than

T

2

. A contradiction.

Let a fragment of an MST be a connected subgraph of it. An outgoing edge of a fragment

is an edge with one adjacent node in the fragment and the other adjacent node not in the

fragment. Below we refer to the outgoing edge with minimum weight as the minimum

outgoing edge.
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Lemma 4.2.2 Let G(V;E) be a connected graph with distinct weights, and let T (V;E

0

) be

its unique MST. For any fragment F of T , the minimum outgoing edge of F is in T .

Proof: Assume, by way of contradiction, that there exists a fragment F = (V

1

; E

1

) of

T = (V;E

0

) whose minimum outgoing edge e is not in E

0

. Then E

0

[ feg contains a cycle.

This cycle contains e and at least one additional outgoing edge of the fragment F , say e

0

.

Since e has minimum weight among outgoing edges of F , it follows that w(e

0

) > w(e). Thus,

E

0

[ feg � fe

0

g forms a spanning tree with smaller weight than T . A contradiction.

These two lemmas are the basis of the well-known sequential algorithms of Prim-Dijkstra

and Kruskal for �nding an MST for a graph. These algorithms start with fragments that

consist of single nodes, and then proceed by combining fragments into larger and larger

ones, until there is one big fragment which is the MST. The fragments are combined using

their minimum outgoing edges. The next section discusses how to apply these lemmas to

derive a distributed MST algorithm.

4.3 The Distributed MST Algorithm

The distributed algorithm has the same general structure as the sequential algorithms: At

the beginning, each node is a separate fragment. In each stage of the algorithm, each

fragment �nds its minimum outgoing edge, and attempts to combine with the fragment at

the other end of the edge. Lemma 4.2.2 implies that the combination of the fragments using

this edge forms a new fragment of the MST. The algorithm ends when there is only one

fragment, which is the MST.

The distributed algorithm di�ers from the sequential algorithms in the parallelism of

the fragments' combinations. There are two major di�culties in applying the sequential

ideas in the distributed setting.

One di�culty is the requirement that all nodes of a fragment coordinate their actions.

For example, they have to cooperate in order to �nd the fragment's minimum outgoing edge.

In addition, they have to know that they are in the same fragment. We can associate with

every fragment an id that is known to all nodes in the fragment. In this case, two neighboring

nodes can compare their id's and �nd out whether they are in the same fragment or not.

Notice that since the fragmentation of the graph is dynamic, a synchronization problem

may happen: two nodes can be in the same fragment but not be aware of this fact yet.

Later we discuss in detail how to avoid mistakes in this case.
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Figure 4.1: Example of bad fragment combining.

Another di�culty is that there are many ways to grow fragments and combine them

in order to have one big fragment at the end of the algorithm. We should �nd the way in

which the number of messages transmitted is minimum. As we will see, the cost of �nding

the minimum outgoing edge of a fragment is proportional to the fragment's size. Hence,

combining fragments with (approximately) the same size is worthwhile. In contrast, if we

allow one big fragment to combine with a single node in each step of the algorithm until it

spans the whole tree, then the total number of messages will be O(n

2

). (See, for example,

the growth of fragment F in Figure 4.1.)

4.3.1 Informal Description of the Algorithm

We start with an overview of the algorithm.

Each processor starts the algorithm as an individual fragment. Each fragment tries to

join with other fragments. At each stage of the algorithm each fragment has an MST with

a unique edge of the MST called the core of the fragment. The two nodes adjacent to the

core of a fragment coordinate the activity of the fragment, and all nodes of the fragment's

MST are oriented towards the core.

After a new fragment is created, its �rst action is to choose its minimum outgoing edge.

The idea is that each processor in the fragment �nds the minimum outgoing edge that is

adjacent to it, and then the minimum edge is chosen among the edges that were found by

the nodes. The fragment then tries to join with the fragment on the other end of the chosen

edge by sending a connection request.

In general, a fragment is identi�ed by the weight of its core and its level, whose nature

will be explained shortly.
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There are two ways to join two fragments. The �rst way is by combination of fragments

with the same level and the same minimum outgoing edge. In this case, a new fragment

with a new core and level is created. The second way is by absorption, which happens when

a fragment with small level sends a connection request to a fragment with bigger level.

A fragment containing only a single node is de�ned to be at level 0. When two fragments

of level L � 1 are combined, a new fragment of level L is formed. The edge on which the

last combination took place is the core of the new fragment. The identity of a fragment is

de�ned to be (w;L), where L is the level, and w is the weight of the core edge. When a

fragment is absorbed into another fragment, it takes on the identity of the other fragment.

After a new fragment is created, as a result of combination or absorption, the id of this

new fragment is sent to all its nodes. Note that the level of a fragment is the number of

combinations that led to its creation.

4.3.2 Detailed Description of the Algorithm

During the algorithm, a node is in one of three possible states:

Sleeping: the initial state before waking up;

Find: while participating in a fragment's search for the minimum outgoing edge; and

Found: otherwise, the node has found its minimum outgoing edge.

Since a node has to �nd, repeatedly, the minimum edge adjacent to it, every node maintains

information about its adjacent edges. Each node classi�es each of its adjacent edges into

one of three possible states:

Branch: if the edge belongs to the MST of the current fragment;

Rejected: if the edge is not a branch and it connects the node with another node in the

same fragment; and

Basic: otherwise (if the edge is unexplored).

The algorithm uses the following types of messages:

Initiate(w;L; s): This message is sent by the core nodes (the nodes adjacent to the core

edge) to nodes in the fragment, right after the creation of the fragment. w is the

weight of the fragment's core edge, L is the level, and s is the state of the core node.
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Test(w;L): This message is sent by a node in state Find over its minimum Basic edge in

order to �nd out if it is an outgoing edge (w and L are as above).

Reject: This message is sent by a node as a response to a Test message, if it arrives from

a node in the same fragment.

Accept: This message is sent by a node as a response to a Test message, if it arrives from

a node not in the same fragment.

Report(w): This message is used to �nd the minimum outgoing edge. It is sent by a node

v to its parent u in the spanning tree of the fragment, and contains w, the weight of

the minimum outgoing edge found by v.

Change-Core: This message is sent by the core nodes to the node adjacent to the minimum

outgoing edge of the fragment.

Connect(w;L): This message is sent by the node adjacent to the minimum outgoing edge

of the fragment to the node (and the fragment) on the other end of this edge, and

requests connection.

Initially, each node is in Sleeping state. A node that spontaneously wakes up or is

awakened by receiving a message is a fragment of level 0, and is in Find state.

Finding the Minimum Outgoing Edge

The two core nodes start the process of �nding the minimum outgoing edge of the fragment

by sending an Initiate message to all nodes in the fragment. Each node then �nds the

minimum outgoing edge adjacent to it, and reports about it to the core nodes. The core

nodes decide which is the global minimum outgoing edge, and inform the node adjacent to

this edge. This is done as follows:

1. The core nodes broadcast an Initiate(w;L; Find) message on the fragment's branches,

where (w;L) is the identity of the fragment.

2. A node p

i

that receives an Initiate message changes to Find state.

The node then updates its local information about its fragment, that is, the core and

the level of the fragment. It also records the direction towards the center, that is, the

edge on which it received the Initiate message.

If p

i

has outward branches, it forwards the Initiate message on them.
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Finally, p

i

�nds its local minimum outgoing edge; this process is described in detail

later.

3. A leaf node in the fragment's spanning tree sends Report(w) to its parent node, where

w is the weight of its minimum outgoing edge. If the node has no outgoing edges then

it sends Report(1).

4. An internal node p

i

of the fragment waits until it receives Report messages on all its

outward branches. Then, p

i

chooses the minimum weight, denoted by w, including

the weight of its local minimum outgoing edge. Finally, p

i

sends a Report(w) message

on its inward branch towards the core. In addition, if w was received in a Report

message on edge e, it marks e as the best edge. This will allow the core to recreate

the path to the node with the minimum outgoing edge.

After sending the Report message towards the core, a node enters a Found state.

5. Based on the Report messages, the core nodes decide which node has the minimum

outgoing edge of the fragment. This node is now informed that it was chosen to lead

the next attempt to connect. The core node that received the minimum w sends

a Change-Core message along the path of best edges, until it reaches the chosen

node, which does not have a best edge. The chosen node then sends the message

Connect(w;L) over its minimum outgoing edge, and denotes this edge as a Branch.

By Lemma 4.2.2, this edge is in the MST. Notice that if no node in a fragment has an

outgoing edge, then the algorithm is completed, and the single fragment is the MST.

If the fragment consists of a single node (i.e., it is a fragment of level 0), then the

minimum outgoing edge of the fragment is this node's minimum adjacent edge. Therefore,

in such a case, the node immediately sends over it Connect(0; 0), and enters a Found state.

Combining Fragments

We now describe how the attempt to combine fragments happens. Suppose there are two

fragments F

1

= (V

1

; E

1

) with id (w

1

; L

1

) and F

2

= (V

2

; E

2

) with id (w

2

; L

2

). Assume that

Connect(w

1

; L

1

) message is sent over the edge e from node p

i

in fragment F

1

to node p

j

in

fragment F

2

. When p

j

receives the Connect message from p

i

, it waits until L

2

� L

1

. The

actions that follow depend on the relation between L

1

and L

2

.

If L

2

= L

1

and p

j

is going to send, or has already sent, a Connect message to p

i

on e,

then combination takes place. That is, a new fragment is created, which contains the nodes

V

1

[ V

2

and the edges E

1

[ E

2

[ feg. The new fragment's level is L

1

+ 1, and its core is
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e. The core nodes of the new fragment, p

i

and p

j

, initiate another phase by sending an

Initiate(w(e); L

1

+ 1; F ind) message from the new core.

If L

2

> L

1

, then absorption of F

1

into F

2

takes place. That is, F

2

is enlarged by adding

to it the nodes V

1

and the edges E

1

[ feg, without changing the id of F

2

. That is, the level

of the expanded fragment is still L

2

, and its core is the core of F

2

. When absorption occurs,

p

j

immediately sends to p

i

an Initiate(w

2

; L

2

; s

j

) message, where s

j

is the state of p

j

(Find

or Found). Upon receiving this message, p

i

goes into state s

j

and passes the message on to

the other nodes of F

1

. The nodes of F

1

change their local information and their orientation

appropriately.

The situation in which L

1

> L

2

is impossible, since a Connect message is never sent in

such a case. As will be explained in detail below, in this case the search for a minimum

outgoing edge of F

1

would not be completed. In case L

1

= L

2

, but the minimum outgoing

edges of F

1

and F

2

are not the same, p

j

waits until one of the two conditions is satis�ed.

Meanwhile, no response is sent to p

i

.

Identifying Outgoing Edges

To complete the description of the algorithm, we now explain how a node identi�es its

outgoing edges, in order to choose its minimum outgoing edge. A node p

i

in fragment F

1

with id (w

1

; L

1

) picks its minimum Basic edge, denoted by e, and sends on it a Test(w

1

; L

1

)

message. When a node p

j

in fragment F

2

with id (w

2

; L

2

) receives this message, it acts as

follows:

1. If (w

1

; L

1

) = (w

2

; L

2

), then e is not an outgoing edge. In this case, p

j

sends a Reject

message to p

i

; both p

i

and p

j

mark e as Rejected. Process p

i

continues to search for

a minimum outgoing edge.

2. If (w

1

; L

1

) 6= (w

2

; L

2

) and L

2

� L

1

, then p

j

sends Accept message to p

i

. Process p

i

marks e as its minimum outgoing edge. As we shall see later, in this case p

i

and p

j

are not in the same fragment.

3. If (w

1

; L

1

) 6= (w

2

; L

2

) and L

2

< L

1

, then p

j

does not reply to p

i

's message, until one

of the above conditions is satis�ed. E�ectively this blocks p

i

, since p

i

does not send

a Report message until it gets a reply on its test message. This also blocks the whole

process of �nding the minimum outgoing edge of F

1

.

55



4.4 Proof of Correctness (Sketch)

The MST algorithm presented in the previous sections is one of the most complex algorithms

we discuss in this course. A full formal proof for this algorithm is highly complicated (see the

bibliographic notes). Therefore, we only point out crucial properties of the algorithm that

will hopefully convince the reader of its correctness. First, we discuss the termination of

the algorithm. We show that although messages may be delayed, the algorithm terminates.

Second, we discuss the synchronization problem that makes the above delays necessary.

Third, we concentrate on the situation of absorption while searching for a minimum outgoing

edge. We show that at the end of the search the chosen outgoing edge is the minimum among

the outgoing edges of the absorbing fragment and the absorbed fragment.

Termination

Since in some cases responses to Test and Connect messages are delayed, it is a priori

possible that the algorithm deadlocks. We now show that this does not happen.

Lemma 4.4.1 From any con�guration with at least two fragments eventually either ab-

sorption or combination takes place.

Proof: Let L be the minimal level of a fragment in this con�guration, and let F be

the fragment of level L whose minimum outgoing edge has minimum weight (among all

fragments of level L). A Test message from F either reaches a fragment F

0

of level L

0

� L,

or wakes up a Sleeping node. In the �rst case, a response to this message is sent immediately.

In the second case, the awakened node becomes a fragment of level 0, so maybe F is no

longer the fragment with the minimum outgoing edge among the fragments with minimal

level. In this case, we choose F again, and repeat the argument. Since the number of nodes

is bounded, we eventually reach a con�guration in which every Test message of F gets an

immediate response (as in the �rst case).

This implies that eventually F will �nd its minimum outgoing edge e and will send a

Connect message to another fragment F

0

on e. If F

0

is a fragment of level L

0

> L, then F

0

immediately absorbs F . Otherwise, F

0

is a fragment of level L. By the way F was chosen

among fragments of level L, e is also the minimum outgoing edge of F

0

and therefore F and

F

0

combine.

Note that if the algorithm reaches a con�guration with one fragment, it eventually

terminates. Thus, if the algorithm does not terminate, there must be at least two fragments.
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Lemma 4.4.1 implies that in this case the number of fragments will decrease by at least one,

until eventually there will be only one fragment left. This implies:

Corollary 4.4.2 The algorithm eventually terminates.

The Synchronization Problem

As message transmission time is unbounded, it is possible that a node has inaccurate infor-

mation about its fragment. For example, in case an absorption of its fragment took place

and the Initiate message from the absorbing fragment hasn't yet arrived. Apparently, a

node can never rely on its local information when it has to answer a Test message. These

answers are crucial for identifying outgoing edges. We show here that in some situations a

node can answer a Test message according to its local information, even if it is inaccurate

and that only in these situations answers are sent.

The following claims state that an edge may be the core of only one fragment through

the algorithm, and that the level of a fragment can only increase.

According to the algorithm, an edge may become a core only once. Hence:

Claim 4.4.3 Let e be the core edge of some fragment F . Then e is never the core of a

fragment F

0

6= F .

Note that a node's information about the fragment it belongs to might be out-of-date,

e.g., if the fragment is currently being absorbed by another fragment. However:

Claim 4.4.4 A node p

i

whose fragment id is currently (w;L) is at a fragment with level

L

0

� L.

Sketch of proof: The information of p

i

may be inaccurate, only if its fragment is partic-

ipating (at the moment) in combination or absorption. In the �rst case, the accurate level

is L

0

= L + 1. In the second case, the level L

0

is that of the absorbing fragment. In both

cases L

0

> L.

Recall the procedure for determining whether an edge is outgoing. A node p

i

from

fragment F

1

with id (w

1

; L

1

) sends a Test message on an edge e to p

j

in fragment F

2

with

id (w

2

; L

2

). According to the algorithm, if (w

1

; L

1

) = (w

2

; L

2

), then p

j

immediately replies

with a Reject message. If (w

1

; L

1

) 6= (w

2

; L

2

) and L

2

� L

2

, then p

j

immediately replies with
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an Accept message. If L

2

< L

1

, then p

j

delays its response until the relation between L

2

and L

1

changes. We now explain the intuition behind these rules.

During the time period between p

i

's Test(w

1

; L

1

) message until p

j

's response, the id

of p

i

's fragment remains (w

1

; L

1

). This is because p

i

sends a Test(w

1

; L

1

) message after

receiving an Initiate(w

1

; L

1

) message from the core of F

1

. Until all nodes of F

1

, including

p

i

, �nish testing their edges and report to the core nodes, no Connect message is sent.

Therefore, F

1

does not combine with or absorb into another fragment, and therefore the id

of F

1

does not change. Thus, the only information that may be incorrect is p

j

's, i.e., w

2

and L

2

.

We now show that if p

j

answers p

i

then its answer is correct even if w

2

and L

2

are out

of date. First, note that once two nodes are in the same fragment, they continue to be in

the same fragment until the end of the algorithm. Therefore, if (w

1

; L

1

) = (w

2

; L

2

) then

e is not an outgoing edge, and p

j

's Reject message is justi�ed. We now consider the other

case.

Claim 4.4.5 If p

j

sends an Accept message then p

i

and p

j

are not in the same fragment.

Proof: An Accept message is sent from p

j

to p

i

only if (w

1

; L

1

) 6= (w

2

; L

2

) and L

2

� L

1

.

If L

2

> L

1

, then by Claim 4.4.4, the real level of F

2

can only be greater than or equal to

L

2

, and hence greater than L

1

. By Claim 4.4.3, F

1

and F

2

have distinct cores, and thus p

i

and p

j

are in di�erent fragments.

Otherwise, if L

1

= L

2

and (w

1

; L

1

) 6= (w

2

; L

2

), then the real level of L

2

can only be

greater than or equal to L

2

. If it is equal, then w

2

is still the core of F

2

, by Claim 4.4.3. If

F

2

's real level is greater than L

2

, it is also greater than L

1

and thus p

i

and p

j

are not in

the same fragment.

Note that if L

2

< L

1

, then the following scenario is possible. Some other node of F

2

sent a Connect message to some node in F

1

, which results in F

1

absorbing F

2

. An Initiate

message was sent from F

1

to F

2

, but it has not reached p

j

yet. In this case, p

i

and p

j

are

actually in the same fragment, but p

j

's information does not reect this fact. To avoid this

situation, p

j

has to delay its response to p

i

's Test. (See Figure 4.2.)

Absorption while Searching for a Minimum Outgoing Edge

In the algorithm, it is possible that while a fragment F

1

searches for its minimum outgoing

edge, it absorbs another fragment F

2

. It is a priori possible that the absorption of F

2

into
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F

2

F

1

p

j

p

i

Test

Initiate

Figure 4.2: A delayed response to a Test message.

F

1

interferes with F

1

's search for the minimum outgoing edge. For example, it is possible

that the minimum outgoing edge of F

2

is also the minimum outgoing edge of F

1

[ F

2

.

In more detail, suppose a node p

i

of fragment F

1

with id (w

1

; L

1

) receives a Connect

message from node p

j

in fragment F

2

with id (w

2

; L

2

) over edge e. Assume that L

2

< L

1

.

In this case, F

1

absorbs F

2

as follows.

Node p

i

sends to p

j

(which forwards to the rest of F

2

) an Initiate(w

1

; L

1

; s

i

) message,

where s

i

is p

i

's state. If s

i

=Find, then F

2

will also participate in the search for the minimum

outgoing edge of F

2

, and the chosen edge will be the minimum outgoing edge of F

1

[ F

2

.

Otherwise, s

i

=Found, that is, p

i

has already sent a Report message. We claim that in this

case the minimum outgoing edge of F

1

is also the minimum outgoing edge of F

1

[ F

2

, and

therefore there is no need to search in F

2

.

Observe that e can not be p

i

's minimum outgoing edge. Otherwise, p

i

would have sent

a Test message on e to p

j

, and since L

2

< L

1

, p

j

would not reply to it, thus blocking p

i

from sending a Report message and going into a Found state. Thus p

i

has another outgoing

edge, say e

0

, such that w(e

0

) < w(e). However, e is the minimum outgoing edge of F

2

, since

F

2

sends a Connectmessage on e. Therefore, any outgoing edge of F

2

is heavier than e, and

hence heavier than e

0

, which is at least as heavy as the minimum outgoing edge of F

1

.

4.5 Message Complexity

In order to bound the number of messages sent during an execution of the algorithm, we

�rst prove the following lemma:
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Lemma 4.5.1 A fragment of level L contains at least 2

L

nodes.

Proof: The proof is by induction on L. The base case is straightforward; a fragment

of level L = 0 contains a single node. For the induction step, assume the lemma holds

for fragments of levels � L � 1, and consider a fragment F of level L. F was created by

combining two fragments of level L � 1 and perhaps absorbing some fragments. By the

induction hypothesis, each one of the L � 1 level fragments contains at least 2

(L�1)

nodes,

and thus F contains at least 2

L

nodes.

We now bound the number of messages sent during the execution of the algorithm.

Connect messages are sent at most twice over each edge. Test messages which are answered

by a Reject message are sent at most twice over each edge. Thus, the number of messages

of these types is O(m). An arbitrary node sends one Initiate message, one Test message

answered by Accept message, one Change-core message and one Report message, each time

the level of its fragment increases. By Lemma 4.5.1, a fragment can go through at most

logn levels, so the number of messages of these types is O(n logn). Therefore, the total

message complexity is O(n logn +m).

4.6 Bibliographic Notes

The algorithm for �nding a minimum spanning tree was designed by Gallager, Humblet and

Spira [36]. We have only described the algorithm informally and outlined its correctness

proof, following in parts [46]. Due to its complexity and importance, there have been many

attempts to prove its correctness formally and precisely. Two such attempts are by Chou

and Gafni [22] and by Welch, Lamport and Lynch [58].

Further work improved the time complexity of �nding an MST, leading to a linear time

(and O(n logn+m) messages) algorithm by Awerbuch [11].

4.7 Exercises

1. We have proved that the number of messages sent by the algorithm is O(n logn+m).

Show, by presenting an example, that this bound is tight.

2. Assume that all processors start simultaneously and that messages are delayed ex-

actly one time unit, that is, the algorithm is executed in rounds, as if the system is

synchronous. Show that the algorithm requires at most O(n logn) rounds. Show that
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this bound is tight, by exhibiting a scenario in which the algorithm takes that many

rounds. (You may ignore constant multiplicative factors.)

Will the bound change if we assume that processors do not start simultaneously?

Will the bound change if we assume that messages are delayed at most one time unit

(rather than exactly one time unit)?

3. Assume that the system is synchronous and that we are interested in �nding some

spanning tree, i.e., not necessarily one with minimum weight. Design an algorithm

whose time complexity is o(n logn) and its message complexity is O(n logn+m).
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Chapter 5

Synchronizers

As we have seen in previous chapters, the possible behaviors of a synchronous system

are more restricted than the possible behaviors of an asynchronous system. Thus, it is

easier to design and understand algorithms for synchronous systems. However, most real

systems are at least somewhat asynchronous. In this section we show how to run algorithms

designed for synchronous systems in asynchronous systems. This is done using a general

simulation technique called a synchronizer. This is a representative of other simulations

and transformations that are used to translate algorithms from one model of distributed

computing to another.

