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Stationary part: 

𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥𝑡. 𝑎𝑡  

Non-stationary part: 

no assumptions about 

𝑦𝑡 𝑡=1
𝑇  
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SOME EXAMPLES 

 Sequential investment 
 We influence positions, but not 
prices 

 Prices effect revenue 

 Inventory management 

 Optimal control 

 Sequential routing 

 Common factor 
 Part of the state is controlled, 
with a well understood 
dynamics 

 Part of the state is uncontrolled, 
complicated dynamics, 
unobserved state variable 

 Only the reward is influenced 
by the uncontrolled component 
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 𝜋: 𝐴 × 𝑋 → 0,1 : policy 

𝑟𝑡 𝑥, 𝑎  is the reward given for choosing action 

𝑎 in state 𝑥 in episode 𝑡 

𝑃 𝑥′ 𝑥, 𝑎  is the probability of moving to state 

𝑥′ when choosing action 𝑎 in state 𝑥 

𝜋(𝑎|𝑥) is the probability of choosing action 𝑎 

in state 𝑥 
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 Number of layers: 𝐿 
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Update policy as 

𝜋𝑡+1 𝑎|𝑥 =
𝜋𝑡 𝑎|𝑥 𝑒𝜂𝑄𝑡 𝑥,𝑎

𝑍𝑡(𝑥)
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Decompose-then-bound 

inevitably leads to loose bounds! 
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Rewards are linear in 

some representation! 
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vs 𝑂 𝐿2 𝑇 𝐴 log 𝐴 /𝛼  



“WHERE HAVE I SEEN THIS BEFORE?” 

 Mirror descent: 

  

  

 Relative Entropy Policy Search (Peters, Mülling, 
Altun, 2010): 

𝒑𝑡+1 = argmin
𝒑∈Δ

−𝜂 𝒑, 𝒓𝑡 + 𝐷 𝒑 𝒑𝑡  

𝒑𝑡+1 = argmin
𝒑∈Δ

− 𝒑, 𝒓𝑡  

                       s.t.        𝐷 𝒑 𝒑𝑡 ≤ 𝜀 
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𝑥′

− 𝑣(𝑥) 

• For all layers 𝑘 = 0,1,… , 𝐿 − 1, define partition function 

𝑍𝑡 𝑣, 𝑘 =  𝑝𝑡 𝑥, 𝑎 𝑒𝛿𝑡 𝑥,𝑎 𝑣

𝑥∈𝑋𝑘,𝑎
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 log𝑍𝑡(𝑣, 𝑘)

𝐿−1

𝑘=0
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𝑝𝑡+1 𝑥, 𝑎 =
𝑝𝑡 𝑥, 𝑎 𝑒𝛿𝑡 𝑥,𝑎|𝑉𝑡
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“Value function” comes 

from solving the dual 



MDP-EXP3 VS O-REPS 

MDP-EXP3 O-REPS 

Value function 
Solve Bellman-eq. 

(Global) 

Solve dual 

(Global) 

Update rule 
𝜋𝑡 𝑎 𝑥 𝑒𝜂𝑄𝑡(𝑥,𝑎) 

(Local) 

𝑝𝑡 𝑥, 𝑎 𝑒𝛿𝑡 𝑥,𝑎 𝑉𝑡  

(Global) 

Normalization 
Per state 

(Local) 

Per layer 

(Global) 

Guarantees 
𝐿 𝑇 𝑥 = 𝑂 𝐿 𝑇  

(Per state, local) 

𝐿 𝑇 = 𝑂 𝐿 𝑇  

(Global) 
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   Suboptimal ideas: 
• Decomposition 

• Sticking to traditional Bellman-

equations 



WHAT’S THE LESSON? 

   Suboptimal ideas: 
• Decomposition 

• Sticking to traditional Bellman-

equations 

Good ideas: 
• Using the LP formulation 

• Regularizing with relative entropy 
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OPEN PROBLEMS & FUTURE DIRECTIONS 

•Computing the O-REPS updates 

•Needs solving an unconstrained convex program 

•Might be solvable by dynamic programming (Gerhard 
Neumann, p.c.) 

•Analyzing the original REPS 

•Parameter tuning seems easier 

•Standard analysis tools no longer apply 

•Scaling it up to large/continuous state spaces 

•Approximate updates or feature-based REPS 



THANKS! 