The general idea of a synchronizer is to generate a sequence of pulses, numbered 0; 1; : : :,

at every node of the network, satisfying the following property:

When pulse number k + 1 is generated at node v, v has already received all

messages sent to it by its neighbors at their kth pulse, for k � 0.

1

When receiving the kth pulse a processor sends messages it would have sent in the kth

round of the simulated synchronous algorithm.

The main di�culty in implementing the above general idea is that a node does not

usually know which of its neighbors have sent a message to it in the previous pulse. Since

there is no bound on the delay a message can incur, simply waiting long enough before

generating the next pulse does not su�ce; additional messages have to be sent in order to

achieve synchronization.

1

Note that by our de�nition, the synchronous model has an additional property: Each processor performs

its kth step only after all processors have performed at least (k � 1) steps. Although this is a very useful

property, there are many synchronous algorithms in which it is not used (see the bibliographic notes.

62



5.1 Motivating Example: Constructing a Breath-First Tree

To motivate synchronizers, we start with an example of a problem which is much easier

to solve in a synchronous system|construction of a breath-�rst search (BFS) tree of the

network. This problem is one of the prime examples for the utility of the synchronizer

concept; in fact, the best known asynchronous solutions for this problem were achieved by

applying a synchronizer to a synchronous algorithm. In addition, a BFS tree is useful for

broadcasting information in a network within minimum time; BFS trees are used to route

information between processors along shortest paths.

Recall that a BFS tree is a tree which connects each node to the root v by a path with

minimum number of edges. The input to the algorithm is a communication graph G(V;E)

and a node v 2 V . The algorithm outputs a tree B(V;E

0

) whose root is v.

A set of nodes with the same distance from v is called a layer. The algorithm advances

in stages, and in each stage a new layer is added to the BFS tree being constructed. That

is, in round k, the layer of nodes whose distance from v is exactly k joins the tree. The

nodes of the new layer are found by sending messages from nodes in the previous layer to

their neighbors.

The algorithm uses two types of messages:

Search(k): Try to make a node join the tree as your child in layer k.

Parent: Notify a node that you are joining the tree as its child.

Initially, v sends Search(1) to all its neighbors. In round k, every node in the outermost

layer of the tree tries to expand the tree, and sends Search(k) messages to all its neighbors.

Upon receiving this message, nodes which are not yet in the tree join the tree; they notify the

node which sent the Searchmessage by a Parentmessage. If a node receives several Search(k)

messages, it chooses an arbitrary node to be its parent, and sends a Parent message only

to this node. Nodes that are already in the tree ignore further Search messages. The

algorithm halts when all the nodes in the graph are in the tree. Figure 5.1 includes a

detailed description of the algorithm.

Note that if w receives Parent message from u, then u is its child in the BFS tree.

Also, if a node is at distance k from v, then the �rst message it receives in the algorithm

is Search(k). (This argument would not hold if the system is not synchronous.) When

receiving this message, a node knows that its distance from v is k and joins the BFS tree.

This implies the correctness of the algorithm.
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initially

parent = ? ;

if v = root then

send Search(0) to all neighbors

parent := v

end if

upon receiving Search(k) do

if parent 6= ? then

select a node w that sent Search(k)

Parent := w

send Parent to w

send Search(k+ 1) to all neighbors

end if

end do

Figure 5.1: BFS algorithm{code for node v.

At most two messages are sent on each edge|Search(k) and Parent; thus the total

number of messages sent is O(jEj). The total number of rounds is O(D) where D is the

diameter of the graph (the largest distance between two nodes in the graph), which is at

most jV j � 1.

5.2 Notation

For any algorithm A, its message complexity, denoted by M(A), is the number of messages

sent during the algorithm in the worst case. The time complexity of a synchronous algorithm

A, denoted by T (A), is the number of rounds the algorithm takes in the worst case. For an

asynchronous algorithm A, the time complexity T (A), is the number of time units that the

algorithm takes in the worst case, assuming that the message delay between two neighbors is

at most one time unit. (This assumption is for performance evaluation only; the algorithm

should work with arbitrary delays.)

The total complexity of the resulting algorithm depends on the overhead introduced by

the synchronizer, and of course, on the time and message complexity of the synchronous

algorithm. Giving a synchronizer S, we denote the message overhead of S per pulse by

M(S), similarly, the time overhead of S per pulse is denoted T (S).
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In addition, some synchronizers require an initialization phase. LetM

init

(S) and T

init

(S)

denote the message and time complexities of the initialization phase of the synchronizer S.

The initialization phase of the synchronizer is performed only once, for any number of

algorithms that have to run in the network; thus, the initialization cost is less crucial.

Let A be a synchronous algorithm, and let A

0

be the asynchronous algorithm resulting

from running A using synchronizer S. The total complexities of A

0

are:

M(A

0

) =M

init

(S) +M(A) + T (A) �M(S) and T (A

0

) = T

init

(S) + T (A) � T (S) :

5.3 Description of Synchronizers

In this section, we present three synchronizers called �, �, and . Synchronizer � is e�cient

in terms of time, but ine�cient in terms of messages; synchronizer � is e�cient in terms

of messages, but ine�cient in terms of time. Synchronizer  is a hybrid of � and � and

provides a tradeo� between time complexity and message complexity.

To generate a pulse at a node, the node must locally detect the end of the previous

pulse. That is, a node u must detect if every message sent to it in the previous pulse has

arrived. The idea is to have the neighbors of u check if all their messages were received and

have them notify u. It is simple for a node to know whether all its message were received,

if we require each node to send an acknowledgement on every message (of the original

synchronous algorithm) received. If all messages sent by a node at a certain pulse have

been acknowledged, then the node is safe in that pulse. Observe that the acknowledgments

only double the number of messages sent by the original algorithm, thus not increasing its

asymptotic message complexity. Also observe that each node detects that it is safe in pulse

k a constant time after generating pulse k.

A node can generate its next pulse once all its neighbors are safe. All synchronizers we

present use the same mechanism of acknowledgements to detect that nodes are safe; they

di�er in the mechanism by which nodes notify their neighbors that they are safe.

5.3.1 Synchronizer �

Synchronizer � is the simplest one. As described before, a node detects it is safe using the

acknowledgments mechanism. A safe node directly informs all its neighbors. When all the

neighbors of node u are safe in pulse k, u knows that all messages sent to it in pulse k have

arrived, and it generates pulse k + 1.
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Clearly, T (�) = O(1) per pulse. Since two additional messages per edge are sent (one

in each direction), we haveM(�) = O(jEj) per pulse. Notice that O(jEj) messages are sent

per pulse, regardless of the number of original messages sent during this pulse.

5.3.2 Synchronizer �

Synchronizer � requires an initialization phase in which a leader s is elected, and a spanning

tree rooted at s is constructed, e.g., by the algorithm of the previous chapter. We assume

the tree is directed towards the root.

The basic idea of synchronizer � is to use the tree to broadcast the information that all

nodes are safe. Speci�cally, a node detects it is safe using the acknowledgments mechanism.

Once a node is safe and has heard from its children that they are also safe (if it is not a

leaf in the tree), it sends a Safe message to its parent in the tree. This process of sending

messages up the tree is typically called convergecast.

2

Once the root knows that all nodes

are safe, it sends a Pulse message to its children. Every node forwards the Pulse message

to its children and generates a local pulse.

Notice that synchronizer � provides a stronger property than �. In �, it is guaranteed

that when a node starts a new pulse, all the nodes in the graph are safe (not only its

neighbors).

The time complexity of synchronizer � is proportional to the height of the spanning tree.

More precisely, if H is the height of the spanning tree used, then T (�) = 2H . The commu-

nication complexity is M(�) = O(jV j), since there are exactly two additional messages per

edge in the spanning tree (which has jV j � 1 edges).

5.3.3 Synchronizer 

Synchronizer  presents a tradeo� between message and time complexity, being a hybrid of

� and �. Synchronizer  assumes the existence of a partition of the network into clusters,

which are connected components that cover the whole network. The construction of the

clusters will be discussed in the next section. Roughly speaking,  operates by running �

within each cluster, and running � among the clusters.

In more detail, we assume an initialization phase in which the network is partitioned

into clusters. In addition, we �nd a spanning tree for each cluster C, denoted by T

C

, called

2

We have seen an implicit convergecast in the algorithm for �nding an MST, when the nodes of a fragment

searched for the minimum outgoing edge.
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the intra-cluster tree of C. The root of T

C

is the leader of cluster C, and coordinates the

operations of the cluster. Two clusters C

1

and C

2

are neighboring if and only if there is

an edge with one endpoint in C

1

and another endpoint in C

2

. The initialization phase also

chooses a preferred edge between every pair of neighboring clusters, which will serve for

communication between the clusters.

Synchronizer  works in two phases. In the �rst phase, synchronizer � is applied sep-

arately in each cluster, using the intra-cluster tree. In the second stage synchronizer � is

applied between the clusters, using the preferred edges. Speci�cally, by applying � inside

cluster C, the leader of C knows when all nodes in C are safe. We say that the cluster is

safe at this point. When the cluster is safe, the leader of the cluster reports this fact to

all the nodes in the cluster as well as to all the leaders of the neighboring clusters, via the

preferred edges. Now the nodes of the cluster wait until all the neighboring clusters are

known to be safe. At this point, the next pulse is generated.

Detailed Description of Synchronizer 

Synchronizer  uses the following messages:

Ack: Noti�es arrival of a message of the synchronous algorithm.

Pulse: Signals a new pulse. Originated by the root and propagated to the children.

Safe: Sent when a node and all its children are safe. Originated at the leaves.

Cluster-Safe: Signals that the whole cluster is safe. Originated by the root and propa-

gated to the children and across preferred edges to neighboring clusters.

Ready: Signals that clusters connected by preferred edges are safe. Originated at the

leaves.

The following is a summary of the operation of synchronizer  in a speci�c cluster from

the beginning of a pulse until the next pulse.

1. The root distributes a Pulse message, which propagates down the intra-cluster tree.

2. Upon receiving a Pulse message, a node sends the messages of the synchronous algo-

rithm for this pulse and waits for acknowledgments (Ack messages).

3. When a node is safe for the current pulse, and all its children in the intra-cluster tree

are safe, the node sends a Safe message to its parent.
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4. When the root receives Safe messages from all its children, it sends a Cluster-Safe

message, which propagates down the tree. The message is also forwarded on preferred

edges to neighboring clusters.

5. Each node waits for a Cluster-Safe message on all its preferred edges, and forwards

a Ready message to its parent. A convergecast process is performed, until the root

collects Ready from all preferred edges.

6. End of pulse (return to 1).

Complexities of Synchronizer 

The performance of  depends on the properties of the spanning forest which is the union of

the spanning trees of the clusters in the partition. Denote byE

p

the set of edges participating

in the synchronizer, that is, all tree edges in the spanning forest and all preferred edges.

Also, denote by h

p

the maximum height of a tree in the forest.

Observe that per each pulse, four messages are sent over each tree edge in the forest

(one of each: Safe, Cluster-Safe, Ready, and Pulse). Also, two messages are sent on each

preferred edge (one Cluster-Safe message in each direction). Furthermore, no synchronizer

messages are sent on edges not in E

p

. Thus M() = O(jE

p

j).

Each cluster �nds that it is safe within O(h

p

) time, because we apply � inside the cluster.

The same amount of time is needed to �nd that the neighboring clusters are safe. Thus

T () = O(h

p

).

Note that the partition in which every node is a separate cluster yields synchronizer �,

with H

p

= 0 and E

p

= E. Also, if all nodes are in a single cluster, with a BFS tree as the

intra-cluster tree we get synchronizer �, with H

p

= O(D) (recall that D is the diameter

of the network) and E

p

= V . In the next section, we present a sophisticated partitioning

algorithm which gives a more interesting tradeo� between jE

p

j and h

p

.

5.4 The Partition Algorithm

In this section we present a distributed algorithm for partitioning the network into clusters.

The partition constructed by the algorithm satisfy jE

p

j � kjV j and h

p

� log

2

jV j= log

2

k, for

a parameter k, 2 � k � jV j. The choice of k provides a tradeo� between time and message

complexity in the network, and can depend on the topology of the network.
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5.4.1 Outline of the Algorithm

Although the algorithm is distributed, the partition is constructed sequentially, one cluster

after the other.

Intuitively, the algorithm chooses a node, and then grows a BFS tree from it, as long

as the diameter of the generated tree does not exceed the logarithm (to base k) of its size.

The nodes of this tree will be in the same cluster. When we can no longer add nodes to a

cluster without violating the constraint on the cluster's diameter, we consider the remaining

graph, that is, the subgraph induced by the nodes that are not yet in any cluster. At this

point, some node in the remaining graph is chosen to be the leader of the next cluster, and

a cluster is built around it, as described above.

As we shall see, this approach guarantees that the constraint on the diameter is main-

tained, and that the number of neighboring clusters is linear in the number of nodes.

The implementation of the above idea employs three main procedures: The cluster

creation procedure creates a cluster in the remaining graph around a given node. The

search for leader procedure searches in the remaining graph to �nd a leader for the new

cluster (if the remaining graph is not empty). The preferred edge selection procedure �nds

outgoing preferred edges for the clusters. In the next subsections we describe each of these

procedures.

5.4.2 The Cluster Creation Procedure

Given a node v, a cluster is built by performing a BFS algorithm (with respect to v) on the

remaining graph. The BFS algorithm is performed in stages. In the �rst stage, the nodes

at distance one from v try to join the cluster; in the second stage, the nodes at distance

two from v try to join the cluster, and so on. The set of nodes that may join the cluster in

each stage are called a layer. After a layer is added, the nodes in the layer together with

the edges selected by the BFS algorithm form a tree.

As was mentioned, the diameter of the cluster should not exceed the logarithm (to base

k) of its size. To guarantee this property, a new layer is added to the cluster if and only if

its size is at least (k� 1) times the number of nodes already in the cluster. If this condition

does not hold, then the cluster creation procedure ends, with the nodes already in the tree

as a cluster. The intra-cluster tree of the resulting cluster is the BFS tree built during the

cluster creation procedure.

Below we refer to the set of nodes in the �rst layer that is not added to the cluster as

the rejected layer.
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We now give a more detailed description of the distributed algorithm for cluster creation.

The procedure is an asynchronous implementation of the synchronous BFS tree algorithm

from Section 5.1, implicitly using synchronizer �. The procedure procedes in stages.

At the beginning of stage number r, the procedure has already constructed (r�1) layers

of the BFS tree; in stage r the algorithm tries to add layer r to the tree. At the beginning

of stage r, every node knows whether it belongs to the cluster being constructed; if a node

is in the tree it knows its parent and children (in the BFS tree). At the beginning of stage

r, the leader v sends a Layer(r� 1; v) message down the tree, until it reaches layer (r� 1).

When a node at layer r � 1 receives a Layer(r � 1; v) message, it forwards it to all its

neighbors. When a node u receives a Layer(r�1; v) message, u knows it is in layer r, if it is

not already in the tree; however, this layer may still be rejected. In order to join the tree, u

chooses an arbitrary parent among the nodes that sent a Layer(r�1; v) message to it. Node

u sends a Parent(b) message to each of the nodes from which it received a Layer message,

even if it is already in the tree; b is 1 if this node is its parent and 0 otherwise. (This is

the main point where the asynchronous algorithm di�ers from the synchronous algorithm,

which does not require the \negative" Parent messages.)

We now perform a convergecast process to count how many nodes are in layer r. Every

node in layer (r� 1) receives Parent messages on all Layer messages it has sent. The node

then sends a Count message with the number of Parent(1) it received to its parent. Every

node at layer smaller than (r�1) waits until it receives Count messages from all its children

and sends the sum of these numbers in a Count message to its parent. At the end, the

leader knows how many nodes are in layer r.

If the number is at least (k� 1) times the number of nodes already in the cluster, then

the leader starts stage (r+1), by sending a Layer(r; v) message. Otherwise, the leader sends

a Reject message to nodes in layer r, which discard their connections to their parents. The

procedure of creating the cluster terminates, and the search for leader procedure is initiated

by the leader.

We now show that the above procedure achieves the desired parameters for the partition,

assuming a single preferred edge between any two neighboring clusters.

Theorem 5.4.1 If clusters are constructed as described above then

H

p

� log

k

jV j =

log

2

jV j

log

2

k

and jE

p

j � kjV j :

Proof: H

p

is the maximum number of layers in a cluster. The bound follows since the

number of nodes in a cluster is multiplied by k with each additional layer.
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Figure 5.2: An example of empty rejected layer.

To prove the bound on jE

p

j, observe that whenever a cluster containing q nodes is

created, there are at most (k� 1)q nodes in the rejected layer, otherwise it is not rejected.

Thus, the number of preferred edges connecting this cluster to clusters created afterwards is

at most (k�1)q. Charging the preferred edge between two neighboring clusters to the cluster

created earlier and summing over all clusters, we get that the number of preferred edges is

at most (k � 1)jV j. The number of tree edges is clearly at most jV j. Thus, jE

p

j � kjV j.

5.4.3 The Search for Leader Procedure

After the cluster creation procedure terminates, the algorithm must select the leader of the

next cluster. The leader of the most recently built cluster initiates the search for leader

procedure. Note that at this point, every node knows whether it belongs to some cluster,

and if it does, it knows its leader. Furthermore, each node knows, for each of its neighbors,

whether it is already in some cluster.

If the rejected layer of the last built cluster is not empty, then the leader is selected

arbitrarily from it. However, there can be a situation in which this layer is empty, but not

all nodes are in clusters yet. In Figure 5.2, for exmaple, cluster C

2

is constructed around p

2

after �nishing cluster C

1

, cluster C

2

's rejected layer is empty, but p

1

is not in any cluster

(since there is no edge from cluster C

2

to p

2

).

To overcome this problem, each leader remembers the node from which it was discovered,

i.e., the node that selected it to be the leader of a new cluster, called below the cluster's

parent. We can look at a directed graph whose nodes are the clusters, with a directed edge

from cluster i to cluster j, if j was discovered from i. Essentially, we perform a DFS on this

graph. In the process of �nding a new leader, we backtrack on the DFS tree until we �nd
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a non-empty rejected layer.

In more detail, the search for leader proceeds as follows. The leader of the last built

cluster broadcasts a Test message over its tree. The answers to the Test messages go back

to the leader in a convergecast process. Every node u at the last layer, with parent w,

examines its neighbors belonging to the remaining graph. It then determines the one with

minimum id between them, and sends its id to w in a Candidate message. A node does not

have to send any messages to do this calculation, since it knows which of its neighbors is in

the remaining graph, and knows the id's of its neighbors (due to the initialization discussed

below). If u has no neighbors in the remaining graph, it sends ?. Every node waits until it

receives Candidate messages from all its children, and then sends a Candidate message to

its parent with the minimal id (where ? is considered as 1). When the convergecast ends,

the leader knows the minimal id in the rejected layer, which is 1 if the rejected layer is

empty.

If the rejected layer is not empty the leader sends a message New-Leader to the node

v

0

with minimal id in the rejected layer, using the tree. The new leader, v

0

, remembers the

node from which the New-Leader message arrived as its cluster's parent.

If the rejected layer is empty, the the leader of the current cluster sends a Retreat

message to its cluster's parent. This message is propagated to the cluster's parent. The

process of �nding a leader is repeated from this cluster. If the leader that has to send a

Retreat message has no cluster's parent, i.e., it is the �rst leader elected, then the procedure

terminates, since the remaining graph must be empty.

5.4.4 The Preferred Edges Selection Procedure

After a cluster is constructed, preferred edges which connect to neighboring clusters should

be selected. This procedure is invoked when the center of activity backtracks from the

cluster (in a Retreat message). At this point, all nodes neighboring the current cluster

belong to some cluster; otherwise, the rejected layer is not empty and a Retreat message

will not be sent.

It is easy to select preferred edges by choosing the edge with minimum weight that

connects two neighboring clusters. Since weights are unique, we are guaranteed that two

neighboring clusters will choose the same edge, even if the selection is done in each cluster

independently.

If edges do not have distinct weights, then we create distinct weight for the edges from

the distinct id's of the nodes. This is done in an initialization stage in which we associate

with each edge the ordered pair of the minimum and maximum id of the nodes incident to
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the edge. Formally, the weight of edge (i; j) is (min(i; j);max(i; j)). Obviously, this weight

is unique and both nodes incident on an edge assign the same weight to the edge.

The actual selection of the preferred edge is by a standard convergecast process. Each

node sorts the weights of edges to neighboring clusters and selects a preferred edge to each

neighboring cluster. The node then sends this list to its parent. Each internal node merges

the lists of its children and chooses a preferred edge to each cluster, and sends it to its

parent. When the leader merges the lists received from its children, a complete list of

preferred edges is ready, and the leader sends this list down the tree.

Note that when a node receives this list it knows that the initialization stage has �nished

for its cluster. At this point, the node can start the �rst pulse of the synchronous algorithm.

5.4.5 Complexity of the Partition Algorithm

We will analyze the complexity of each of the main parts of the partition algorithm|cluster

creation, leader election, and preferred edges selection. In addition, we need to elect a leader

for the �rst cluster in order to initialize the algorithm. This can be done by using the MST

algorithm presented in the previous chapter. As we have seen, the message complexity of

this algorithm is O(jEj+jV j log

2

jV j); its time complexity can be shown to be O(jV j log

2

jV j).

For each cluster, the cluster creation procedure is called once and consists of at most

log

k

jV j stages. There are two kinds of messages. First, there are messages that are sent

in each stage, e.g., Layer and Count messages between nodes inside the same cluster. Ex-

actly one Layer and one Count messages are sent on each edge of the intra-cluster tree, in

each stage of the procedure. Second, there are messages that are sent once on each edge

throughout the entire algorithm, e.g., Layer messages from a node already in the cluster to

a node not yet in any cluster, and Parent messages. Exactly one Layer message and one

Parent message are sent between a node already in the cluster and a node not yet in any

cluster, for each edge in the communication graph. Therefore the total message complexity

for cluster creation is O(jEj+ jV j log

k

jV j).

To analyze the time complexity, consider a cluster with n nodes whose intra-cluster tree

has height h � log

k

n. Each stage takes at most h time units, and the number of stages is h.

Thus the total time spent in forming this cluster and deleting n nodes from the remaining

graph is O(log

2

k

n).

The search for leader procedure starts when the cluster creation �nishes. There are two

ways in which we look for a new leader: one is by sending a New-Leader message from the

cluster's leader to a node in the rejected layer, the other is by sending a Retreat message

from the cluster's leader to its cluster's parent. Notice that in both cases, messages are sent
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only on edges which belong to intra-cluster trees. Thus, the message complexity is O(jV j)

and the time complexity is O(log

k

jV j). Recall that the edges to the cluster's parent form a

DFS tree, thus the total number of edges between clusters is exactly the number of clusters

minus 1, which cannot exceed jV j � 1 (when each node is in a separate cluster). In the

DFS search over the clusters' tree, each connecting edge is traversed only twice. Thus, the

total message complexity of the search for leader procedure is O(jV j

2

), while the total time

complexity is O(jV j log

k

jV j).

The preferred edge selection procedure is called once at each cluster and is performed

along the intra-cluster spanning tree. In the analysis below we ignore the issue of variable

length messages, and charge one unit for each message regardless of its length; for a more

re�ned analysis, see the bibliographic notes. The selection of the preferred edges involves

a convergecast process in one of the intra-cluster trees, which costs O(jV j) messages and

O(log

k

jV j) time per cluster. This yields a total of O(jV j

2

) messages and O(jV j log

k

jV j)

time.

Therefore, the total message complexity of the partition algorithm is O(jV j

2

), while the

total time complexity is O(jV j log

k

jV j).

5.5 Bibliographic Notes

The material in this chapter is based on [10]; in this paper the reader can �nd a more

re�ned analysis of the partition algorithm. Awerbuch also shows there that the tradeo�

achieved by the partition algorithm is optimal for algorithms that generate each pulse

separately. Applications of synchronizers to yield e�cient asynchronous algorithms appear

in [9]. Recent research on more e�cient synchronizers appears in [12].

As we discussed in the beginning of this chapter, synchronizers do not give the full

semantics of the synchronous model. Results about the limitations of such transformations

appear in [8, 49].

5.6 Exercises

1. In this question we study the degree of global synchronization provided by di�erent

synchronizers. We say that a synchronizer creates a gap of g if, under the synchronizer,

processor p

i

may generate pulse ` before processor p

j

generates pulse `� g. The gap

of the synchronizer is the maximum gap it creates.
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Calculate the gaps of synchronizers �, � and . Describe scenarios in which these

gaps are created and prove that no higher gap is possible.

2. Apply synchronizer  to the synchronous BFS algorithm of Section 5.1. What are the

message and time complexity of the resulting asynchronous algorithm (as a function

of the parameter k)? Compute a value of k that simultaneously obtains good message

and time complexity.

3. So far, we have seen two ways for measuring the time complexity of asynchronous

algorithms. The �rst is by assuming that every message takes exactly one time unit,

and the second is by assuming the every message takes at most one time unit.

Show an asynchronous algorithm for which the time calculated by the �rst method is

(signi�cantly) smaller than the time calculated by the second method.

75



76



Part II

Shared Memory Systems
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Chapter 6

Introduction

In the second part of the course we turn to the other major model of distributed systems,

shared memory systems. In a shared memory system, processors communicate via a com-

mon memory area that contains a set of shared variables (registers). We only consider

asynchronous shared memory systems.

1

Several types of variables can be employed. The most common type are read/write

registers, in which the atomic operations are reads and writes. Other types of shared

variables support more powerful atomic operations like read-modify-write (RMW), test&set

or compare&swap. Read/write registers are further characterized according to their access

patterns, that is, how many processors can access a speci�c variable. The simplest type is

a single-writer single-reader register, from which a single processor can read and a single

processor can write. Another type is a single-writer multi-reader register, from which all

processors can read and a single processor can write. The most general type is amulti-writer

multi-reader register, from which all processors can read and all processors can write. Not

surprisingly, the type of shared variables used for communication determines the possibility

and the complexity of solving a given problem.

6.1 De�nition of the Computation Model

Here we describe the formal model of shared memory systems that we will use later. As

in the case of message passing systems, we model processors as state machines and model

executions as alternating sequences of con�gurations and events. The only di�erence is the

1

Synchronous shared memory systems were studied in the PRAM model of parallel computation.
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nature of the con�gurations and events. In this section, we discuss in detail the new features

of the model and only briey mention those that are similar to the message passing model.

We assume the system contains n processors, p

1

; : : : ; p

n

, and m registers, R

1

; : : : ; R

m

.

A con�guration in the shared-memory model is a vector C = (q

1

; : : : ; q

n

; r

1

; : : : ; r

m

) where

q

i

is the local state of p

i

, and r

j

is the value of register R

j

. In the initial con�guration

all processors are in their (local) initial states and all registers contain some initial value.

The events in a shared-memory systems are computation steps by the processors and are

denoted by the index of the processor.

We de�ne an execution segment of the algorithm to be a (�nite or in�nite) sequence

with the following form:

C

0

; �

0

; C

1

; �

1

; C

2

; �

2

: : :

where C

k

are con�gurations, and �

k

are events. Furthermore, the application of �

k

to C

k

results in C

k+1

, in the natural way. That is, if �

k

= i then C

k+1

is the result of applying

p

i

's transition function to p

i

's state in C

k

, and applying p

i

's memory access operations to

the registers in C

k

, in the obvious manner.

Sometimes there are further restrictions depending on the type of memory accesses we

allow. For example, if we only have read/write registers than each transition either writes

to a single register or reads from a single register.

If C

0

is the result of applying the event i to C then we sometimes write C

i

! C

0

.

Executions and schedules are de�ned as in the message passing model. Note that a

schedule in the shared-memory model is just a sequence of processors' indices. An occur-

rence of index i in a schedule is referred to as a step of processor p

i

in the schedule.

As for message passing systems we need to de�ne the admissible executions. In asyn-

chronous shared memory systems the only requirement is that the schedule is fair to every

processor, that is, in an in�nite execution, each processor have an in�nite number of com-

putation steps.

The following notation is useful in many of our proofs. If C is a con�guration and

� = i

1

i

2

: : : is a schedule, then (C; �) is the execution resulting from applying the events in

� one after the other, starting from C.

2

If � is �nite, then �(C) is the �nal con�guration

in the execution (C; �). We say that con�guration C

0

is reachable from con�guration C if

there exists a �nite schedule � such that C

0

= �(C). A con�guration is simply reachable if

it is reachable from the initial con�guration.

2

Note that this is well-de�ned since we assume that processors are deterministic.
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6.2 Overview of this Part

Our study of shared memory systems in this part concentrates on the mutual exclusion

problem. We present several algorithms and lower bounds. Our presentation highlights

the connection between the type of memory accesses used and the cost of achieving mutual

exclusion.

We �rst consider systems where processors access the shared registers only by read

and write operations. We present two algorithms that provide mutual exclusion using O(n)

registers, one which relies on unbounded values and another that avoids them. We then show

that any algorithm that provides mutual exclusion must use 
(n) read/write registers. We

then study the memory requirement for solving mutual exclusion, when powerful objects are

used. The main result there is that O(logn) bits are necessary (and su�cient) for providing

stronger fairness properties.

We shall return to shared memory systems in the third part of these lecture notes, where

we discuss fault-tolerance issues.
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Chapter 7

Mutual Exclusion using

Read/Write Registers

Themutual exclusion problem concerns a group of processors which occasionally need access

to some resource which can not be used simultaneously; for example, some output device.

Each processor needs to execute a code segment called a critical section, such that:

Mutual exclusion: at any time, at most one processor is in its critical section.

No deadlock: if one or more processors try to enter the critical section, then one of them

eventually succeeds.

The above properties do not provide any guarantee on an individual basis since a pro-

cessor may try to enter the critical section and yet fail, since it is always bypassed by other

processors. Thus, a stronger property which implies no deadlock, is:

No lockout: if a processor wishes to enter the critical section, then it will eventually

succeed.

1

(This property is sometimes called no starvation.)

Original solutions to the mutual exclusion problem were centralized, and relied on special

synchronization primitives, e.g., semaphores and monitors. Here, we focus on distributed

software solutions in which each processor executes some additional code before and after

the critical section in order to ensure the above properties.

In more detail, we assume the program of a processor is partitioned into the following

sections:

1

In the next chapter we will see an even stronger property that limits the number of times a processor

might be bypassed while trying to enter the critical section.
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Entry

Remainder

Critical

Exit

Figure 7.1: Parts of the mutual exclusion code.

Entry (trying): the code executed before entering the critical section.

Critical: the code that has to be protected from concurrent execution.

Exit: the code which is executed upon leaving the critical section.

Remainder: the rest of the code.

Each processor cycles through these sections in the order: remainder, entry, critical

and exit (see Figure 7.1). If a processor wants to enter the critical section it �rst executes

the entry section; after that, the processor enters the critical section; then, the processor

releases the critical section by executing the exit section and returning to its remainder

section.

In this chapter, we concentrate on systems where processors access the shared registers

only by read and write operations. We present two algorithms that provide mutual exclusion

and no lockout, one that uses unbounded values and another that avoids them. Both

algorithms use O(n) registers. We then show that any algorithm that provides mutual

exclusion, even with the weak property of no deadlock must use n read/write registers.

7.1 The Bakery Algorithm

In this section, we describe the bakery algorithm for mutual exclusion among n processors;

the algorithm provides mutual exclusion and no lockout.

The main idea is to consider processors wishing to enter the critical section as customers

in a bakery.

2

Each customer arriving to the bakery gets a number, and the one with the

2

Actually, in Israel, there are no numbers in the bakeries, and the metaphor of a bank is more appropriate.
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code for p

i

hEntryi

choosing[i] := true

number[i] := max(number[1]:::number[n])+ 1

choosing[i] := false

for j := 1 to n(6= i) do begin

wait until (choosing[j] = false)

wait until number[j] = 0 or (number[j]; j)> (number[i]; i)

end

hCritical Sectioni

hExiti

number[i] := 0

Figure 7.2: The bakery algorithm.

smallest number is the next to be served. The number of a customer who is not standing

in line is 0 (which does not count as the smallest ticket).

In order to make the bakery metaphor more concrete, we employ the following data

structures: number is an array of n integers, which holds in its ith entry the number of p

i

;

choosing is an array of n Boolean values, choosing[i] is true while p

i

is in the process of

obtaining its number. Initially, number[i] is 0 and choosing[i] is false, for every i,

Each processor p

i

wishing to enter the critical section tries to choose a number which

is greater than all the numbers of the other processors, and writes it to number[i]. This is

done by reading number[1]; : : : ; number[n], and taking the maximal among them plus one.

However, since several processors can read number concurrently it is possible for several

processors to obtain the same number. To break symmetry, we de�ne p

i

's ticket to be

the pair (number[i]; i). Clearly, the tickets held by processors wishing to enter the critical

section are unique. We use a lexicographic order on pairs to de�ne an ordering between

tickets.

After choosing its number, p

i

waits until its ticket is minimal: For each other processor

p

j

, p

i

waits until p

j

is not in the middle of choosing its number and then compares their

tickets. If p

j

's ticket is smaller, p

i

waits until p

j

executes the critical section and leaves it.

The precise code appears in Figure 7.2.

We now prove the correctness of the bakery algorithm, that is, we prove that the al-

gorithm provides the three properties discussed above, mutual exclusion, no deadlock and
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no lockout. To show mutual exclusion, we �rst prove a property concerning the relation

between tickets of processors.

Lemma 7.1.1 If processor p

i

is in the critical section, and for some k 6= i, number[k] 6= 0,

then (number[k]; k)> (number[i]; i).

Sketch of proof: Since p

i

is in the critical section, it passed the for loop, in particular,

the second wait statement, for j = k. There are two cases, according to the two conditions

which can be satis�ed for p

i

:

Case 1: p

i

read that number[k] = 0. In this case, when p

i

passed the second wait statement

of the for loop with j = k, p

k

was either in the remainder or did not �nish choosing its

number (since number[k] = 0). But p

i

already passed the �rst wait statement of the loop

with j = k and choosing[k] =false, and had already �nished choosing its number. Therefore,

p

k

started reading number after p

i

wrote to number[i]. Thus, number[i] < number[k], which

implies (number[i]; i)< (number[k]; k).

Case 2: p

i

read that (number[k]; k)> (number[i]; i). In this case, the condition will clearly

remain valid until p

i

exits the critical section or as long as p

k

does not choose another

number. If p

k

chooses a new number, the condition will still be satis�ed since the new

number will be greater than number[i] (as in Case 1).

The above lemma implies that a processor which is in the critical section has the minimal

ticket among the processors trying to enter the critical section. In order to apply this lemma,

we need to prove that whenever a processor is in the critical section its number is non-zero.

Lemma 7.1.2 If p

i

is in the critical section, then number[i] > 0.

Proof: First, note that for any processor p

i

, number[i] is always nonnegative. This can be

easily proved by induction on the number of assignments to number in the execution. The

base case is obvious by the initialization. For the induction step, each number is assigned

either 0 (when exiting the critical section) or a number greater than the maximal current

value which is nonnegative by assumption.

Each processor chooses a number before entering the critical section. This number is

strictly greater than the maximal current number, which is nonnegative. Therefore, the

value chosen is positive.

Theorem 7.1.3 The algorithm provides mutual exclusion.
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Proof: Assume, by way of contradiction, that two processors p

i

and p

j

are simultaneously

in the critical section. By Lemma 7.1.2, number[i] 6= 0 and also number[j] 6= 0. Thus, by

Lemma 7.1.1, (number[i]; i) < (number[j]; j) and also (number[i]; i) > (number[j]; j). A

contradiction.

Theorem 7.1.4 The algorithm provides no lockout (and hence no deadlock).

Sketch of proof: Assume, by way of contradiction, that there is a starved processor that

wishes to enter the critical section but does not succeed, and let p

i

be the processor with

minimal (number[i]; i) that is starved.

Clearly, p

i

will eventually choose a number. All processors arriving after this point

will choose greater numbers, and therefore will not enter the critical section before p

i

. All

processors with smaller number will eventually enter the critical section (since they are not

starved) and exit it. At this point, p

i

will pass all the tests in the for-loop and enter the

critical section. A contradiction.

Note that, unless there is a situation where all processors are in the remainder section,

the numbers can grow without bound. Therefore, there is a problem in implementing the

algorithm on real systems, where variables have �nite size. We next discuss how to avoid

this behavior.

7.2 A Bounded Mutual Exclusion Algorithm

for Two Processors

In this section, we develop a two processor mutual exclusion algorithm which uses bounded

variables, as a preliminary step towards an algorithm for n processors.

We start with a very simple algorithm which provides mutual exclusion and no deadlock

for two processors; however, the algorithm gives priority to one of the processors and the

other processor can starve. We then convert this algorithm to one that provides no lockout

as well.

In the �rst algorithm, each processor p

i

has a Boolean variable want

i

whose value is 1 if

p

i

is interested in entering the critical section and 0 otherwise. The algorithm is asymmetric:

p

0

enters the critical section whenever it is empty, without considering p

1

's attempts to do

so; p

1

enters the critical section only if p

0

is not interested in it at all. The code appears in

Figure 7.3. We leave to the reader to verify that this algorithm provides mutual exclusion
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code for p

0

code for p

1

hEntryi hEntryi

L: want

1

:= 0

wait until (want

0

= 0)

want

0

:= 1 want

1

:= 1

wait until (want

1

= 0) if (want

0

= 1) goto L

hCritical Sectioni hCritical Sectioni

hExiti hExiti

want

0

:= 0 want

1

:= 0

Figure 7.3: A bounded algorithm for two processors|allows lockout.

and no deadlock. Notice that if p

0

is continuously interested in entering the critical section,

then it is possible that p

1

will never enter the critical section since it gives up whenever p

0

is interested.

To achieve no lockout, we modify the algorithm so that instead of always giving priority

to p

0

, each processor gives priority to the other processor upon leaving the critical section.

A variable priority contains the id of the processor which has priority at the moment, and

is initialized to 0. This variable is read and written by both processors. The processor with

the priority plays the role of p

0

in the previous algorithm, so it will enter the critical section.

When exiting, it will give the priority to the other processor, and will play the role of p

1

from the previous algorithm, and so on. We will show that this ensures no lockout. The

code for the algorithm appears in Figure 7.4; note that the algorithm is symmetric.

The next lemma follows immediately from code.

Lemma 7.2.1 If p

i

is in Lines 4-7 (including the critical section) then want

i

= 1.

Theorem 7.2.2 The algorithm provides mutual exclusion.

Proof: Assume, by way of contradiction, that both processors are in the critical section.

By Lemma 7.2.1, it follows that want

0

= want

1

= 1. Assume, without loss of generality,

that p

0

's last write to want

0

before entering the critical section follows p

1

's last write to

want

1

before entering the critical section. Note that p

0

can enter the critical section either

through Line 5 or through Line 6; in both cases, p

0

reads want

1

= 0. However, p

0

's read of

want

1

follows p

0

's write to want

0

, which by assumption, follows p

1

's write to want

1

. But

in this case, p

0

's read of want

1

should return 1. A contradiction.
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code for p

0

code for p

1

hEntryi hEntryi

1 L

0

: want

0

:= 0 L

1

: want

1

:= 0

2 wait until want

1

= 0 or priority = 0 wait until want

0

= 0 or priority = 1

3 want

0

:= 1 want

1

:= 1

4 if (priority = 1) then if (priority = 0) then

5 if (want

1

= 1) then goto L

0

if (want

0

= 1) then goto L

1

6 else wait until (want

1

= 0) else wait until (want

0

= 0)

7 hCritical Sectioni hCritical Sectioni

hExiti: hExiti:

8 priority := 1 priority := 0

9 want

0

:= 0 want

1

:= 0

hRemainderi hRemainderi

Figure 7.4: A bounded algorithm for two processors.

By the code, if p

i

is in the remainder then want

i

= 0. If the other processor is in the

entry section, it will pass the all tests in Lines 2, 5 and 6. Thus we have:

Lemma 7.2.3 If only one processor is in the entry section, it will eventually enter the

critical section.

Note that this lemma assumes that a processor in the critical section eventually exits it.

Theorem 7.2.4 The algorithm provides no deadlock.

Proof: If only one processor is in the entry section, it will succeed, by Lemma 7.2.3. So

we can assume, by way of contradiction, that both processors are in the entry section but

none of them enters the critical section.

Since both processors are in the entry section, the value of priority does not change.

Assume, without loss of generality, that priority = 0. Thus, p

0

passes the test in Line 2,

and loops forever in Line 6 with want

0

= 1. Since priority = 0, p

1

does not reach Line 6.

Thus, p

1

waits in Line 2, with want

1

= 0. In this case, p

0

passes the test in Line 6 and

enters the critical section. A contradiction.

Theorem 7.2.5 The algorithm provides no lockout.
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Proof: Assume, by way of contradiction, that some processor, say p

0

, is starved. If p

1

is not in the entry section, then p

0

eventually enters the critical section, by Lemma 7.2.3.

If p

1

is in the entry section, then p

1

will eventually enter the critical section, by Theorem

7.2.4. Upon exiting, p

1

will set priority to 0. Since p

0

does not enter the critical section,

priority = 0 forever. Thus, p

0

passes the test in Line 2 and continues to wait in Line 6. In

this case, want

0

= 1 forever and therefore eventually, p

1

will have to wait on Line 2 with

want

1

= 0. At this point, p

0

passes the test in Line 6 and enters the critical section, which

is a contradiction.

7.3 A Bounded Mutual Exclusion Algorithm for n Processors

To construct a solution for the general case of n processors we employ the algorithm for two

processors. Speci�cally, we arrange processors into a tournament tree which is a complete

binary tree with d

n

2

e leaves. Each processor starts at an appropriate leaf and competes with

its sibling in the tree. The competition is done using the 2-processor algorithm described

in Section 7.2. The processor that wins this competition goes on to the next level and

competes with the winner of the competition on the other side of the tree. In this manner,

at each node of the tree, two processors compete in order to advance to the next (higher)

level. The processor that wins at root enters the critical section.

Assume n = 2

k+1

(otherwise, standard padding techniques can be used). We build a

complete binary tree with 2

k

leaves (and a total of 2

k+1

�1 nodes). The nodes of the tree are

numbered inductively as follows. The root is numbered 1; the left child of a node numbered

v is numbered 2v and the right child is numbered 2v + 1. Note that the leaves of the tree

are numbered 2

k

; 2

k

+ 1; : : : ; 2

k+1

� 1. See Figure 7.5.

With each node we associate three binary shared variables whose role is similar to the

variables used by the 2-processor algorithm. Speci�cally, with node number v we associate

shared variables want

v

0

, want

v

1

and priority

v

, whose initial value is 0.

The algorithm is recursive and instructs a processor what to do when reaching some

node in the tree. We associate a critical section with each node. A node's critical section

includes the entry code executed at the nodes on the path from that node to the root, the

original critical section and the exit code executed at the nodes on the path from that node

to the root. The above structure, together with the properties of the 2-processor algorithm

will be used to prove the correctness of this algorithm. The code for the algorithm includes

a procedure Node(v,side) which is executed when a processor accesses node number v, while

playing the role of processor side; the procedure appears in Figure 7.6. To enter the critical

section, processor p

i

executes Node(2

k

+ bi=2c, i mod 2). We now present the correctness
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1

2 3

6 7

8 9 10 11 12 13 14 15

4 5

Figure 7.5: The tournament tree for n = 8.

procedure Node(v: integer; side: 0..1)

L: want

v

side

:= 0

wait until (want

v

1�side

= 0 or priority

v

= side)

want

v

side

:= 1

if (priority

v

= 1� side) then

if (want

v

1�side

= 1) then goto L

else wait until (want

v

1�side

= 0)

if (v = 1) then /* at the root */

hCritical Sectioni

else Node(bv=2c, v mod 2)

want

v

side

:= 0

priority := 1� side

end procedure

Figure 7.6: A bounded algorithm for n processors.
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proof of the algorithm.

To prove mutual exclusion, we have to show that at most one processor is at any time in

the critical section of the root, which is the \real" critical section. To derive this property

inductively, we show it holds for every node. With each node v, we can associate a set of

processors which start at a leaf of the subtree of v.

Lemma 7.3.1 For any node v of the tournament tree, at any time, at most one processor

from v's set is in v's critical section.

Sketch of proof: The proof is by induction on the level of the node. The base case is a

leaf node, where the set contains two processors. In this case, the algorithm performed is

exactly the algorithm for two processors, and the claim follows from Theorem 7.2.2.

For the induction step, consider a node v; let u

l

be its left child and u

r

be its right child.

By the induction hypothesis, at most one processor from u

l

's set is in u

l

's critical section,

which consists of the code executed for v and v's critical section; similarly for u

r

. Thus, at

most two processors are in v

i

's critical section and each of them has a di�erent value for the

side variable. Thus, the algorithm performed is exactly the algorithm for two processors,

and the claim follows from Theorem 7.2.2.

By applying Lemma 7.3.1 to the root we get that at any time at most one processor is

in the root's critical section. Thus we have:

Theorem 7.3.2 The algorithm provides mutual exclusion.

We now show the liveness properties of the algorithm.

Theorem 7.3.3 The algorithm provides no deadlock.

Sketch of proof: Assume, by way of contradiction, that there is a deadlock. Let l be the

highest level at which some processor is waiting. Consider some node v at level l at which

some processor is waiting. By the choice of l, there are no processors in the critical section

of v. Lemma 7.3.1 implies that at most two processors are competing at v, with di�erent

values for side. Thus, by Theorem 7.2.4, some processor will eventually enter v's critical

section and proceed to a higher level. A contradiction.

Theorem 7.3.4 The algorithm provides no lockout.

Sketch of proof: Assume, by way of contradiction, that some processor p

i

is starved,

and let v be the highest node it reaches. By Theorem 7.2.5, p

i

will enter v's critical section,

i.e., will go to a node at a higher level. A contradiction.
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7.4 Lower Bound on the Number of Read/Write Registers

In this section, we show that any deadlock-free mutual exclusion algorithm using only atomic

reads and writes must use at least n shared variables, regardless of the size of their size.

The proof allows the shared variables to be multi-writer, that is, every processor can

write to every variable. Note that if variables are single-writer, then the lower bound is

trivial, since every processor must write something (to a separate variable) before entering

the critical section. Otherwise, a processor could enter the critical section without other

processors knowing, and some other processor may enter concurrently, thereby violating

mutual exclusion.

The following notion of similarity is crucial to the lower bound proof that follows.

Furthermore, this de�nition (or variants of it) is the key notion in several lower bounds and

impossibility results we shall encounter later in the course.

De�nition 7.4.1 Let C and C

0

be two con�gurations, and let p

i

be a processor. We say

that C and C

0

look the same to p

i

and denote C

p

i

� C

0

if p

i

is in the same state and the

values of all shared variables are the same in C and C

0

.

Note that this is an equivalence relation (reexive, symmetric and transitive). We extend

this de�nition to a set of processors in the natural manner; that is, for a set of processors P

we say that C

P

� C

0

if C

p

i

� C

0

for every processor p

i

2 P . Conversely, we say that C

�

P

� C

0

if C

p

i

� C

0

, for every processor p

i

62 P .

For some set of processors P , a schedule � is P -only if it contains only steps of processors

in P . Conversely, a schedule � is P -free if � contains no steps of processors in P .

The next lemma shows that if two con�gurations look the same to a set of processors

P , then they keep looking the same to P in any execution that has only steps by processors

in P .

Lemma 7.4.1 Let C

1

and C

2

be two con�gurations, and let P be a set of processors. If

C

1

P

� C

2

and � is a �nite P -only schedule then �(C

1

)

P

� �(C

2

).

The proof of this lemma is by straightforward induction on the length of �, and is left

to the reader.

At the heart of the lower bound proof is the fact that processors should write information

somewhere to let other processors know they have entered the critical section, in order to
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provide mutual exclusion. Furthermore, this information should not be over-written by

other processors. To capture this intuition, we introduce some de�nitions.

The next de�nition talks about a write that gives no information to other processors in

an execution, since it is over-written before any processor reads from it.

De�nition 7.4.2 Let (C; �) be an execution fragment. Assume that the jth step in (C; �)

is a write to register v by processor p

i

. This write is obliterated from C by �, if there exists

an integer k > j such that the kth step in (C; �) is a write to v, and for all `, j < ` < k,

the `th step is not a read of v by any processor.

Communication is further harmed if all writes of a processor after it leaves the remainder

section are obliterated. This is captured by the following de�nition.

De�nition 7.4.3 Let C be a con�guration, � be a schedule. Processor p

i

is hidden from

C by � if � = �

1

�

2

, p

i

is in its remainder at �

1

(C), and every write by p

i

in (�

1

(C); �

2

) is

obliterated from �

1

(C) by �

2

.

When C is clear from the context, we simply say that p

i

is hidden by �. Note that if

p

i

is in its remainder at C, then p

i

is trivially hidden from C by any p

i

-free schedule. We

extend this de�nition in the natural manner to a set of processors.

Intuitively, if a set of processors P are hidden, then other processors do not know whether

processors in P are in their remainder sections or not. This is captured formally by the

following lemma.

Lemma 7.4.2 Let C be a reachable con�guration, and let P be a set of processors. Assume

that � is a �nite schedule such that P is hidden from C by �, and denote C

1

= �(C). Then

there is a reachable con�guration C

2

, such that every processor in P is in its remainder

section at C

2

, and C

1

�

P

� C

2

.

Proof: Intuitively, the proof proceeds by removing the steps of the processors in P from

� one after the other, starting from the last step. We argue that each such step can be

removed, and processors not in P will not notice any di�erence. The formal details follow.

Consider some processor p

i

2 P . Since p

i

is hidden from C by �, there exists a pre�x

�

i

of � such that p

i

is in its remainder at �

i

(C). Let k

i

be the number of steps of p

i

in

the su�x of � after �

i

(we refer to these steps as hidden steps). We prove the lemma by

induction on k =

P

p

i

2P

k

i

, the total number of hidden steps by processors in P .
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The base case is k = 0. In this case the claim holds trivially, taking C

2

to be C

1

.

For the induction step, assume that the lemma holds for k � 0. Let p

i

be the processor

in P that takes the last hidden step in (C; �). Then � can be written as �

1

i�

2

, where �

2

is

P -free. Denote �

0

= �

1

�

2

. We show that P is hidden by �

0

.

If the last hidden step executed by p

i

is a read, then clearly �

0

still hides all the processors

in P from C, since all writes in �

1

by processors in P remain obliterated. Therefore, assume

that the last step executed by p

i

is a write. If some processor p

j

2 P is not hidden by �

0

,

then there is a write w

j

by p

j

to some variable v that is not obliterated in (C; �

0

). Since w

j

is obliterated from C by �, the last write of p

i

must be to the same variable, v. Processor

p

i

is hidden by �, and hence there is a write that obliterates p

i

's last write before any

processor reads v. However, the same write will obliterate w

j

before any processor reads v,

contradicting the assumption.

Note that this also implies C

1

�

P

� �

0

(C).

By construction, �

0

has one hidden step less than �. Thus, by the induction hypothesis,

there is a reachable con�guration C

2

such that �

0

(C)

�

P

� C

2

, and every processor in P is in

its remainder section at C

2

. Therefore, C

1

�

P

� C

2

, which establishes the lemma.

De�nition 7.4.4 A variable v is covered by processor p

i

in a con�guration C if the next

step by p

i

from C is a write to v.

The next de�nition combines the notions of covering and hiding.

De�nition 7.4.5 A variable v is nulli�ed from a con�guration C by a �nite schedule � if

there is a processor that is hidden from C by � and covers v in �(C).

We say that a con�guration C is quiescent if all processors are in their remainder sections.

The next lemma shows that before entering the critical section a processor must leave behind

information in a variable that is not nulli�ed by some other processor.

Lemma 7.4.3 Let C be a quiescent con�guration and assume processors p

1

; : : : ; p

k

nullify

from C a set W of k distinct variables by a fp

1

; : : : ; p

k

g-only schedule �. Then there exists

a variable x

k+1

=2 W and a �nite p

k+1

-only schedule � , such that x

k+1

is covered by p

k+1

in

�(�(C)), and in � , p

k+1

writes only to variables in W .
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Proof: Intuitively, the proof assumes, by way of contradiction, that before entering the

critical section, a processor writes only to variables that are nulli�ed and in particular,

covered, by other processors. In this case, if all covered variables are written one after the

other, obliterating all information the processor has left behind, then other processors will

be unaware that the critical section is not empty. Thus, some other processor will enter the

critical section and will violate mutual exclusion. The details follow.

LetD = �(C) and denote P = fp

1

; : : : ; p

k

g. Since P is hidden from C by �, Lemma 7.4.2

implies that there is a schedule �

0

such that p

1

; : : : ; p

k

are in their remainder sections at

D

0

= �

0

(C) and D

p

k+1

� D

0

. Since C is quiescent, all processors are in their remainder

sections in C. Since �

0

is P -only, D

0

is quiescent.

By the no deadlock property, there exists a �nite p

k+1

-only schedule �

0

such that p

k+1

is in the critical section at �

0

(D

0

). Since D

p

k+1

� D

0

, Lemma 7.4.1 implies that p

k+1

is in the

critical section at �

0

(D) as well.

Assume that all writes by p

k+1

in �

0

are to variables in W . Let � be a schedule consisting

of exactly one step of each processor p

1

; : : : ; p

k

. Since p

1

; : : : ; p

k

nullify all variables of W

at D, the steps in (D; �) are writes to all variables of W . Thus, every write of p

k+1

is

obliterated by � from D, and p

k+1

is hidden from D by �

0

�.

Denote E = �(�

0

(D)). Lemma 7.4.2 implies that there is a con�guration E

0

reachable

from D in which p

k+1

is in its remainder section, such that E

0

P

� E. Intuitively, this means

that p

1

; : : : ; p

k

are unaware in E that p

k+1

is in the critical section.

By the no deadlock property, there exists some �nite P -only schedule � such that some

processor p

i

, 1 � i � k, is in the critical section at �(E

0

). Since E

P

� E

0

, p

i

is in the critical

section at �(E) as well, which violates mutual exclusion since p

k+1

is also in the critical

section in �(E). See Figure 7.7

Therefore, p

k+1

must write some variable x

k+1

62 W in �

0

. Let � be the longest pre�x of

�

0

that does not include a write by p

k+1

to x

k+1

. It is clear that � satis�es the requirements

of the lemma.

For any reachable con�guration C let "

C

be the schedule obtained by allowing proces-

sors that are not in their remainder section to perform steps until all processors are in

their remainder sections. Note that "

C

is �nite, since by the no deadlock property some

processor will enter the critical section, and after it leaves the critical section and passes to

its remainder some other processor will enter, and so on. By de�nition, "

C

(C) is quiescent.

Intuitively, "

C

serves to move all processors into their remainder sections, and to re-initialize

the con�guration.

The next lemma will imply the lower bound.

95



C

�

D

�

0

�

E

0

�

0

D

0

quiescent

�

0

E

p

k+1

in remainder

�
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Figure 7.7: Proof of Lemma 7.4.3.

Lemma 7.4.4 For every k, 1 � k � n, and every reachable quiescent con�guration C,

there exists a �nite fp

1

; : : : ; p

k

g-only schedule �, such that k distinct variables are nulli�ed

from C by �.

Proof: We prove the lemma by induction on k.

For the base case, k = 1, we apply Lemma 7.4.3 with W = ; and an empty schedule.

The lemma implies that there is a �nite p

1

-only schedule � such that p

1

has no writes in

�, and some variable x is covered by p

1

in �(C). Since p

1

does not write in �, it is trivially

hidden from C by �, and thus, x is nulli�ed from C by �, as needed.

For the induction step, assume that the lemma holds for k, 1 � k < n. By the induction

hypothesis, there exists a �nite fp

1

; : : : ; p

k

g-only schedule �

1

from C

1

such that a set W

1

of

k distinct variables is nulli�ed from C

1

by �

1

. Denote C

2

= �

1

(C

1

). Lemma 7.4.3 implies

that there is a variable x

1

=2 W

1

and a p

k+1

-only schedule �

2

such that p

k+1

covers x

1

in

�

2

(C

2

) and writes only to variables in W

1

in (C

2

; �

2

).

Intuitively, we are almost done with the proof at this point, because p

k+1

covers an

additional variable x

1

in �

2

(C

2

). However, in order that p

k+1

will nullify x

1

we have to hide

p

k+1

. Obviously, since p

k+1

writes only to variables in W

1

in (C

2

; �

2

), letting p

1

; : : : ; p

k

each

take one step will obliterate all the writes of p

k+1

and thus will hide p

k+1

. However, in doing

so, processors p

1

; : : : ; p

k

no longer cover (or nullify) the variables in W

1

.

Note, however, that we can make processors p

1

; : : : ; p

k

go to their remainder sections

and apply the induction hypothesis again. In this case, we will get a new con�guration in

which p

1

; : : : ; p

k

nullify some set W

2

of k distinct variables. If we are lucky, x

1

=2 W

2

and

we are done. Otherwise, we apply the inductive hypothesis repeatedly (from C

3

) until we
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get that p

k+1

nulli�es the same variable twice. At this point, we can show that we have the

desired properties.

The formal proof continues by applying the inductive hypothesis n times, and construct-

ing a sequence of con�gurations C

2

; : : : ; C

n

, as follows. C

2

was constructed earlier. Let �

i

be a schedule consisting of exactly one step of p

1

; : : : ; p

k

, and denote C

0

i

= �

i

(C

i�1

). Also,

denote C

00

i

= "

C

0

i

(C

i

). By the induction hypothesis, there exists a fp

1

; : : : ; p

k

g-only schedule

�

i

such that a setW

i�1

of k distinct variables is nulli�ed from C

00

i

by �

i

. Denote C

i

= �

i

(C

00

i

).

By Lemma 7.4.3, there is a variable x

i

=2 W

i

and a p

k+1

-only schedule �

i

such that p

k+1

covers x

i

in �

i

from C

i

and writes only to variables in W

i�1

in (C

i

; �

i

). (See Figure 7.8.)

Consider the variables x

1

; : : : ; x

n

. If these are n distinct variables, then we are done.

Otherwise, there exist i and j, 1 � i < j � n, such that x

i

= x

j

. Consider the schedule

� = �

1

�

2

� � ��

i

�

i+1

�

i+1

� � ��

j

:

We show that � satis�es the conditions of the lemma.

Note that any write by p

k+1

in �

i+1

is to a variable in W

i

. Since �

i+1

begins with a series

of writes to each of the variables in W

i

, all writes by p

k+1

in �

i+1

are obliterated from C

i+1

by �

i+1

, and p

k+1

takes no steps thereafter. Therefore, p

k+1

is hidden by �

i

from C

i�1

.

To see that p

1

; : : : ; p

k

are also hidden by � from C

1

, note that by construction, processors

p

1

; : : : ; p

k

are hidden from C

l

by �

l

, for any l, 1 � l � j. Thus p

1

; : : : ; p

k

are hidden from

C

1

by �

1

�

2

� � ��

i

�

i+1

� � ��

j

. Since every step of p

k+1

in �

i+1

is either a read or an obliterated

write, C

i+2

p

1

;:::;p

k

� �

1

� � ��

i

�

i+1

�

i+1

(C

1

). By Lemma 7.4.1, C

j+1

p

1

;:::;p

k

� �(C

1

). Therefore,

p

1

; : : : ; p

k

are hidden from C

1

by �.

Since x

j

=2 W

j

and x

j

= x

i

, we have that x

i

=2 W

j

. Since p

1

; : : : ; p

k+1

are hidden from

C

1

by �, the variables they cover at �(C

1

) are nulli�ed. Thus, p

1

; : : : ; p

k+1

nullify k + 1

distinct variables, as needed.

Taking k = n in Lemma 7.4.4, we get:

Theorem 7.4.5 Any algorithm that solves mutual exclusion with no deadlock use at least

n variables.

7.5 Bibliographic Notes

Guaranteeing mutual exclusion is a fundamental problem in distributed computing and

many algorithms has been designed to solve it. We have only touched on a few of them in

this chapter. A good coverage of this topic appears in the book by Raynal [55].
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Figure 7.8: Proof of Lemma 7.4.4.
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The bakery algorithm is due to Lamport [41], while the bounded algorithm for two

processors is due to Peterson [52]. The usage of a tournament tree for generalizing to n

processors is adapted from a paper by Peterson and Fischer [54]. This paper, however, uses

a di�erent algorithm as the embedded 2-processor algorithm. Their algorithms use only

single-writer registers, while our algorithms use multi-writer registers. We have chosen this

presentation because we feel it is clearer.

The lower bound presented in Section 7.4.3 was proved by Burns and Lynch [18]; our

Lemma 7.4.3 is slightly stronger than the corresponding lemma in [18], which simpli�es the

proof of Lemma 7.4.4.

7.6 Exercises

1. Calculate the waiting time for the algorithm presented in Section 7.3. That is, calcu-

late how long will a processor waits since entering the entry section until entering the

critical section. Assume that each memory access or execution of the critical section

takes at most one time unit.

Hint: Use recursion inequalities.

2. An algorithm solves the 2-mutual exclusion problem if at any time at most two pro-

cessors are in the critical section. Present an algorithm that solves the 2-mutual

exclusion problem which e�ciently exploits the resources, that is, a processor does

not wait when only one processor is in the critical section.

The algorithm should use only read/write registers, but they can be unbounded.

3. Show a simpli�ed version of the lower bound presented in Section 7.4 for the case

n = 2. That is, prove that any mutual exclusion algorithm for two processors requires

at least two shared variables.
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Chapter 8

Mutual Exclusion Using Powerful

Primitives

In the previous chapter, we introduced the mutual exclusion problem and studied the mem-

ory requirements for solving this problem if only read/write registers are used. In particular,

we have proved a lower bound on the number of shared variables for no deadlock mutual

exclusion in asynchronous systems with atomic read/write operations. We have shown that

any algorithm must use at least n read/write registers, where n is the number of processors.

In this chapter, we study the memory requirements for solving mutual exclusion, when more

powerful primitives are used. We show that one bit su�ces for guaranteeing mutual exclu-

sion with no deadlock. However, O(logn) bits are necessary (and su�cient) for providing

stronger fairness properties.

8.1 Binary Test&Set Registers

We start with a simple type of object, called Test&Set. A Test&Set object is a binary

variable which supports two atomic operations, test&set and reset, de�ned as follows:

test&set(v): if v = 0 then

v := 1

return (0)

else return (1)

reset(v): v := 0
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hEntryi:

L: if test&set(v) = 1 then goto L

hCritical Sectioni:

hExiti:

reset(v)

hRemainderi

Figure 8.1: Mutual exclusion using a Test&Set register.

Note that, unlike read/write registers, Test&Set registers support an operation (test&set)

which atomically reads and updates the object. The reset operation is merely a write.

There is a simple mutual exclusion algorithm with no deadlock, which uses one Test&Set

register. The algorithm is as follows:

Assume the initial value of a Test&Set variable v is 0. In the entry section, processor p

i

tests v until it returns 0; the last test assigns 1 to v, causing all following tests to return 0,

and prohibiting any other processor from entering the critical section. In the exit section,

p

i

resets v to 0, so one of the processors waiting at the entry section could enter the critical

section.

More precisely, the algorithm for processor p

i

appears in Figure 8.1.

To see that the algorithm provides mutual exclusion, assume, by way of contradiction,

that two processors, p

i

and p

j

, are in the critical section together. It follows that p

i

and

p

j

read 0 in Line L. Assume, without loss of generality, that p

i

tested v before p

j

. Since

the value returned by p

i

's test was 0, no processor was at the critical section at the point

where the value of v was changed by p

i

from 0 to 1. Thus, p

j

's test in Line 1 must return

1, contrary to the hypothesis.

To show that the algorithm provides no deadlock, note that the only place where a

processor can get stuck is in the entry section. Suppose there is no processor in the critical

section. This means that v = 0, so one of the processors at the entry section could enter

the critical section. Therefore, we have:

Theorem 8.1.1 There exists a mutual exclusion algorithm which provides no deadlock us-

ing one Test&Set register.
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8.2 Read-Modify-Write Registers

In this section, we consider an even stronger type of register which supports Read-Modify-

Write operations. A processor is able to read from Read-Modify-Write register and assign a

value to it in a single atomic operation. Clearly, Test&Set is a special case of Read-Modify-

Write operation.

A Read-Modify-Write register is a variable which allows the processor to read the current

value of the variable, compute a new value (perhaps based on the current value) and write

the new value to the variable, all in one atomic operation. The operation returns the

previous value of the variable. We denote this operation by

temp := RMW(v; f(v));

where f is some function.

We now present a mutual exclusion algorithm that guarantees no deadlock and no

lockout, using only one Read-Modify-Write register. The algorithm organizes processors

into a FIFO queue, allowing the processor at the head of the queue to enter the critical

section. The algorithm uses a Read-Modify-Write register v consisting of two �elds, �rst

and last, containing \tickets" of the �rst and the last processors in the queue, respectively.

When a new processor arrives at the entry section, it enqueues by reading v to a local

variable and incrementing v.last, in one atomic operation. The current value of v.last serves

as the processor's ticket. A processor waits until it becomes �rst, i.e., until v.�rst is equal to

its ticket. At this point, the processor enters the critical section. After leaving the critical

section, the processor dequeues by incrementing v.�rst, thereby allowing the next processor

on the queue to enter the critical section.

Let position

i

and queue

i

be local variables of p

i

. Assume 0 is the initial value of both

�elds of v. The formal description of the algorithm for the processor p

i

appears in Figure 8.2.

Only the processor at the head of the queue can enter the critical section, and it re-

mains at the head until it leaves the critical section, thereby preventing other processors

from entering the critical section. Therefore, the algorithm provides mutual exclusion. In

addition, the FIFO order of enqueuing provides the no lockout property of the algorithm,

which implies no deadlock. Note that no more than n processors can be on the queue at the

same time. Thus, all calculations can be done modulo n, and the maximal value of v.�rst

and v.last is n. Thus, v requires at most 2 log

2

n bits. We get:

Theorem 8.2.1 There exists a mutual exclusion algorithm which provides no deadlock and

no lockout using one 2 log

2

n bits long Read-Modify-Write register.
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hEntryi:

position

i

:= RMW(v,(v.�rst,v.last+1)) /* enqueuing at the tail */

L: queue

i

:= RMW(v,v)

if (queue

i

:first 6= position

i

:last) then goto L /* until becomes �rst */

hCritical Sectioni:

hExiti:

RMW(v,(v.�rst+1,v.last)) /* dequeuing */

hRemainderi

Figure 8.2: Mutual exclusion using a Read-Modify-Write register.

8.3 Lower Bound on the Number of Memory States

Previously, we have seen that one binary Test&Set register su�ces to provide deadlock-free

solutions to the mutual exclusion problem. However, in this algorithm a processor can be

inde�nitely starved in the entry section. Then we have seen a mutual exclusion algorithm

that provides no lockout using one 2 logn bit long Read-Modify-Write register. In fact, in

order to avoid lockout at least n distinct memory states are required, and thus the solution

of the previous section is essentially optimal. In the rest of this section we show a weaker

result, that if the protocol does not allow a processor to be overtaken an unbounded number

of times then it requires at least n� 1 distinct memory states.

De�nition 8.3.1 An algorithm provides k-bounded waiting if no processor enters the crit-

ical section more than k times while p

i

is in the entry section (for every processor p

i

).

Note that the k-bounded waiting property, together with the no deadlock property,

implies the no lockout property. The main result of this section is:

Theorem 8.3.1 If an algorithm solves mutual exclusion with no deadlock and k-bounded

waiting (for some k), then the algorithm have at least n � 1 distinct memory states.

Proof: Recall that in our model a con�guration is a vector C = (q

1

; : : : ; q

n

; r

1

; : : : ; r

m

)

where q

i

is the local state of processor p

i

, and r

j

is the value of register R

j

. Denote

mem(C) = (r

1

; : : : ; r

m

), the state of the memory in C.

Let C be any quiescent con�guration. Let �

0

1

be an in�nite p

1

-only schedule; by the no

deadlock property there exists a �nite pre�x �

1

of �

0

1

such that p

1

is in the critical section
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Figure 8.3: Proof of Theorem 8.3.1.

at C

1

= �

1

(C). Inductively, construct for every i, 2 � i � n, a p

i

-only schedule �

i

such that

p

2

is in its entry section at C

i

= �

i

(C

i�1

). That is, p

1

is in the critical section and p

2

; : : : ; p

n

are in the entry section at C

n

= �

1

�

2

: : : �

n

(C).

Assume, by way of contradiction, that there are strictly less than n� 1 distinct memory

states. This implies that there are two con�gurations, C

i

and C

j

, 1 � i < j � n, with

identical memory states, that is, mem(C

i

) = mem(C

j

). Note that p

1

; : : : ; p

i

do not take

any steps in �

i+1

: : : �

j

and therefore, C

i

p

1

;:::;p

i

� C

j

. Furthermore, in C

i

and thus in C

j

, p

1

is

in the critical section, and p

2

; : : : ; p

i

are in their entry sections. (See Figure 8.3.)

Apply a fp

1

; : : : ; p

i

g-only in�nite schedule �

0

to C

i

. By the no deadlock property, some

processor p

l

, 1 � l � i, enters the critical section an in�nite number of times.

Let � be some �nite pre�x of �

0

in which p

l

enters the critical section k+1 times. Since

C

i

p

1

;:::;p

i

� C

j

and � is fp

1

; : : : ; p

i

g-only, it follows that p

l

enters the critical section k + 1

times in (C

j

; �). Note that p

j

is in the entry section at C

j

. Thus, while p

j

was in the entry

section, p

l

entered the critical section k+1 times, violating the k-bounded waiting property.

8.4 Bibliographic Notes

The simple algorithms we presented in this chapter are part of the folklore; the lower bound

was proved by Burns and Lynch [18]. The stronger lower bound (for any algorithm that

provides no lockout) is due to Burns, Fischer, Jackson, Lynch and Peterson [17].

8.5 Exercises

1. Present an algorithm for solving the 2-mutual exclusion problem using Read-Modify-

Write registers. The problem is de�ned in Exercise 2 of Chapter 7.
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Part III

Fault-Tolerance
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Chapter 9

Introduction

Coordination problems require processors to agree on a common course of action. Such

problems are typically very easy to solve in reliable systems of the kind we have seen so far

in the course. In real systems however, the various components do not operate correctly

all the time. In this part, we concentrate on the problems that arise when a distributed

system is unreliable. Speci�cally, we consider systems in which either communication or

processors' functionality is incorrect.

In the �rst chapter of this part we consider benign types of failures in synchronous

message-passing systems. We assume that the faulty component (communication link or

processor) just stops functioning, but does not perform wrong operations (e.g., deliver

messages that were not sent). We discuss the coordinated attack problem, which addresses

communication link failures, and show it cannot be solved. We then turn to the consensus

problem, a fundamental coordination problem that requires processors to agree on a common

output, based on their (possibly conicting) inputs. We show matching upper and lower

bounds on the number of rounds required for solving this problem, when processors fail by

crashing, i.e., stopping to operate.

A reliable computer system must be able to cope with the failure of one or more of

its components, even if the failed component may exhibit any type of (mis)behavior. In

the second chapter of this part, we consider the case where failures are Byzantine, that

is, a failed processor may behave arbitrarily. We consider synchronous message-passing

systems. We show that if we want to solve consensus, at most third of the processors can

be faulty. Under this assumption, we present two algorithms for reaching consensus in

the presence of Byzantine failures. One algorithm requires an optimal number of rounds,

but has exponential message complexity; the second algorithm has polynomial message

complexity, but it doubles the number of rounds.
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In the third chapter, we turn to asynchronous systems. We show that consensus cannot

be achieved by deterministic algorithm in asynchronous systems, even if only one processor

fails in the most benign manner, that is, by crashing. This result holds whether communi-

cation is by via messages or through shared variables. Finally, we show how to overcome

this impossibility result by using randomization.

In this part, we study both synchronous and asynchronous systems, using message-

passing or shared-memory. In each chapter, we discuss how to modify the model of the

respective reliable system to allow the speci�c type of faulty behavior.
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Chapter 10

Synchronous Systems I:

Benign Failures

In this chapter we discuss the simplest scenario for fault-tolerant distributed computing|

a synchronous system where the failures are not malicious. Speci�cally, we consider link

failures, where messages sent are not delivered, and processor crash failures, where proces-

sors stop executing the algorithm. We �rst study the coordinated attack problem, where

communication links fail, and then investigate the consensus problem, where processors fail.

10.1 The Coordinated Attack Problem

The coordinated attack problem can be described using the following story.

1

There are two

generals heading two armies on campaign. They have an objective (a hill) that they wish

to capture. If both armies attack simultaneously on the objective, they will succeed; if

only one army marches, it will be annihilated. The generals are located a large distance

apart, and they communicate only by sending messengers to each other. Since the armies

are located at an unknown and hostile land, the messengers may get lost or captured every

time they are sent out of camp. The problem is to �nd some algorithm which allows the

generals to coordinate a joint attack, given their individual strategies.

Speci�cally, an algorithm solves the problem if the generals always agree. If both generals

do not want to attack, and there is no communication between them then they do not attack.

In addition, to prohibit the trivial solution in which they never attack, it is required that

the generals sometimes attack.

1

The problem is sometimes called the two-generals problem.
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We now re-cast the problem in terms of processors and communication. We consider a

synchronous distributed system with two reliable processors, p

1

and p

2

, which communicate

via an unreliable link, which may omit messages but does not duplicate or corrupts them.

A message sent from one processor to another will either arrive without error or not at all.

Each processor p

i

has a binary input value x

i

. (Intuitively, input value 0 corresponds to

the situation in which a general does not want to attack, and input value 1 corresponds to

the situation in which a general wants to attack.) The problem is to �nd an algorithm in

which each processor p

i

decides on an output value y

i

. Formally, the conditions that the

algorithm should satisfy are:

Agreement: y

1

= y

2

.

Validity: If x

1

= x

2

= 0, and no messages arrive at p

1

and p

1

then y

1

= y

2

= 0.

Non-triviality: There is an execution in which y

1

= y

2

= 1.

In this section, we show that there is no solution to this problem. To show this impossi-

bility result, we rely on the fact that processors in a distributed system view the executions

in a very local manner. Due to this locality, and to the possibility of failures, processors can-

not distinguish between executions in which they are supposed to reach di�erent decisions.

This notion will repeat itself several times in the sequel and is, perhaps, the major obstacle

in designing fault-tolerant algorithms. To capture this notion formally, we introduce the

following de�nition of a processor's view of the execution.

De�nition 10.1.1 Let � be an execution and let p

i

be a processor. The view of p

i

in �,

denoted by �jp

i

, is the subsequence of computation and message delivery events that occur

in p

i

.

Given the above de�nition of a view, we can extend the notion of similarity (De�ni-

tion 7.4.1), which was useful for shared memory systems, to message passing systems.

De�nition 10.1.2 Let �

1

and �

2

be two executions. Denote �

1

p

i

� �

2

if �

1

jp

i

= �

2

jp

i

.

Note that if �

1

p

i

� �

2

then p

i

makes the same decision in �

1

and �

2

. Using this notion

we prove:

Theorem 10.1.1 There is no algorithm that solves the coordinated attack problem.
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Proof: Intuitively, the proof takes some execution in which the generals decide to attack

and removes, one by one, the message received in this execution. For any pair in the sequence

of executions we construct, there is one processor that does not distinguish between the two

executions. This implies that the decision made in both executions is the same, and thus,

the same decision is made in all executions in this sequence. Eventually, we get an execution

in which no messages are received; since there is no communication in this execution, we

can change the preferences of the generals to be \no attack". By the above argument, the

generals decide to attack in this execution, which contradicts the validity condition. The

details follow.

Suppose, by way of contradiction, that such an algorithm exists. Let �

1

be an execution

in which processors decide 1, and let k be the number of messages sent in �

1

. (Such an

execution exists by the non-triviality condition.) Without loss of generality, assume that

the last message in �

1

is sent from p

1

to p

2

. Consider an execution �

k

which is the same as

�

1

except that the last message is not received; note that in �

k

, k�1 messages are received.

It follows that �

k

p

1

� �

1

. Since p

1

decides 1 in �

1

it follows that it decides 1 in �

k

. By

the agreement condition, p

2

also decides 1 in �

k

.

By induction, we can continue deleting messages and constructing a sequence of execu-

tions, �

k

; : : : ; �

1

, such that in �

i

, only the �rst i � 1 messages are received. Furthermore,

�

i

p

j

i

� �

i+1

where i

j

2 f1; 2g (p

i

j

is the processor that sends the last message in �

i

), for

every i, 1 � i � k � 1. We can see that both processors decide 1 in every execution �

i

.

Note that in �

1

, no message is received. Let �

0

0

be the execution which is exactly the

same as �

1

, except that p

1

has input value 0. Since �

1

p

2

� �

0

0

it follows that both processors

decide 1 in �

0

0

. Let �

0

be the execution which is exactly the same as �

0

0

, except that p

2

has

input value 0. Again, since �

0

p

1

� �

0

0

it follows that both processors decide 1 in �

0

. However,

�

0

is an execution in which both processors have input value 0 and no messages are received.

By the validity condition, processors should decide 0 in �

0

. A contradiction.

The technique we have used in the proof, of constructing a chain of executions, which

look similar to certain processors, and deriving a contradiction using the agreement con-

dition, is a very important method for proving lower bounds on fault-tolerant computing.

Later in this chapter, we shall see another, more involved, example of it.

10.2 The Consensus Problem

We now turn to the case where communication links are reliable, and all messages sent are

delivered, but the processors are not reliable. We consider, in this chapter, a mild form
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of failure where processors halt in the middle of the execution. We concentrate on the

fundamental problem of reaching consensus among processors.

Speci�cally, we consider a synchronous system, in which processor p

i

start with input

value x

i

, for any i, 1 � i � n. We assume the communication graph is complete, i.e., that

processors are located at the nodes of a clique. We consider crash failures, where a processor

does not take steps in the rounds after it fails; some messages it sends in the round it crashes

arrive at their destination, others do not. A crashed processor is called faulty; processors

that do not crash are called nonfaulty. Each processor p

i

should irreversibly decide on an

output value y

i

, such that the following conditions are satis�ed:

Agreement: y

i

= y

j

, for any nonfaulty processors p

i

and p

j

, 1 � i; j � n. That is, all

nonfaulty processors decide on the same value.

Validity: y

i

2 fx

1

; : : : ; x

n

g, for any nonfaulty processor p

i

. That is, the output of a

nonfaulty processor is one of the inputs.

Note that the validity condition implies, in particular, that if all processors have the

same input value then all nonfaulty processors decide on this value at the end of the execu-

tion. Note also that once a processor crashes, it is of no interest to the algorithm, and no

requirements are made on its decision.

We assume a known upper bound, f , on the number of processors that can fail in any

execution. Below we show matching upper and lower bounds of f + 1 on the number of

rounds required for reaching consensus.

10.2.1 A Simple Algorithm

The algorithm, for processor p

i

, appears in Figure 10.1. In the algorithm, each processor

maintains a set of the values it knows to exist in the system; initially, this set contains

only its own input. In later rounds, a processor updates its set by joining it with the sets

received from other processors, and broadcasts the new set to all processors. This continues

for f +1 rounds. At this point, the processor decides on the smallest value in the set it has.

Clearly, the algorithm requires exactly f + 1 rounds. Furthermore, it is obvious that

the validity condition is maintained, since the decision value is an input of some processor.

The next lemma is the key to proving that the agreement condition is satis�ed.

Lemma 10.2.1 In Line 7, V

i

= V

j

, for every two nonfaulty processors p

i

and p

j

.
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1: V

i

:= x

i

2: for k = 1 to f + 1 do

3: send V

i

to all processors

4: collect V

1

...V

n

5: V

i

:=

S

n

j=1

V

j

6: endfor

7: decide on the minimum of V

i

Figure 10.1: Consensus algorithm in the presence of crash failures.

Proof: Without loss of generality, it su�ces to show that if x 2 V

i

then x 2 V

j

.

Let r be the �rst round in which x was added to V

i

(in Line 5). If r � f then, in round

r + 1 � f + 1, p

i

sends V

i

to p

j

which causes p

j

to add x to V

j

.

Otherwise, if r = f + 1, then there must be a chain of f + 1 processors p

i

1

; : : : ; p

i

f+1

that transfers the value x. That is, processor p

i

j

receives x in a set from p

i

j�1

and adds it

to V

i

j

in round j � 1. Since this is a set of f + 1 distinct processors, there must be at least

one nonfaulty processor among p

i

1

; : : : ; p

i

f+1

. However, this processor adds x to its set at a

round � f < r, contradicting the assumption that r is minimal.

Thus we have:

Theorem 10.2.2 There exists an algorithm which solves the consensus problem in the

presence of f crash failures within f + 1 rounds.

10.2.2 Lower Bound on the Number of Rounds

In this section, we show the main result of this chapter, which is a lower bound of f + 1 on

the number of rounds required for reaching consensus. This result holds even if processors

fail in the most benign manner, i.e., by crashing. Note that this implies that the algorithm

presented in the previous section is optimal. We assume that f � n � 2.

2

In the crash model of failure, if processor p

i

crashes in round r, then it is nonfaulty until

the beginning of round r and some subset of the messages it sends in round r is delivered;

2

If f = n� 1 then consensus can be achieved within f rounds, by a small modi�cation to the algorithm

of the previous section.
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p

i

has no computation steps in round r + 1 and any later round. Processor p

i

's crash is

called clean if none of the messages it sends in round r is delivered.

Let � be some execution of a consensus algorithm, and let dec(�) be the decision made

by some nonfaulty processor at the end of �. By the agreement condition all nonfaulty

processors decide on the same value, and therefore, dec(�) is uniquely de�ned.

The lower bound holds because when executions are too short, processors cannot dis-

tinguish between executions in which they should make di�erent decisions. Once again, we

formalize this intuition using the notion of similarity, as de�ned in De�nition 10.1.2. How-

ever, here we are only concerned if a nonfaulty processor cannot distinguish between the

executions. That is, we say that �

1

p

i

� �

2

if p

i

is nonfaulty in �

1

and �

2

, and �

1

jp

i

= �

2

jp

i

.

Notice that if �

1

p

i

� �

2

then p

i

decides on the same value in both executions. By the

agreement condition, all nonfaulty processors decide on the same value. Thus, we have:

Lemma 10.2.3 Let �

1

and �

2

be two executions, and let p

i

be a processor that is nonfaulty

in �

1

and �

2

. If �

1

p

i

� �

2

then dec(�

1

) = dec(�

2

).

The transitive closure of � is de�ned as follows. We say that �

1

� �

2

if there exist

executions �

1

; : : : ; �

k+1

such that

�

1

= �

1

p

i

1

� �

2

p

i

2

� : : :

p

i

k

� �

k+1

= �

2

;

for some processors p

i

1

; : : : ; p

i

k

. (This implicitly assumes that p

i

j

is nonfaulty in �

j

and

�

j+1

, for every j, 1 � j � k.)

By applying Lemma 10.2.3 inductively, we get:

Lemma 10.2.4 If �

i

� �

j

then dec(�

i

) = dec(�

j

).

Before presenting the proof of the lower bound for the general case, we consider the

special cases of f = 1 to gain intuition on the structure of the proof. This simple case

already includes some of the important ingredients of the general case.

Theorem 10.2.5 There is no algorithm which solves the consensus problem in strictly less

than two rounds in the presence of one crash failures, if n � 3.

Proof: Assume, by way of contradiction, that there exists an algorithm which solves the

problem in strictly less than two rounds. That is, each execution of the algorithm contains

at most one round.
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Consider an execution �

1

0

in which all processors start with input value 0 and no failures

occur (Figure 10.2(a)). By the validity condition, dec(�

1

0

) = 0. Consider an execution �

1

1

which di�ers from �

1

0

only in that processor p

1

fails in round 1 and sends messages only to

p

1

; p

2

; : : : ; p

n�1

(Figure 10.2(b)). Since n � 3, processor p

2

is nonfaulty and �

1

0

jp

2

= �

1

1

jp

2

,

we get that �

1

0

p

2

� �

1

1

. By Lemma 10.2.3, dec(�

1

0

) = dec(�

1

1

).

Consider now an execution �

1

2

which di�ers from �

1

1

only in that processor p

1

sends

messages only to to p

1

; : : : ; p

n�2

in round 1. Clearly, �

1

1

p

n

� �

1

2

and thus dec(�

1

1

) = dec(�

1

2

).

We continue in this manner and construct a sequence of executions �

1

1

; : : :�

1

n

, such that p

1

sends a message in round 1 only to p

1

; : : : ; p

n�i

in �

1

i

. Note that in �

1

n

, p

1

has a clean failure

in round 1, i.e., p

1

does not send any message (Figure 10.2(c)). Since �

1

1

� �

1

n

, it follows

that dec(�

1

1

) = dec(�

1

n

) = 0.

Consider now an execution �

1

0

which is exactly the same as �

1

n

only that p

1

's input value

is 1 (Figure 10.2(d)). Intuitively, no processor receives any information from p

1

and thus,

p

1

's new input does not a�ect the decision of nonfaulty processors. Formally, �

1

n

p

n

� �

1

0

, and

thus, dec(�

1

n

) = dec(�

1

0

) = 0.

We now restore, one by one, all the messages sent by p

1

to p

1

; : : : ; p

n

. This is done by con-

structing a sequence of executions �

1

1

; : : : ; �

1

n

, such that every pair of consecutive executions

are similar to some nonfaulty processor. Note that in all these executions processor p

1

has

input value 1 (Figure 10.2(e)). Thus, �

1

n

� �

1

0

and, by Lemma 10.2.4, dec(�

1

n

) = dec(�

1

0

) = 0

(see Figure 10.2(f)).

Denote �

2

0

= �

1

n

. Starting from �

2

0

we repeat the same procedure omitting the messages

from p

2

one by one, changing p

2

's input to 1, and restoring p

2

's messages one by one. That

is, we construct a sequence of executions, �

2

0

� : : : � �

2

n

� �

2

0

� : : : � �

2

n

, such that in

�

2

n

, p

1

and p

2

have input 1, while all other processors have input 0. Note that there are no

failures in �

2

n

. As before, by the construction and by Lemma 10.2.4, dec(�

2

n

) = dec(�

1

n

) = 0.

Proceeding in the same manner, we construct a sequence of executions, �

1

n

; : : : ; �

n

n

. In

�

i

n

, processors p

1

; : : : ; p

i

have input 1, while all other processors have input 0, and there are

no failures. The construction implies that dec(�

n

n

) = : : : = dec(�

1

n

) = 0. However, in �

n

n

all processors start with input 1 and the validity condition requires that dec(�

n

n

) = 1. A

contradiction.

In the previous proof (for the special case f = 1) we considered only executions with

one round. In such executions, it is simple to omit a message to a nonfaulty processor,

and argue that other nonfaulty processors do not distinguish between executions. This is

because the nonfaulty processor does not get a chance to communicate the change in its

view of the execution to other nonfaulty processors. When f > 1 and we consider executions
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(a) �

1

0

(b) �

1

1

(c) �

1

n

(f) �

1

n

(e) �

1
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Figure 10.2: Proof of Theorem 10.2.5.
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with more than one round, this does not hold since a nonfaulty processor can notify other

nonfaulty processors that some message was omitted, say, in the �rst round. To overcome

this problem, we do things more gradually. First, we cause a nonfaulty processor to fail in a

clean manner in the later round, then we omit the message sent to it, and �nally we \correct"

the processor. Failing the nonfaulty processor in the later round is done inductively using

a similar construction.

We now turn to the formal proof of the lower bound for an arbitrary number of failures

f , 1 � f � n � 2. Assume, by way of contradiction, that we have an algorithm for solving

the consensus problem in which all executions have at most f rounds. Throughout the rest

of the section, every execution will have at most one failure in each round, and thus there

are at most f failures in every execution. Examining the executions used in the proof of

the special case above reveals that this property was preserved.

Before we present the proof we introduce two simple de�nitions. An execution � is

r-failure-free (in short r-�) if no processor fails in any round k � r. In particular, an

execution is failure-free if it is 1-�. Let � be an r-� execution and assume processor p

i

is

nonfaulty in round r. We denote by crash(�; p

i

; r) the execution which is equal to � except

that p

i

fails a clean failure in round r.

The following lemma is the key to the lower bound proof.

Lemma 10.2.6 For every r, 1 � r � f , if � is an r-� execution and processor p

i

is

nonfaulty in �, then � � crash(�; p

i

; r).

Proof: The proof proceeds by reverse induction on r, that is, we start with the last round

in the execution and work our way backwards to earlier rounds.

The base case is r = f . Note that there are at least three nonfaulty processors in round

f . This follows since � is f -�, at most one processor fails in each round r, r < f , and

f � n� 2.

We construct a sequence of executions by removing the messages sent by p

i

in round

f , one at a time, exactly as in the proof of Theorem 10.2.5. Since at least two processors

(besides p

i

) are nonfaulty in round f and only one processor has di�erent views in each pair

of consecutive executions, at least one nonfaulty processor has the same view in each pair

of consecutive executions. Therefore, we have equivalence between each pair of consecutive

executions in this sequence. The last execution in this sequence is an an execution where

p

i

does not send any message in round f , i.e., crash(�; p

i

; f). Therefore, we have � �

crash(�; p

i

; f).
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For the induction step, assume the lemma holds for r+ 1, 1 � r � f � 1; we argue that

the lemma also holds for round r. Let � be an r-� execution and assume p

i

is nonfaulty in

round r.

Clearly, � is also (r + 1)-�, and the induction hypothesis can be applied to p

i

, to show

that crash(�; p

i

; r + 1) � �. Consider now an execution �

0

, which is exactly the same

as crash(�; p

i

; r + 1) except that p

i

fails at the end of round r after sending n messages.

(This is merely an accounting trick to charge p

i

's failure to round r instead of round r+1.)

Clearly, �

0

p

j

� crash(�; p

i

; r+1), for every nonfaulty processor p

j

. Note that �

0

is (r+1)-�.

We remove p

i

's round r messages one by one as follows. Let �

j

be the execution in

which p

i

fails in round r and does not send messages to p

n�j+1

; : : : ; p

n

, for any j, 1 � j � n.

Note that �

j

is (r + 1)-�. Starting with �

0

, which we have already constructed, we show

that �

j

� �

j�1

. (See Figure 10.3(a).)

First, assume that p

j

fails in �. Since � is r-�, p

j

fails in round k < r, and hence it is

also fails in �

j+1

. In this case it is obvious that �

j

p

l

� �

j+1

, for some nonfaulty processor p

l

(such a processor must exist since r < f � n � 2 and there is at most one failure in each

round).

If p

j

does not fail in �, then since �

j�1

is (r+1)-�, we can apply the induction hypothesis

to p

j

to show that crash(�

j�1

; p

j

; r+1) � �

j�1

(see Figure 10.3(b)). Let �

0

j

be the execution

which is exactly the same as crash(�

j�1

; p

j

; r+ 1) except that the message from p

i

to p

j

in

round r is omitted (Figure 10.3(c)). Note that �

0

j

is exactly crash(�

j

; p

j

; r + 1) and thus,

by the induction hypothesis in the reverse direction, �

0

j

� �

j

(see Figure 10.3(d)). This

implies that �

j�1

� �

j

.

Therefore, �

n

� �. However, �

n

is exactly crash(�; p

i

; r), which implies the lemma.

We use the above lemma to derive the main result of this section:

Theorem 10.2.7 There is no algorithm which solves the consensus problem in strictly less

than f + 1 rounds in the presence of f crash failures, if n � f + 2.

Proof: Assume, by way of contradiction, that there is an algorithm which solves the

problem in less than f + 1 rounds. That is, every execution of the algorithm contains at

most f rounds.

Consider a failure-free execution � in which all processors have input 0. Intuitively, we

apply the same idea as in the case of f = 1. That is, one after the other, we fail (in a

clean manner) each processor, change its input value from 0 to 1, and then \correct" it.
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(d) �

j

r + 1

r + 1 r + 1

(b) crash(�

j�1

; p

j

; r+ 1)

Figure 10.3: Executions used in the proof of Lemma 10.2.6
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We use Lemma 10.2.6 to fail and correct processors. We end with an execution in which

all processors have input 1, but they decide 0, which yields the desired contradiction. The

details follow.

By Lemma 10.2.6, � � crash(�; p

1

; 1). Let �

0

1

be the execution which is exactly the

same as crash(�; p

1

; 1) except that p

1

's input is 1. Clearly �

0

1

p

n

� crash(�; p

1

; 1). Let �

1

be the failure-free execution in which p

1

's input is 1, and all other processors have input

0. Note that �

0

1

= crash(�

1

; p

1

; 1), and thus, by Lemma 10.2.6, �

1

� �

0

1

. It follows that

� � �

1

.

We proceed exactly in this manner, constructing failure-free executions �

1

; �

2

; : : : ; �

n

,

such that in �

j

processors p

1

; : : : ; p

j

have input 1 and all other processors have input 0.

The construction implies that � � �

1

� �

2

� �

n

, and by Lemma 10.2.4, dec(�) = dec(�

n

).

However, �

n

is a failure-free execution in which all processors have input 1 and by

the validity condition, dec(�

n

) should be 1, while � is a failure-free execution in which all

processors have input 0 and dec(�) should be 0. A contradiction.

10.3 Bibliographic Notes

The coordinated attack problem was introduced by Gray in the context of distributed

database systems, to show the inexistence of certain commit protocols [33].

The consensus problem was introduced by Pease, Shostak and Lamport [42, 50]. The

problem was originally de�ned for more severe failures (of the type we study in the next

chapter). The simple algorithm we have presented is based on an algorithm of Dolev and

Strong that uses authentication to handle more severe failures [26]. The lower bound on

the number of rounds was originally proved by Fischer and Lynch [29] for a severe type of

failures, and later extended to crash failures by Dolev and Strong [26]. Subsequent work

simpli�ed and strengthened the lower bound [27, 47, 48]. Our lower bound uses the same

kind of arguments as these proofs, but they are organized somewhat di�erently.

10.4 Exercises

1. Design a consensus algorithm with the following early stopping property: if f

0

proces-

sors fail in an execution, then the algorithm terminates within O(f

0

) rounds.

2. De�ne the k-consensus problem as follows. Each processor starts with some arbitrary

integer value x

i

, and should output an integer value y

i

such that:
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� y

i

2 fx

1

; : : : ; x

n

g (validity), and

� the number of di�erent output values is at most k.

Present a synchronous algorithm for solving the k-consensus problem in the presence

of f = n� 1 crash failures. The round complexity of the algorithm should be (

n

k

+1),

and its message complexity should be O(

n

2

k

).

For simplicity assume that k divides n.

3. Show that the following algorithm solves the k-consensus problem in the presence of

f crash failures, for any f < n. (The algorithm is similar to the consensus algorithm

of Section 10.2.1 and is based on collecting information.)

1: V

i

:= x

i

2: for l = 1 to

f

k

+ 1 do /* assume that k divides f */

3: send V

i

to all processors

4: collect V

1

...V

n

5: V

i

:=

S

n

j=1

V

j

6: endfor

7: decide on the minimum of V

i

What is the message complexity of the algorithm?
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Chapter 11

Synchronous Systems II:

Byzantine Failures

In this chapter, we consider synchronous systems with malicious failures. In this model,

failed processors can behave in an arbitrary manner, and it is often called the Byzantine

model. The model takes its name from the following metaphorical description of the con-

sensus problem.

Several divisions of the Byzantine army are camped outside an enemy city. Each division

is commanded by a general. The generals can communicate with each other only by reliable

messengers. The generals should decide on a common plan of action, that is, they should

decide whether to attack the city or not. The new wrinkle is that some of the generals

may be traitors (that's why they are in the Byzantine army) and may try to prevent the

loyal generals from agreeing. To do so, the traitors send conicting messages to di�erent

generals, falsely report on what they heard from other generals, and even conspire and form

a coalition. The conditions we need to achieve are still agreement and validity.

In more concrete terms, we consider a synchronous system with processors p

1

; : : : ; p

n

;

each processor p

i

has a Boolean input x

i

. A faulty processor can behave arbitrarily and

even maliciously, e.g., it can send di�erent messages to di�erent processors (or not send

messages at all) when it is supposed to send the same message. The faulty processors can

coordinate with each other. The maximum number of faulty processors, sometimes called

Byzantine, is f .

1

1

In some of the literature, the upper bound on the number of Byzantine processors is denoted t, for

traitors.
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The requirements of the problems are similar to those of the benign failure model dis-

cussed in the previous chapter, slightly modi�ed not to consider the Byzantine processors.

That is, each processor p

i

should decide on output y

i

such that the following conditions

hold:

Agreement: y

i

= y

j

, for any nonfaulty processors p

i

and p

j

, 1 � i; j � n. That is, the

nonfaulty processors decide on the same output.

Validity: If all nonfaulty processors have the same input v, then the output of every

nonfaulty processor is v.

We �rst show a lower bound on the ratio between faulty and nonfaulty processors. We

then present two algorithms for reaching consensus in the presence of Byzantine failures.

The �rst is relatively simple but has exponential message complexity. The round complexity

of this algorithm is f+1 and matches the lower bound proved in the previous chapter (for a

weaker type of failures). The second algorithm is more complicated and doubles the number

of rounds; however, it has polynomial message complexity.

11.1 The Ratio of Faulty Processors

In this section, we prove that if more than third of the processor can be Byzantine then

consensus cannot be reached. We �rst show this result for the special case of a system

with three processors, one of which might be Byzantine; the general result is derived by

reduction to this special case.

Theorem 11.1.1 In a system with three processors and one Byzantine processor, there is

no algorithm which solves the consensus problem.

Proof: Assume, by way of contradiction, that there is an algorithm for reaching consensus

in a system with three processors connected by a complete communication graph. Assume

the algorithm provides transition functions for processors p

1

, p

2

and p

3

. Connect two copies

of each processor to obtain a system with six processors as depicted in Figure 11.1(a). For

i = 1; 2; 3, processor p

0

i

runs the same program as p

i

; in the picture we point next to each

processor the input value it starts with. Note that this is not a system where the algorithm

is supposed to work correctly, however, this reference system is used by an adversary to tell

the Byzantine processors how to (mis)behave.
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Consider an execution �

1

of the algorithm, where processors p

1

and p

2

both start with

input 1, and processor p

3

is faulty (Figure 11.1(b)). Furthermore, assume processor p

3

is

sending to p

1

the messages sent in the reference execution by p

0

3

(bottom left) to p

1

, and to

p

2

the messages sent in the reference execution by p

3

(upper right) to p

2

. By the validity

condition, both p

1

and p

2

must decide 1 in �

1

.

Now consider an execution �

2

of the algorithm, where processors p

2

and p

3

both start

with input 0, and processor p

1

is faulty (Figure 11.1(c)). Furthermore, assume processor p

1

is sending to p

2

the messages sent in the reference execution by p

0

1

(top left) to p

0

2

, and to

p

3

the messages sent in the reference execution by p

1

(bottom right) to p

0

3

. By the validity

condition, both p

2

and p

3

must decide 0 in �

2

.

Finally, consider an execution �

3

where processor p

1

starts with input 1, processor

p

3

starts with input 0, and processor p

2

is faulty (Figure 11.1(d)). Furthermore, assume

processor p

2

is sending to p

3

the messages sent in the reference execution by p

0

2

(middle left)

to p

0

3

, and to p

1

the messages sent in the reference execution by p

2

(middle right) to p

1

.

Note that �

3

p

1

� �

1

and therefore p

1

decides on 1 in �

3

(as it does in �

1

). Similarly,

�

3

p

3

� �

2

and therefore p

3

decides on 0 in �

3

(as it does in �

2

). However, this violates the

agreement condition. A contradiction.

We prove the general case by reduction to the previous theorem.

Theorem 11.1.2 In a system with n processors and f Byzantine processors, there is no

algorithm which solves the consensus problem if n � 3f .

Sketch of proof: Assume, by way of contradiction, that there exists an algorithm which

reaches consensus in a system with n processors, f of which might be Byzantine. Assume,

for simplicity, that n is divisible by 3. Partition the processors into three sets, P

1

, P

2

and

P

3

, each containing exactly n=3 processors. Consider now a system with three processors,

p

1

, p

2

and p

3

. We now present a consensus algorithm for this system, which can tolerate

one Byzantine failure.

In the algorithm, p

1

simulates all the processors in P

1

, p

2

simulates all the processors in

P

2

, and p

3

simulates all the processors in P

3

. It is clear that such a simulation is possible,

and we leave its details to the reader. If one processor is faulty in the three-processor

system, then since n=3 � f , at most f processors are faulty in the simulated system with

n processors. Therefore, the simulated algorithm must preserve the validity and agreement

conditions in the simulated system, and hence also in the three-processor system.

Thus, we have a consensus algorithm for a system with three processors which tolerates

the failure of one processor. This contradicts Theorem 11.1.1.

124



p

2

(0)

p

3

(0)

p

1

(faulty)

p

3

(0)

p

1

(1) p

2

(1)p

1

(1)p

2

(faulty)

p

3

(faulty)

(c) �

2

(d) �

3

(b) �

1

p

1

(1)

p

2

(1)

p

3

(1)p

0

1

(0)

p

0

2

(0)

p

0

3

(0)

(a) Reference system.

Figure 11.1: Proof of Theorem 11.1.1.
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Figure 11.2: The exponinetial infomation gathering tree; n = 4.

11.2 An Exponential Algorithm

In this section we describe an algorithm for reaching consensus in the presence of Byzantine

failures. The algorithm takes exactly f + 1 rounds, where f is the upper bound on the

number of failures.

The algorithm contains two stages. In the �rst stage, information is gathered by com-

munication among the processors. In the second stage, each processor locally computes its

decision value, using the information collected in the previous stage.

It is convenient to describe the information maintained by each processor during the

algorithm as a tree with height f (each path from root to leaf contains f + 1 vertices). We

label vertices with sequences of processors' names in the following manner. Assume the

root is labelled with the empty sequence. Let v be an internal node in the tree labelled with

the sequence p

i

i

; : : : ; p

i

r

; for every processor p

i

not in this sequence, v has one child labeled

p

i

i

; : : : ; p

i

r

; p

i

. (Figure 11.2 contains an example for a system with four processors.) Note

that no processor appears twice in the label of a node. A node labelled with the sequence

� corresponds to processor p

i

if � ends with p

i

.

In the �rst stage of the algorithm, information is gathered and stored in the nodes of the

tree. In the �rst round of the information gathering stage, each processor sends its initial

value to all processors, including itself. When a nonfaulty processor p

i

receives a value x
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from processor p

j

, it stores the received value at the node labelled p

j

in its tree; a default

value, ?, is stored if x is not a legitimate value or if no value was received. In general, each

processor broadcasts the rth level of its tree at the beginning of round r. When a processor

receives a message from p

j

with the value of the node labelled p

i

1

: : : p

i

r

it stores the value

in the node labelled p

i

1

: : :p

i

r

p

j

in its tree.

Intuitively, p

i

stores in vertex p

i

1

: : : p

i

r

p

j

the value that \p

j

says that p

i

r

says that

: : : that p

i

1

said." We refer to this value as tree

p

i

(p

i

1

: : :p

i

r

p

j

), omitting the subscript p

i

when no confusion will arise. In the root of the tree we store the input value of the processor

itself, i.e., tree

p

i

() = x

i

.

Information gathering as described above continues for f + 1 rounds, until the entire

tree has been �lled in. At this point, the second stage, of computing the decision value

locally, starts. Processor p

i

computes the decision value by applying to each sub-tree a

recursive data reduction function resolve. The value of the reduction function on the sub-

tree rooted at a node labelled with � is denoted resolve

p

i

(�), omitting the subscript p

i

when

no confusion will arise. The decision value is resolve

p

i

().

The function resolve is essentially a recursive majority vote and is de�ned for a node

� as follows. If � is a leaf, then resolve(�) = tree(�); otherwise, resolve(�) is the majority

value of resolve(�

0

), where �

0

is a child of � (? if no majority exists).

In summary, processor p

i

gathers information for f + 1 rounds, computes the reduced

value using resolve and decides on resolve

p

i

().

To prove the correctness of the algorithm, we need one additional de�nition. A node

� is common if all nonfaulty processors compute the same reduced value for �, that is,

resolve

p

i

(�) = resolve

p

j

(�), for every pair of nonfaulty processors p

i

and p

j

. Note that if a

node � in p

i

's tree corresponds to p

j

then the value stored in tree

p

i

(�) was received by p

i

in a message from p

j

.

Lemma 11.2.1 If a node � corresponds to a nonfaulty processor, then � is common and

resolve

p

i

(�) = tree

p

i

(�), for every nonfaulty processor p

i

.

Proof: The proof is by induction on the height of the node � in the tree, starting from

the leaves.

The induction base is when � is a leaf. Then by the de�nition of resolve, for every

nonfaulty processor p

i

, resolve

p

i

(�) = tree

p

i

(�). Assume � corresponds to some nonfaulty

processor p

j

. Every nonfaulty processor stores in tree(�) a value it received from p

j

. Since

p

j

is nonfaulty, it sends the same value to all processors and therefore � is common.
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For the induction step, let � be an internal node that corresponds to a nonfaulty pro-

cessor p

j

. Since the tree has f + 1 levels and in every level of the tree the degree of nodes

decreases by one, it follows that the degree of � is at least n � f . Since n � 3f + 1, the

degree of � is at least 2f + 1.

Let �p

k

be some child of of � that corresponds to a nonfaulty processor p

k

. Since p

k

and p

j

are nonfaulty, the algorithm implies that tree

p

k

(�p

j

) = tree

p

j

(�). By the induction

hypothesis �p

k

is common and therefore, resolve

p

i

(�p

k

) = tree

p

k

(�p

j

) = tree

p

j

(�), for every

nonfaulty processor p

i

. Since the majority of �'s children correspond to nonfaulty processors

and they all resolve to tree

p

j

(�) all nonfaulty processors resolve �'s value to be the same.

Note that if all nonfaulty processors start with the same input value v then, since a

majority of the nodes in the second level correspond to nonfaulty processors and hence are

common, every nonfaulty processor resolve the value v for the root of its tree. This shows

that the validity condition holds; we now show the agreement condition.

A sub-tree has a common frontier if there is a common node on every path from the

root of the sub-tree to its leaves.

Lemma 11.2.2 Let � be a node. If there is a common frontier in the sub-tree rooted at �,

then � is common.

Proof: The lemma is proved by induction on the height of �. The base case is when � is

a leaf and it follows immediately.

For the induction step, assume that � is the root of a subtree with height k+1 and that

the claim holds for every node with height k. If � is common then the claim is immediate.

If � is not common, then every sub-tree rooted at a child of � must have a common frontier.

Since the children of � have height k, the induction hypothesis implies that they are all

common. Therefore, all processors resolve the same value for all the children of � and the

claim follows since the resolved value for � is the majority of the resolved values of its

children.

Note that the nodes on each path from the root of the tree to the leaves correspond

to di�erent processors. Since the nodes on each such path correspond to f + 1 di�erent

processors, at least one of them correspond to a nonfaulty processor and hence is com-

mon, by Lemma 11.2.1. Therefore, the whole tree has a common frontier which implies,

by Lemma 11.2.2, that the root is common. The agreement condition now follows from

Lemma 11.2.1. Thus, we have:
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Theorem 11.2.3 There exists an algorithm which solves the consensus problem in the

presence of f Byzantine failures within f + 1 rounds.

In each round, every processor sends a message to every processor. Therefore, the total

message complexity of the algorithm is n

2

f . Unfortunately, in each round, every processor

broadcasts a whole level of its tree (the one that was �lled in most recently) and thus, the

longest message contains (n� 1)(n� 2) � � �(n� f) values.

2

11.3 A Polynomial Algorithm

In this section we present an algorithm which achieves consensus in the presence of Byzantine

failures using a primitive called authenticated broadcast. We �rst describe the authenticated

broadcast primitive and present an algorithm that employs it to reach consensus. Later we

show how to implement authenticated broadcast.

11.3.1 The Authenticated Broadcast Primitive

We want to build a tool which allows to authenticate messages. Intuitively, authentication

prevents a faulty processor from changing the messages it relays, or introducing a new

message into the system and claiming to have received it from some other processor.

The primitive consists of two procedures, broadcast and accept. The broadcast procedure

is used by a processor p

i

to send the message m in round k to all processors; it is associated

with the triple (p

i

; m; k). The accept procedure is used to receive the triple (p

i

; m; k) if the

processor can verify that processor p indeed broadcast this triple. We formally capture the

features of authentication by the following three properties:

Correctness: If a nonfaulty processor p

i

broadcasts (p

i

; m; k) in round k, then every non-

faulty processor accepts (p

i

; m; k) in round k.

Unforgeability: If a nonfaulty processor p

i

does not broadcast (p

i

; m; k), then a nonfaulty

processor does not accept (p

i

; m; k) (in any round).

Relay: If a nonfaulty processor accepts (p

i

; m; k) in round r � k, then every other nonfaulty

processor accepts (p

i

; m; k) no later than round r + 1.

2

It is possible to reduce the number of messages to be O(f

3

+ fn) with simple tricks.
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The correctness property captures the fact that a message broadcast by a nonfaulty

processor is received by all nonfaulty processors in the same round. The unforgeability

property prevents faulty processor from introducing into the system messages that were not

broadcast by nonfaulty processors. The relay property ensures that if a nonfaulty processor

accepts a message in some round it will be able to show this message to other nonfaulty

processors and convince them to accept it.

11.3.2 Consensus Using Authenticated Broadcast

It is more convenient to present the algorithm for a variant of the consensus problem in

which processors have to decide on the value of a unique sender, the general, denoted G.

The agreement condition is exactly as before, while the validity condition is changed to:

Validity: If the general is nonfaulty and has the value v, then the output of every nonfaulty

processor is v.

This version of the consensus problem can be used to solve the previous version either

simply, by running n copies and agreeing on the input of each processor, or by a more

e�cient reduction (see the bibliographic notes).

The correctness property of authenticated broadcast implies that messages broadcast

by nonfaulty processors are accepted by all nonfaulty processors at the same round. Thus,

it may look as if it su�ces that the general will broadcast its value using authenticated

broadcast. However, if the general is faulty then it is possible that a message broadcast

by the general at an early round is accepted by some nonfaulty processor at the last round

before deciding, and this processor will not have a chance to relay it to other processors.

Note that this kind of problem is similar to the one we have encountered in the simple

algorithm in Section 10.2.1. Indeed, the algorithm we are going to present use similar ideas

as the algorithm presented there. Here, however, we need to use authenticated broadcast

to replace simple message sending in order to protect against misbehavior of Byzantine

processors.

In the algorithm, every message sent by a nonfaulty processor p

k

has the form

(v;G; p

i

1

; : : : ; p

k

), where v is a value and G; p

i

1

; : : : ; p

k

is a a sequence of identi�ers of

processors, including p

k

, through which this value has been passed. Each processor p

k

accumulates the accepted values in a set V

k

.

The algorithm proceeds in rounds. In the �rst round, the general G broadcasts a message

(v;G) containing its initial value v. Processor p

i

adds v to the set V

i

in a round (r+1) if it
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Round 1: The general broadcasts (v;G)

Rounds r + 1, r = 1; : : : ; f : /* for processor p

i

*/

if p

i

accepts (v;G); (v;G; p

i

2

); : : : ; (v;G; p

i

2

; : : : ; p

i

r

) then /* in rounds � r */

V

i

:= V

i

[ fvg

if p

i

has not broadcast v in earlier rounds then

broadcast (v;G; p

i

2

; : : : ; p

i

r

; p

i

)

if V

i

= fxg then decide x else decide ?

Figure 11.3: A consensus algorithm using authenticated broadcast.

has accepted r messages, each \signed" by a distinct processor, one of which is the general.

If this is the �rst time p

i

inserts v to V

i

then p

i

broadcasts v adding its identi�er, by sending

(v;G; p

i

2

; : : : ; p

i

r

; p

i

) to all processors. On the (f + 1)th round p

i

decides as follows: if V

k

contains only one value, decide on it, otherwise decide on a default value (in this case the

general is faulty). The detailed code appears in Figure 11.3.

We now prove that this algorithm achieves consensus in the presence of Byzantine fail-

ures, within (f + 1) rounds. The proof is similar to the proof of the algorithm in Sec-

tion 10.2.1, although we have to rely on the properties of authenticated broadcast instead

of simple properties of message passing. We �rst show that if the general is nonfaulty, then

every nonfaulty processor decides on the general's value.

Lemma 11.3.1 The algorithm of Figure 11.3 satis�es validity.

Proof: Assume that the initial value of the general is v. Since G is nonfaulty and broad-

casts the message (v;G) in the �rst round, the correctness property guarantees that all

nonfaulty processors accept (v;G) in the �rst round and add v to their sets in the second

round. The unforgeability property implies that no processor adds any other value v

0

6= v

to its set, since the general never broadcasts (v

0

; G). Therefore, the set V of every nonfaulty

processor contains only v and all nonfaulty processors decide v.

In order to prove the agreement condition, we show that every nonfaulty processor p

i

inserts the same values to V

i

during the algorithm, whether the general is faulty or not.

Lemma 11.3.2 For any pair of nonfaulty processors p

i

and p

j

, V

i

= V

j

at the end of the

algorithm.
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Proof: We show that if v is inserted to V

i

by a nonfaulty processor p

i

, then v is also

inserted to V

j

by a nonfaulty processor p

j

. Assume that p

i

is the �rst nonfaulty processor

to insert v into V

i

, say in round r. By the algorithm, p

i

accepted a set S of r messages

(v;G); (v;G; p

i

2

); : : : ; (v;G; p

i

2

; p

i

3

; : : : ; p

i

r

).

We �rst show that r < f + 1. Assume, by way of contradiction, that r = f + 1. Thus,

S contains f + 1 messages. Since at most f processors are faulty, at least one message in

S is signed by a nonfaulty processor p

k

. However, p

k

broadcasts this message only if it has

already inserted v to V

j

k

. This contradicts the choice of p

i

as the �rst processor to insert v

into V

i

, and thus, r < f + 1.

By the algorithm, p

i

broadcasts the message (v;G; p

i

2

; : : : ; p

i

r

; p

i

). The correctness prop-

erty ensures that every nonfaulty processor p

j

accepts this message in round r+1. Further-

more, the relay property guarantees that p

j

also accepts the messages in S no later than

round r+1. Therefore, p

j

inserts v into V

j

in round r+1 � f +1, which proves the lemma.

By Lemma 11.3.1, the algorithm satis�es the validity condition. By Lemma 11.3.2 all

nonfaulty processors have the same sets at the end of round (f +1), and therefore, they all

decide on the same value. Thus, we have:

Theorem 11.3.3 The algorithm of Figure 11.3 reaches consensus in the presence of Byzan-

tine failures.

The number of rounds and messages used by the algorithm depends on the speci�c

implementation of authenticated broadcast that we use.

11.3.3 An Implementation of Authenticated Broadcast

In this section we present an implementation of the authenticated broadcast primitive.

Intuitively, to broadcast a message, a processor has to obtain a set of \witnesses" for this

message. A nonfaulty processor accepts a message only when it knows that there are

enough witnesses for this broadcast. This prevents a faulty processor from claiming to have

received a message that was not sent to it. Furthermore, a nonfaulty processor that accepts

a message can later prove that the message was indeed sent. Clearly, by the impossibility

result presented earlier in this chapter, we must assume that n > 3f .

The high-level messages exchanged by broadcast and accept are implemented using two

types of low-level messages: init and echo. Each round of the primitive takes two rounds,

which we will call phases for clarity; round k includes phases 2k � 1 and 2k.
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Round k:

Phase 2k � 1: p

i

sends (init; p

i

; m; k) to all processors

Phase 2k: if received (init; p

i

; m; k)

then send (echo; p

i

; m; k) to all processors

if received (echo; p;m; k) from 2f + 1 processors

then accept (p

i

; m; k)

Phase r > 2k: if received (echo; p

i

; m; k) from f + 1 processors

then send (echo; p

i

; m; k) to all processors

if received (echo; p;m; k) from 2f + 1 processors

then accept (p

i

; m; k)

Figure 11.4: An implementation of authenticated broadcast.

To broadcast a high-level message m in round k, the sender, p

i

, sends a message

(init; p

i

; m; k) to all processors (including itself). Processors receiving this init message

act as witnesses for this broadcast and send a message (echo; p

i

; m; k) to all processors. A

processor that receives f + 1 echo messages becomes a witness to the broadcast and sends

its own echo message to all processors; this is because it knows that at least one nonfaulty

is already a witness to this message. A processor that receives 2f +1 echo messages accepts

the message. The detailed code for the algorithm appears in Figure 11.4.

We now prove that this algorithm provides the three properties of authenticated broad-

cast.

Lemma 11.3.4 The algorithm of Figure 11.4 satis�es the correctness property.

Proof: If p

i

is nonfaulty, then every processor receives (init; p

i

; m; k) in phase 2k � 1.

Thus, every nonfaulty processor sends (echo; p

i

; m; k) in phase 2k and hence, every processor

receives (echo; p

i

; m; k) messages from at least n�f processors. Since n > 3f , n�f � 2f+1,

and therefore every nonfaulty processor accepts (p

i

; m; k) in phase 2k, i.e., in round k.

To prove the unforgeability property, we �rst prove:

Lemma 11.3.5 If a nonfaulty processor sends (echo; p

i

; m; k), then some nonfaulty proces-

sor received (init; p

i

; m; k) from p

i

in phase 2k � 1.
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Proof: Let r be the earliest phase in which some nonfaulty processor p

j

sends

(echo; p

i

; m; k). If r = 2k, the by the code, p

j

have received (init; p

i

; m; k) from p

j

in phase

2k � 1, and the lemma holds. Otherwise, if r > 2k, then p

j

have received (echo; p

i

; m; k)

messages from f +1 (distinct) processors and at least one of which is nonfaulty. Therefore,

some nonfaulty processor sent (echo; p

i

; m; k) at phase r � 1, contradicting the minimality

of r.

Lemma 11.3.6 The algorithm of Figure 11.4 satis�es the unforgeability property.

Proof: If processor p

i

is nonfaulty and does not broadcast (p

i

; m; k), it does not send any

(init; p

i

; m; k) message in phase 2k � 1. If some nonfaulty processor accepts (p

i

; m; k), it

must have received (echo; p

i

; m; k) messages from at least 2f + 1 processors. Therefore, at

least one nonfaulty processor sent (echo; p;m; k). In this case, Lemma 11.3.5 implies that

p

i

sent (init; p

i

; m; k) to at least one nonfaulty processor in phase 2k� 1, a contradiction.

Lemma 11.3.7 The algorithm of Figure 11.4 satis�es the relay property.

Proof: Suppose a nonfaulty processor p

j

accepts (p

i

; m; k) in phase i, where i = 2r� 1 or

2r. Processor p

j

received (echo; p

i

; m; k) messages from at least 2f +1 (distinct) processors

by phase i. Thus, every nonfaulty processor receives (echo; p

i

; m; k) messages from at least

f +1 (distinct) processors by phase i, and therefore sends (echo; p;m; k) in phase i. Hence,

every nonfaulty processor receives (echo; p

i

; m; k) from at least n� f � 2f +1 processors in

phase i+1 and accepts (p

i

; m; k) by the end of phase i+ 1, i.e., in round r+ 1 or earlier.

We now calculate the number of messages sent in the algorithm. Since it is impossible to

bound the number of messages sent by faulty processors, we only consider messages sent by

nonfaulty processors. When a nonfaulty processor p

i

broadcasts (p

i

; m; k), each nonfaulty

processor sends one (echo; p

i

; m; k) message to every processor. Hence, the total number of

messages sent by all nonfaulty processors is O(n

2

) (per original message).

This implies that the consensus algorithm using this implementation sends O((f

3

+

fn)n

2

) each containing at most n processors id's and one value. The consensus algorithm

using this implementation takes (2f + 1) rounds since each round of the algorithm is im-

plemented with two phases.

11.4 Bibliographic Notes

Originally, the consensus problem was de�ned in the context of Byzantine failures [42, 50].

The lower bound on the ratio of faulty processors as well as the simple exponential algorithm
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were �rst proved in [50]. Our presentation follows later formulations of these results by

Fischer, Lynch and Merritt [30] for the ratio result, and by Bar-Noy, Dolev, Dwork and

Strong [13] for the exponential algorithm. The authenticated broadcast algorithm and the

polynomial algorithm obtained by using it are from Srikanth and Toueg [56]. They represent

a whole class of methods from transforming algorithms tolerating a certain type of failures

into algorithms tolerating stronger types of failures. There is an e�cient reduction from

the consensus problem with a general to ordinary consensus by Turpin and Coan [57].

11.5 Exercises

1. Consider the consensus algorithm describe in Section 11.2. By the result of Sec-

tion 11.1, the algorithm does not work correctly if n = 6 and f = 2. Construct

an execution for this system in which the algorithm violates the conditions of the

consensus problem.

2. The same for the algorithm of Section 11.3.
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Chapter 12

Asynchronous Systems

In the previous chapters, we have seen that the consensus problem can be solved in syn-

chronous systems in the presence of failures, both benign (crash) and malicious (Byzantine).

In this chapter, we turn to asynchronous systems. We assume that the communication sys-

tem is completely reliable and the only possible failures are caused by unreliable processors.

We show that if the system is completely asynchronous the there is no consensus algorithm

even in the presence of a single processor failure. The result holds even if processors fail in

the most benign manner, i.e., by crashing.

Crucial to our proof is the fact that processing is completely asynchronous; that is,

we make no assumptions about the relative speeds of processors or about the delay of

communication. We also assume that processors do not have access to clocks or any other

time-measurement device. Finally, we assume that it is impossible for one processor to

distinguish between a crashed processor and a slow processor.

This impossibility result holds regardless of the way processors communicate; that is, it

holds both for shared memory and message passing systems. In fact, the proof in the two

models has exactly the same structure, with only few technical changes which are caused

by the di�erent communication modes. To illuminate this point, we �rst present the proof

for the shared memory model and then discuss how it should be modi�ed in order to apply

to the message passing model.

We complete by showing that the consensus problem can be solved by randomized algo-

rithms.

136



12.1 Impossibility of Deterministic Solutions

12.1.1 Shared Memory Model

In this section, we present the impossibility proof for the model where communication

between processors is done through read/write shared registers. For simplicity, we assume

that registers are single-writer multi-reader, that is, every shared memory register may be

read by every processor and can be written by a single processor. Limiting the discussion

to single-writer registers does not weaken our result, since multi-writer registers can be

constructed from single-writer registers.

The model of computation we use is exactly the same as de�ned in Chapter 6.

We now specify the requirements of the consensus problem. As in the previous chap-

ters, processors start with a binary input, and they decide on a binary output. The basic

condition is that all outputs are the same:

Agreement: All processors decide on the same output.

To avoid trivial solutions, we need some validity condition. For the purpose of the impossi-

bility result, we assume the following weak condition. Clearly, the result holds for stronger

validity conditions.

Validity: For every v 2 f0; 1g, there is an execution in which some processor decides v.

Finally, we need to specify when processors have to decide. We consider only in�nite

executions. A processor is nonfaulty in an execution if has an in�nite number of computation

events in the execution; otherwise, it is faulty.

Termination: A nonfaulty processor must decide within a �nite number of its own steps,

provided at least n � 1 processors are nonfaulty.

We prove that there is no algorithm for solving consensus in the presence of one failure

by contradiction. We assume that there exists a consensus algorithm that solves consensus

in the presence of one failure; thus, the algorithm satis�es the agreement, validity and

termination conditions de�ned above. We construct an execution in which the algorithm

remains forever indecisive.

First, we argue that there is some initial con�guration in which the decision is not already

predetermined (this uses the validity condition). Then we take an undecided con�guration
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and a processor, and we show that either the processor can take a step (perhaps after

other processors have taken steps) and the con�guration remains undecided, or there is a

\decider" processor in the con�guration. We show that if there is a decider processor, then

there exist an execution in which processors reach conicting decisions, contradicting the

agreement condition. Finally, we use these elements to construct an in�nite execution in

which decision is not reached; this contradicts the termination condition.

As evident from the above high-level discussion, the set of decisions that can be reached

from a certain con�guration plays a central role in the proof. To capture it formally, we

introduce some terminology.

A con�guration C has decision value v if some processor decides v in C. A decision

value v is reachable from a con�guration C if there is a con�guration C

0

reachable from C

with decision value v. A con�guration C is 0-valent if only 0 is reachable from it; similarly, a

con�guration C is 1-valent if only 1 is reachable from it. A con�guration C is univalent if it

is either 0-valent or 1-valent. A con�guration C is bivalent if there exist two con�gurations

C

0

; C

1

reachable from C, such that C

0

is 0-valent and C

1

is 1-valent.

As in many impossibility results we have seen earlier, we rely on the notion of similar

con�gurations. Recall that by De�nition 7.4.1, for any two con�gurations C

1

and C

2

and

set of processors P , C

1

P

� C

2

, if C

1

and C

2

have the same shared memory contents and for

every processor p

i

2 P , p

i

is in the same internal state in C

1

and C

2

. We denote C

1

p

i

� C

2

,

if C

1

p

j

� C

2

, for every processor p

j

6= p

i

. Recall that, by Lemma 7.4.1, if � is a �nite p

i

-free

schedule and C

1

p

i

� C

2

, then �(C

1

)

p

i

� �(C

2

).

We start by showing the existence of an initial con�guration in which the decision is not

determined.

Lemma 12.1.1 For every consensus algorithm there exists a bivalent initial con�guration.

Proof: The proof is by contradiction. Assume all initial con�gurations are univalent. By

the validity condition there must exist both 0-valent and 1-valent initial con�gurations.

Two initial con�gurations are adjacent if they di�er only in the initial value of a single

processor. We can order the initial con�gurations so that every pair of consecutive con�g-

urations are adjacent, e.g., by using Gray code. Hence, there must exist a 0-valent initial

con�guration C

0

which is adjacent to an 1-valent initial con�guration C

1

. Let p

i

be the

unique processor with di�erent input values in C

0

and C

1

. C

0

p

i

� C

1

since all other proces-

sors have the same input in both C

0

and C

1

, the states of all processors are initial, and the

shared memory contents is ?.
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By the termination condition every set of n� 1 nonfaulty processors must decide within

a �nite number of steps. Therefore, there exists an in�nite p

i

-free schedule �

0

and a �nite

pre�x � of it such that in �(C

0

) some processor p

j

decides. Since C

0

is 0-valent, p

j

decides

0 in �(C

0

). Since C

0

p

i

� C

1

, and � is p

i

-free, then p

j

decides 0 in �(C

1

), by Lemma 7.4.1.

However, C

1

is 1-valent, a contradiction.

By symmetry considerations either the decision value of �(C

0

) and �(C

1

) is 0 and C

1

is

bivalent, or the decision value is 1 and C

0

is bivalent. Both cases yield a contradiction.

The crucial part of the impossibility proof that follows is to show the existence of a

decider. Intuitively, a decider (for a given con�guration) is a processor who can determine

the decision of the whole system, in such a way that other processors cannot tell which

decision was made. Clearly, if other processors do not know which decision was made, they

cannot decide if the decider fails. The notion of a decider is formalized in the next de�nition.

De�nition 12.1.1 Processor p

i

is a decider in con�guration C if there exist two �nite

schedules �

0

and �

1

such that:

� �

0

(C) is 0-valent,

� �

1

(C) is 1-valent, and

� �

0

(C)

p

i

� �

1

(C).

Note that Lemma 7.4.1 immediately implies that:

Lemma 12.1.2 If p

i

is a decider in con�guration C, then for every �nite p

i

-free schedule

�, �(�

0

(C))

p

i

� �(�

1

(C)).

The next lemma is where most of the technical work is done.

Lemma 12.1.3 (Decider) Let C be a con�guration and let p

i

be a processor. If C is

bivalent then one of the following statements holds:

1. There exists a �nite schedule �, such that �i(C) is bivalent.

2. There exists a �nite schedule � and a processor p

j

, such that p

j

is a decider in �(C).

1

1

Where j may or may not be equal to i.
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Figure 12.1: Proof of Lemma 12.1.3; a value in a box denotes the valence of a con�guration.

Proof: Let C be a con�guration and let p

i

be a processor. Assume Case 1 does not hold,

that is, for every �nite schedule �, �i(C) is univalent. In particular, taking � = ;, we

get that i(C) is univalent, without loss of generality, 0-valent. Since C is bivalent, there

exists a �nite schedule � such that �(C) is 1-valent. Therefore, �i(C) is also 1-valent (see

Figure 12.1). Note that the event i can be applied to �

0

(C), since in the shared memory

model events can be applied to any con�guration.

Let l be the number of events in �. Denote �

0

= ; and let �

k

, 1 � k � l, be the

schedule consisting of the �rst k events in �. Note that since Case 1 does not hold, �

k

i(C) is

univalent. By assumption, �

0

i(C) = i(C) is 0-valent. Also, by construction, �

l

i(C) = �i(C)

is 1-valent. Hence there must be some k such that �

k�1

i(C) is 0-valent and �

k

i(C) is 1-

valent. Assume that the kth step in � is by p

j

. Denote C

0

= �

k�1

(C). Consider the two

neighboring con�gurations i(C

0

) and ji(C

0

), which are 0-valent and 1-valent, respectively

(see Figure 12.1).

Since ji(C

0

) is 1-valent, j(C

0

) can not be 0-valent. Since i(C

0

) is 0-valent it follows that

i 6= j. We now show that there is a decider in C

0

; in fact, we show that either p

i

or p

j

is a

decider in C

0

.

De�ne �

0

= ij and �

1

= ji. Clearly, �

0

(C

0

) is 0-valent since i(C

0

) is 0-valent, and �

1

(C

0

)

is 1-valent since ji(C

0

) is 1-valent (see Figure 12.2). For every type of operations that p

i

and p

j

perform in C

0

, we show that the shared memory contents in �

0

(C

0

) are the same as

the shared memory contents in �

1

(C

0

); furthermore, all processors, except for either p

i

or

p

j

, are in identical internal states in these con�gurations.

The proof proceeds by case analysis, examining the di�erent operations that p

i

and p

j

may perform from C

0

. In each case, we conclude that either p

i

or p

j

is a decider in C

0

, or
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C

0
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0
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Figure 12.2: Closeup on C

0

.

contradict �

0

(C

0

) being 0-valent and �

1

(C

0

) being 1-valent. The cases are as follows:

Case 1: Both p

i

and p

j

perform read operations, or p

i

and p

j

perform operations on

di�erent shared memory registers. (Note that since we assume registers are single-writer,

this covers the case in which both p

i

and p

j

perform a write operation.) In this case, we

apply a commutativity argument. That is, we argue that the execution (C

0

; ij) is equal to

(C

0

; ji), so they cannot that have di�erent valences.

Processor p

i

either reads the same value or writes to the same register and enters the

same internal state in both �

0

(C

0

) and �

1

(C

0

), and similarly for p

j

. Since p

i

and p

j

write

to di�erent registers (if they write) the shared memory contents in �

0

(C

0

) are the same as

in �

1

(C

0

). Therefore, �

0

(C

0

) = �

1

(C

0

), which contradicts the assumption that �

0

(C

0

) is

0-valent and �

1

(C

0

) is 1-valent.

Case 2: p

i

writes to register x and p

j

reads from x (or vice versa). In this case, we show

that the reading processor is a decider.

Since p

i

writes to x and no other processor writes to x in (C

0

; �

0

) or (C

0

; �

1

) the shared

memory contents in �

0

(C

0

) are the same as in �

1

(C

0

). Also, p

i

's state is identical in �

0

(C

0

)

and �

1

(C

0

), since p

i

performs the same transition. Therefore, �

0

(C

0

)

p

j

� �

1

(C

0

). Since �

0

(C

0

)

is 0-valent and �

1

(C

0

) is 1-valent, we get that p

j

is a decider in C

0

.

Lemma 12.1.4 Let C be a reachable con�guration. If there is a decider in C then the

algorithm does not solve the consensus problem.
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Figure 12.3: Proof of Lemma 12.1.4.

Proof: Let p

i

be a decider in C. By De�nition 12.1.1, there exist two schedules �

0

and

�

1

such that �

0

(C) is 0-valent, �

1

(C) is 1-valent and �

0

(C)

p

i

� �

1

(C). Denote C

0

= �

0

(C)

and C

1

= �

1

(C) (see Figure 12.3).

By the termination condition, every set of n � 1 nonfaulty processors must decide in

a �nite number of steps. Let �

0

be an in�nite p

i

-free schedule in which every processor

(except p

i

) takes an in�nite number of steps. By the termination condition, there exists a

�nite pre�x � of �

0

, such that some processor p

j

decides in �(C

0

). Since C

0

is 0-valent, it

follows that the decision is 0 (see Figure 12.3).

Since p

i

is a decider in C and since � is a p

i

-free schedule and C

0

p

i

� C

1

, Lemma 12.1.2

implies that �(C

0

)

p

i

� �(C

1

). Therefore, p

j

decides 0 in �(C

1

) (see Figure 12.3). However,

C

1

is 1-valent. A contradiction.

We can now prove our main result.

Theorem 12.1.5 In the shared-memory model, no consensus algorithm is correct in the

presence of one failure.

Proof: Let C be an initial bivalent con�guration; such a con�guration exists by

Lemma 12.1.1. Assume to the contrary that by executing the algorithm the processors

reach consensus. We construct a schedule � in stages. At the beginning of each stage, � is

the schedule constructed in the previous stage (initially empty) such that �(C) is a bivalent

con�guration. Let C

0

denote the intermediate con�guration �(C).

At each stage, we try to schedule next processor p

i

in a round robin manner. That

is, we take the next index i from the in�nite sequence 1; 2; : : : ; n; 1; 2; : : : ; n; : : : and apply

Lemma 12.1.3.
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If Part 2 of Lemma 12.1.3 holds then there exists a �nite schedule � and a processor p

j

,

such that p

j

is a decider in �(C

0

). In this case, Lemma 12.1.4 implies that the algorithm

does not solve the consensus problem. Therefore, Part 1 of Lemma 12.1.3 holds, and there

exists a �nite schedule �

0

, such that �

0

i(C

0

) is a bivalent con�guration.

Extend � with �

0

i. Since the con�guration ��

0

i(C) is bivalent, we can apply the de-

scribed construction procedure again.

We can continue in this manner inde�nitely and construct an in�nite schedule � in which

every processor takes in�nite number of steps and for every �nite pre�x �

0

of �, �

0

(C) is

bivalent.

The schedule �, applied to the initial bivalent con�guration, yields an in�nite execution

in which all processors are nonfaulty and the processors forever remain indecisive. This

contradicts the termination condition.

Note that the execution constructed in the proof is failure-free, that is, all processors

are nonfaulty, and yet no processor decides.

12.1.2 Message Passing Model

We now present the proof of the impossibility result for the message passing model. The

de�nition of this model is essentially the same as in Chapter 1, and we only discuss the

impact of the possibility of failures on the model.

We de�ne con�gurations, executions and schedules exactly as was done in Chapter 1.

We explicitly model as part of the con�guration the message bu�er which contains the

messages that are in transit, i.e., have been sent but not yet delivered. As in Chapter 1, we

assume that all messages sent are eventually delivered without corruption.

Here it will be convenient to combine the computation events with the delivery events.

Therefore, each event is a pair (m; j), where m is a message (perhaps ?) and j is the index

of a processor which takes a step. In the step associated with the event (m; j), processor

p

j

receives the message m from the message bu�er and then, depending on its internal

state and on m, p

j

enters a new internal state and sends a �nite set of messages to other

processors. We say that an event (m; j) is applicable in a con�guration C if the message

(m; p

j

) exists in the message bu�er in C. Clearly, the event (?; j) is applicable in any

con�guration.

We now turn to the proof of the impossibility result.
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The proof follows exactly the same lines as the proof of Theorem 12.1.5 presented in

the previous section. To adapt the proof, we need to make slight technical changes in the

de�nition of a decider processor and to modify the proofs of the Decider Lemma 12.1.3 and

Lemma 12.1.4. The proof of Lemma 12.1.1 remains exactly the same.

We begin with the modi�ed de�nition of a decider.

De�nition 12.1.2 Processor p

i

is a decider in con�guration C if there exist two p

i

-only

�nite schedules �

0

and �

1

such that:

� �

0

(C) is 0-valent.

� �

1

(C) is 1-valent.

Note that we have replaced the requirement that �

0

(C)

p

i

� �

1

(C) (in De�nition 12.1.1)

with the requirement that in �

0

and �

1

only p

i

takes steps.

Lemma 12.1.6 (Decider) Let C be a con�guration and let (m; i) be an event applicable

to C. If C is bivalent then one of the following statements holds:

1. There exists a �nite schedule �, such that �(m; i)(C) is bivalent.

2. There exists a �nite schedule � and a processor p

j

, such that p

j

is a decider in �(C).

2

Proof: Let C be a con�guration and let (m; i) be an event applicable to C. Assume Case 1

does not hold, that is, for every �nite schedule �, �(m; i)(C) is univalent. In particular,

taking � = ;, we get that (m; i)(C) is univalent, without loss of generality, 0-valent. We �rst

show that there is a �nite schedule �

0

, applicable to C, that does not include (m; i), such

that �

0

(m; i)(C) is 1-valent. (Note that since �

0

does not include (m; i), (m; i) is applicable

to �

0

(C).)

Since C is bivalent, there exists a schedule �

0

such that �

0

(C) is 1-valent. If �

0

does

not include (m; i) then we have the desired �

0

(since �

0

(C) is 1-valent, �

0

(m; i)(C) is also

1-valent). Otherwise, if �

0

includes (m; i), then we can write �

0

= �(m; i)�

0

. By assumption,

�(m; i)(C) is univalent. Since �(m; i) is a pre�x of �

0

, and since �

0

(C) is 1-valent, it follows

that �(m; i)(C) is 1-valent. Since � does not include (m; i) event, we can take �

0

= � .

The rest of the proof is very similar to the proof of the decider lemma in the shared

memory model. For every schedule � that is a pre�x of �

0

, the con�guration �(m; i)(C) is

2

In fact, we get i = j.
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�
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Figure 12.4: Proof of Lemma 12.1.6.

univalent by assumption, and is either 0-valent or 1-valent. Note that (m; i) is applicable to

every con�guration �(C), if � is a pre�x of �

0

. Since (m; i)(C) is 0-valent and �

0

(m; i)(C) is

1-valent, there exists an event (m

0

; k) and a pre�x � of �

0

such that �(m; i)(C) is 0-valent

and �(m

0

; k)(m; i)(C) is 1-valent. Denote C

0

= �(C) (see Figure 12.4).

If k = i, then the schedule �

0

= (m; i) leads to a 0-valent con�guration �

0

(C

0

), and the

schedule �

1

= (m

0

; i) leads to a 1-valent con�guration �

1

(C

0

). By De�nition 12.1.2, p

i

is a

decider in C

0

and therefore � satis�es Case 2.

If k 6= i, then we have a commutativity argument. Let �

0

= (m; i)(m

0

; k) and �

1

=

(m

0

; k)(m; i). Note that �

0

(C

0

) is 0-valent and �

1

(C

0

) is 1-valent. In both schedules, p

i

receives the same message m and enters the same internal state. From a similar argument

p

k

is in same internal state in both con�gurations. The contents of the message bu�er in

�

0

(C

0

) is identical to that of �

1

(C

0

). Therefore, �

0

(C

0

) = �

1

(C

0

), which contradicts the

assumption that �

0

(C

0

) is 0-valent and �

1

(C

0

) is 1-valent.

Lemma 12.1.7 Let C be a reachable con�guration. If there is a decider in C, then the

algorithm does not solve the consensus problem.

Proof: Let p

i

be a decider in C. By De�nition 12.1.2, there exist two p

i

-only schedules,

�

0

and �

1

, such that �

0

(C) is 0-valent and �

1

(C) is 1-valent. Denote C

0

= �

0

(C) and

C

1

= �

1

(C).

By the termination condition, every set of n � 1 nonfaulty processors must decide in

a �nite number of steps. Let �

0

be an in�nite p

i

-free schedule in which every processor

(except p

i

) takes an in�nite number of steps. By the termination condition, there exists
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Figure 12.5: Proof of Lemma 12.1.7.

a �nite pre�x � of �

0

, such that some processor p

j

decides on some output v in �(C) (see

Figure 12.5).

Since only p

i

takes steps in �

0

and �

1

, and since � is a p

i

-free schedule, � is applicable

to C

0

and to C

1

. Also, all processors but p

i

are in the same internal state in C

0

, C

1

and C.

Therefore, the executions resulting from applying � on C, C

0

and C

1

are identical and p

j

decides on v in all three executions (see Figure 12.5).

If v = 0, this contradicts the fact that C

1

is 1-valent; if v = 1, this contradicts the fact

that C

0

is 0-valent.

Using Lemma 12.1.6 and Lemma 12.1.7 as in the proof of Theorem 12.1.5, we can show:

Theorem 12.1.8 In the message-passing model, no consensus algorithm is correct in the

presence of one failure.

12.2 Randomized Algorithms

In this section, we show a randomized asynchronous algorithm for reaching consensus,

whose time complexity is O(1). Randomization helps us overcome the impossibility result
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proved earlier in this chapter. This is possible because the algorithm has executions that

do not terminate, albeit with zero probability. In addition, on the average, the randomized

algorithm is faster than the lower bound on the number of rounds proved in Chapter 10,

but there is no upper bound on its running time.

We assume there are at most f stopping failures, where n � 3f + 1.

We assume an oblivious scheduler, which does not use any runtime information about

the behavior of processors. We also assume that only the processor that receives a message

can read it, that is, the channels are secure and cannot be read by the scheduler.

12.2.1 The Building Blocks

The agreement algorithm relies on three building blocks. We now de�ne each of the building

blocks, deferring their implementations to Section 12.2.4.

Broadcast: Given a special sender processor, an algorithm is a broadcast primitive if the

following conditions are satis�ed:

1. If the sender is nonfaulty and has input m then all nonfaulty processors terminate

with m.

2. If a nonfaulty processor terminates with m then all nonfaulty processors terminate

with m.

Note that broadcast does not imply consensus since if the sender fails it is possible that

processors will not terminate.

Vote: This primitive allows each processor to vote on a binary value and to obtain an

estimate of the tally. Each processor starts with a binary input x

i

and ends with a binary

output which is the tally, together with a con�dence level; alternatively, the algorithm may

return ?, implying that the vote is not decided. A result of (a; 1) means that the tally is

probably a; a result of (a; 2) means that the tally is de�nitely a. Let the distance between a

1

and a

2

be the location of a

1

minus the location of a

2

in the list f(0; 2); (0; 1);?; (1; 1); (1; 2)g.

An algorithm is a vote primitive if the following conditions are satis�ed:

1. The distance between the outputs of two nonfaulty processors is at most 1.

2. If all nonfaulty processors have input v then all nonfaulty processors have output

(v; 2).
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Code for processor P

i

with input x

i

:

1. r := 1; v

1

:= x

i

.

Repeat until terminating:

2. (y

r

; c

r

) := Vote(v

r

).

3. If c

r

= 2, then Broadcast (Terminate with y

r

) and terminate with y

r

.

4. If c

r

= 1, then v

r+1

else y

r

.

5. Otherwise, v

r+1

:= Global-Coin().

6. r := r + 1.

Upon receiving a (Terminate with v) broadcast, terminate with v.

Figure 12.6: The agreement algorithm.

Global Coin: The global coin primitive simulates the public tossing of a biased coin such

that all processors see the coin landing on side v with probability at least p, for every v;

there is a possibility that some processors will not see the coin landing on the same value.

Speci�cally, the algorithm has no input and produces a binary output. An algorithm is

an f -resilient global coin primitive with bias p if in any execution with at most f failures,

all nonfaulty processors output v with probability at least p, for any value v 2 f0; 1g.

12.2.2 The Algorithm

We now show how to employ the above primitives, broadcast, vote and global coin, to

obtain a consensus algorithm. The resilience of the algorithm depends on the resilience of

the primitives. The algorithm we present is deterministic, and in fact, randomization is

only used in the implementation of the global coin. The expected time complexity of the

algorithm is O(

T

1

+T

2

+T

3

p

), where p is the bias of the global coin, T

1

is the expected time

complexity of the broadcast, T

2

is the expected time complexity of the vote and T

2

is the

expected time complexity of the global coin. The algorithm appears in Figure 12.6.

12.2.3 Proof of Correctness

We �rst show that processors never decide on conicting values. That is, the agreement

condition is always maintained.
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Lemma 12.2.1 If some processor decides on v then all processors decide on v.

Sketch of proof: A processor decides v only if it has vote v with con�dence 2. By the

properties of the Vote primitive, in this case all processors have vote v with con�dence 1

or 2. Thus, they will either decide v, or set their preference to the next round to be v. In

the next round, all processors will receive a vote v with con�dence 2 and will decide v, as

needed.

We now turn to the complexity analysis of the algorithm. We �rst show that the

probability of deciding in a certain round is at least p (the bias of the global coin).

Lemma 12.2.2 In each iteration (steps 1-6) the probability that all processors terminate

with the same value v is at least p.

Sketch of proof: We consider two cases.

Case 1: All nonfaulty processors have ? as the result of the vote in this iteration. In this

case, all nonfaulty processor assign the value of the global coin to v. With probability of

at least 2p all nonfaulty processors obtain the same value v from the global coin. Thus,

with probability 2p all nonfaulty processors obtain a vote of (v; 2) in the next iteration and

therefore terminate with value v.

Case 2: Some processor have con�dence 1 or 2 with some value v. By property 2 of the

vote primitive, no other processor has �v as the result of vote, with con�dence either 1 or 2.

Therefore, all nonfaulty processors either have v (with some con�dence) or assign the value

of the global coin. With probability p, all nonfaulty processors that assign the value of the

global coin obtain v. This implies that with probability at least p all nonfaulty processors

vote v in the next iteration, and therefore obtain a vote of (v; 2) in the next iteration and

terminate with value v.

Lemma 12.2.3 The expected time complexity of the consensus algorithm is O(

T

1

+T

2

+T

3

p

),

where p is the bias of the global coin, T

1

is the expected time complexity of the broadcast,

T

2

is the expected time complexity of the vote and T

2

is the expected time complexity of the

global coin.

Proof: By Lemma 12.2.2, the probability of terminating after one iteration is at least

p. The probability of not terminating after one iteration is at most (1� p), and thus, the

probability of terminating after i iterations is at least (1� p)

i�1

p. Therefore, the number of

iterations until termination is a geometric random variable and its expected value is

1

p

. Each

iteration takes O(T

1

+ T

2

+ T

3

) expected time. Therefore, the expected time complexity of

the algorithm is O(

T

1

+T

2

+T

3

p

).
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12.2.4 Implementation of the Building Blocks

The Broadcast Primitive

A simple broadcast algorithm for crash failures is as follows. The sender wanting to broad-

cast m, sends a message (MSG; m) to all the processors, and terminates with m. Every other

processor, upon receiving the �rst (MSG; m) or (ECHO; m) message, sends (ECHO; m) to all

processors and terminates with m. We now prove that this is a broadcast algorithm.

Clearly, if the sender is nonfaulty then it sends a message to all processors. Furthermore,

since processors fail by crashing, if the sender sends the message m, then no processor

receives a message with m

0

6= m. Thus, we have:

Claim 12.2.4 If the sender is nonfaulty and starts with m then all nonfaulty processors

terminate with m.

Since a nonfaulty processor echoes a message it receives to all processors before termi-

nating, we have:

Claim 12.2.5 If a nonfaulty processor terminates with output m then all nonfaulty proces-

sors terminate with m.

Note that if the sender is nonfaulty then the algorithm terminates withing O(1) time.

The Vote Primitive

Figure 12.7 contains a vote algorithm. We now prove its correctness.

Lemma 12.2.6 The distance between outputs of two nonfaulty processors is at most 1.

Proof: We consider three cases:

Case 1: Some nonfaulty processor p

i

terminates with (v; 2). We show that all nonfaulty

processors terminate with either (v; 2) or (v; 1). Because p

i

terminates with (v; 2) there are

at least n � f processors with v as input. All other nonfaulty processors will choose the

majority bit to be v. (Since n � 3f + 1, n � f has majority over f .) Thus, all nonfaulty

processors broadcast (A

0

; v) in step 2. In step 3, all nonfaulty processors receive n � f

messages of the form (A

00

; v) and terminate with either (v; 1) or (v; 2).
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Code for processor p

i

with input x

i

:

1. Broadcast x

i

.

2. Wait for input messages from at least n � f processors; let A

i

be the set of inputs

received.

Let y

i

be the majority of A

i

(y

i

is called the vote). Broadcast (A

i

; y

i

).

3. Wait for vote messages from at least n � f processors; let B

i

be the set of votes

received.

Let z

i

be the majority of B

i

(z

i

is called the revote). Broadcast (B

i

; z

i

).

4. If all processors in A

i

have the same vote value v then terminate with (v; 2).

Otherwise, if all processors in B

i

have the same revote value v then terminate with

(v; 1).

Otherwise, terminate with ?.

Figure 12.7: Algorithm Vote(x

i

).

Case 2: Some nonfaulty processor p

i

terminates with (v; 1). We show that all nonfaulty

processors terminate with either (v; 1) or ?. By Case 1, no nonfaulty processor terminates

with (v

0

; 2), so it su�ces to show that no nonfaulty processor terminates with (v

0

; 1). As-

sume, by way of contradiction, that some nonfaulty processor p

j

terminates with (v

0

; 1),

v

0

6= v. Thus there are at least n � f processors which had a majority of v

0

, and there

are at least n � f processors which had a majority of v, in contradiction to the fact that

n � 3f + 1.

Case 3: All nonfaulty processors terminate with (0; 0). Trivial.

Lemma 12.2.7 If all nonfaulty processors have input v then all nonfaulty processors ter-

minate with (v; 2).

Proof: All nonfaulty processors broadcast v in step 1. Every nonfaulty processor p

i

receives at least n � 2f messages with input v. Since n � 2f > f , p

i

sets y

i

to v in step 2.

Thus every nonfaulty processor's broadcast includes v. As before, every nonfaulty processor

p

i

receives at least n � 2f messages with input v and since n � 2f > f , p

i

sets z

i

to v in

step 2, and terminates with (v; 2).
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Code for Processor p

i

1. Let r

i

be a uniformly chosen random value in [0 : : :(u� 1)]. Broadcast r

i

.

2. Let H

i

denote the set of processors whose �rst step Broadcast has completed.

/* H

i

is a `dynamic set'. Namely, whenever the Broadcast of a processor is completed

it is added to H

i

. */

Wait until jH

i

j � n� t.

Let

^

H

i

denote the contents of the dynamic set H

i

, when jH

i

j = n� t. Broadcast

^

H

i

.

3. Processor p

j

is supportive with respect to p

i

if

^

H

j

� H

i

. Namely, its second step

Broadcast has been completed, and the �rst step Broadcast of each processor p

k

2

^

H

j

is completed at p

i

.

Wait until n� t processors are supportive.

/* Note that a processor p

j

that was not considered supportive since some p

k

2

^

H

j

was not in H

i

can become supportive later if p

k

is added to H

i

.*/

If there exists a processor p

j

2 H

i

with r

j

= 0, output 0. Otherwise, output 1.

Figure 12.8: A global coin algorithm.

Global Coin

For every f < n, it is simple to implement an f -resilient global with bias 2

n

by having each

processor output a random binary number. In this section we present an algorithm with

higher bias|a (d

n

3

e�1)-resilient global coin with bias

1

8

. De�ne u to be d

3n

4

e; the algorithm

appears in Figure 12.8.

Claim 12.2.8 There exists a set of processors C, jCj >

n

3

, which is a subset of H

j

for

every terminating nonfaulty processor p

j

.

Sketch of proof: Fix p

i

to be the �rst processor that sees n � f supportive processors.

A processor p

l

is widespread if at least f + 1 processors p

j

, which are supportive w.r.t. p

i

,

include p

l

in their

^

H

j

. Let C be the set of widespread processors. We show that C has the

desired properties; we �rst show that C is a subset of H

j

for every nonfaulty processor p

j

that terminates and then show that jCj >

n

3

.

Consider some nonfaulty processor p

j

that terminates. Since p

j

terminates, it has at

least n�f supportive processors. Namely, there are n�f di�erent

^

H

k

's such that

^

K

k

� H

j

.
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Let p

l

be some widespread processor. Since p

l

is widespread and appears in at least f + 1

^

H's, p

l

appears in one of the

^

H

k

received by p

j

. Since

^

H

k

� H

j

it follows that p

l

appears

in H

j

. Thus, every widespread processor appears in H

j

for every terminating nonfaulty

processor p

j

. Therefore, C is a subset of H

j

for every terminating nonfaulty processor.

We now show that jCj >

n

3

. For each nonfaulty processor, de�ne a table T with n

columns and n � f rows. The columns are indexed by the processors p

1

; : : :p

n

, while the

rows are indexed by the n�f processors that are supportive with respect to p

i

. The entries

of the table have binary values such that T [l; k] = 1 if and only if p

k

2

^

H

i

l

. Note that if

a processor is widespread than its column contains at least f + 1 ones. Furthermore, each

row contains exactly n� f ones, thus T contains exactly (n� f)

2

ones.

Let q be the number of widespread processors. Since only columns that correspond to

widespread processors contain more than f ones, the total number of ones in T is at most

q(n � f) + (n � q)f (this assumes that columns that correspond to widespread processors

contain the maximal number of ones, that is, n � f). This implies that

(n� f)(n� f) � q(n� f) + (n� q)f :

Thus, by simple calculations (omitted),

q �

(n� f)

2

� nf

n � 2f

� n � 2f :

Since f < d

n

3

e � 1, we have q >

n

3

, as needed.

Claim 12.2.9 The algorithm in Figure 12.8 is a (d

n

3

e�1)-resilient coin primitive with bias

1

8

.

Sketch of proof: All nonfaulty processors terminate with 1 if no processor starts with

0.

3

The probability that an arbitrary processor does not choose 0 is (1�

1

u

). Thus, the prob-

ability no processor starts with 0 is (1�

1

u

)

n

. It can be shown that for n � 2, (1�

1

u

)

jCj

�

1

8

(calculations omitted).

All nonfaulty processors terminate with 0 if some widespread processor p

l

have r

l

= 0.

The probability that no widespread processor have 0 is (1�

1

u

)

jCj

. Thus, the probability

that there is a widespread processor p

l

with r

l

= 0 is 1� (1�

1

u

)

jCj

.

Since u = d

3n

4

e, we have 1� (1�

1

u

)

jCj

>

1

8

(calculations omitted).

3

There are other cases in which all nonfaulty processors terminate with 1, but we can neglect them.
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Theorem 12.2.10 There is a consensus algorithm with O(1) expected time complexity.

Proof: We have shown an (d

n

3

e � 1)-resilient

1

8

-coin. The time complexity of the broad-

cast, vote and global coin algorithms is O(1). Thus, by Lemma 12.2.3 the expected time

complexity of the consensus algorithm is O(1).

12.3 Bibliographic Notes

The impossibility of achieving consensus in an asynchronous system was �rst proved in

a breakthrough paper by Fischer, Lynch and Paterson [31]. Their proof dealt only with

message passing systems. Later, the impossibility result was extended to the shared memory

model by [44] and (implicitly) by [25]. Special cases of this result was also proved in [37]

and [21]. Our presentation, using a decider lemma, follows [5, 15].

The construction of a randomized consensus protocol from primitives is due to Bracha

[14]; our presentation follows [19] and is simpli�ed, since we only handle crash failures. In

order to tolerate Byzantine failures, all we need to do is modify the implementations of

the primitives; the transformation from the primitives is valid also for Byzantine failures.

There is a broadcast algorithm which tolerates Byzantine failures [14]; it shares many

ideas with the authenticated broadcast protocol presented in Section 11.3.3. Algorithms

for implementing the vote and the global coin primitives can be found in [19, 28]. A good

survey of the results in this area appears in [20].

12.4 Exercises

1. Consider a shared memory system in which there are only Test&Set registers (as

de�ned in Chapter 8). Show that it is possible to solve consensus in this system, if

there are only two processors.

2. Show that the consensus problem cannot be solved in a system with only Test&Set

registers, if two processors may fail by crashing. You can use the following outline.

(a) De�ne C

�p

i

;p

j

� C

0

.

(b) Modify the de�nition of a decider to allow the hidden steps to be by another

processor.

(c) Prove a modi�ed decider lemma, and derive the impossibility result as done for

read/write registers.
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3. What happens if we allow read/write operations, in addition to Test&Set operations?
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