

ONLINE LEARNING IN MARKOV DECISION PROCESSES

Gergely Neu INRIA Lille, Sequel Joint work with Alexander Zimin, Csaba Szepesvári and András György

OUTLINE

- 1. The learning model
- 2. Regret
- 3. A simple algorithm: MDP-EXP3
- 4. A near-optimal algorithm: Relative Entropy Policy Search
- 5. Conclusions

AN EXAMPLE: EASY PART

~ Simple random dynamics

AN EXAMPLE: DIFFICULT PART

 \sim Nontrivial dynamics

MARKOV DECISION PROCESSES

MARKOV DECISION PROCESSES

MARKOV DECISION PROCESSES

ONLINE LEARNING IN MDPS

ONLINE LEARNING IN MDPS

SOME EXAMPLES

Sequential investment

- We influence positions, but not prices
- Prices effect revenue

SOME EXAMPLES

Sequential investment

- We influence positions, but not prices
- Prices effect revenue

Inventory management

Optimal control

Sequential routing

SOME EXAMPLES

Sequential investment

- We influence positions, but not prices
- Prices effect revenue

Inventory management

Optimal control

Sequential routing

Common factor

- Part of the state is controlled, with a well understood dynamics
- Part of the state is uncontrolled, complicated dynamics, unobserved state variable
- Only the reward is influenced by the uncontrolled component

X: finite set of states of controlled dynamics (state space) $A = \bigcup_{x \in X} A(x)$: finite action space $P: X \times X \times A \rightarrow [0,1]$: known model of controlled states

X: finite set of states of controlled dynamics (state space)

 $A = \bigcup_{x \in X} A(x)$: finite action space

 $P: X \times X \times A \rightarrow [0,1]$: known model of controlled states

P(x'|x,a) is the probability of moving to state x' when choosing action a in state x

X: finite set of states of controlled dynamics (state space)

 $A = \bigcup_{x \in X} A(x)$: finite action space

 $P: X \times X \times A \rightarrow [0,1]$: known model of controlled states

P(x'|x,a) is the probability of moving to state x' when choosing action a in state x

 $r_t: X \times A \rightarrow [0,1]$: reward function in episode t

X: finite set of states of controlled dynamics (state space) $A = \bigcup_{x \in X} A(x)$: finite action space $P: X \times X \times A \rightarrow [0,1]$: known model of controlled states P(x'|x,a) is the probability of moving to state x' when choosing action a in state x $r_t: X \times A \rightarrow [0,1]$: reward function in episode t $r_t(x,a)$ is the reward given for choosing action a in state x in episode t

X: finite set of states of controlled dynamics (state space) $A = \bigcup_{x \in X} A(x)$: finite action space $P: X \times X \times A \rightarrow [0,1]$: known model of controlled states P(x'|x,a) is the probability of moving to state x' when choosing action a in state x $r_t: X \times A \rightarrow [0,1]$: reward function in episode t $r_t(x,a)$ is the reward given for choosing action a in state x in episode t $\pi: A \times X \rightarrow [0,1]$: policy

X: finite set of states of controlled dynamics (state space) $A = \bigcup_{x \in X} A(x)$: finite action space $P: X \times X \times A \rightarrow [0,1]$: known model of controlled states P(x'|x,a) is the probability of moving to state x' when choosing action a in state x $r_t: X \times A \rightarrow [0,1]$: reward function in episode t $r_t(x, a)$ is the reward given for choosing action a in state x in episode t $\pi: A \times X \rightarrow [0,1]$: policy $\pi(a|x)$ is the probability of choosing action a in state x

LOOP-FREE EPISODIC MDPS

 a_2

Number of layers: L

ONLINE LEARNING IN EPISODIC MDPS

- For each episode t = 1, 2, ..., T
 - Learner chooses policy π_t
 - Adversary selects rewards $r_t \in [0,1]^{X \times A}$
 - Learner traverses path $oldsymbol{u}_t \sim (\pi_t, P)$
 - Learner gains $\langle \pmb{u}_t, \pmb{r}_t
 angle$
 - Based on u_t and r_t , the learner gets some feedback

ONLINE LEARNING IN EPISODIC MDPS

• For each episode t = 1, 2, ..., T

- Learner chooses policy π_t
- Adversary selects rewards $r_t \in [0,1]^{X \times A}$
- Learner traverses path $oldsymbol{u}_t \sim (\pi_t, P)$
- Learner gains $\langle \pmb{u}_t, \pmb{r}_t
 angle$
- Based on u_t and r_t , the learner gets some feedback

Bandit info: $r_t(x, a)$ for all $(x, a) \in \mathbf{u}_t$

Full info: r_t

REGRET

Let

$$\rho_t^{\pi} = \mathbf{E}_{\boldsymbol{u} \sim (\pi, P)} \left[\sum_{x, a} u(x, a) r_t(x, a) \right] = \mathbf{E}_{\boldsymbol{u} \sim (\pi, P)} [\langle \boldsymbol{u}, \boldsymbol{r}_t \rangle]$$

REGRET

Let

$$\rho_t^{\pi} = \mathbf{E}_{\boldsymbol{u}\sim(\pi,P)} \left[\sum_{x,a} u(x,a) r_t(x,a) \right] = \mathbf{E}_{\boldsymbol{u}\sim(\pi,P)} [\langle \boldsymbol{u}, \boldsymbol{r}_t \rangle]$$

Goal: choose policies $\pi_1, \pi_2, \ldots, \pi_T$ such that

$$\sum_{t=1}^{T} \rho_t^{\pi_t} \to \max$$

REGRET

Let

$$\rho_t^{\pi} = \mathbf{E}_{\boldsymbol{u}\sim(\pi,P)} \left[\sum_{x,a} u(x,a) r_t(x,a) \right] = \mathbf{E}_{\boldsymbol{u}\sim(\pi,P)} [\langle \boldsymbol{u}, \boldsymbol{r}_t \rangle]$$

Goal: choose policies $\pi_1, \pi_2, \ldots, \pi_T$ such that

 \boldsymbol{T}

$$\sum_{t=1}^{r} \rho_t^{\pi_t} \to \max$$

Performance is measured in terms of regret:

$$\hat{L}_T = \max_{\pi} \sum_{t=1}^T \rho_t^{\pi} - \sum_{t=1}^T \rho_t^{\pi_t} \to \min$$

A SOLUTION

Lemma (Neu, György and Szepesvári, 2010): $\hat{L}_T = \sum_{x} \mu^*(x) \sum_{t=1}^{T} \left(Q_t(x, \pi_T^*(x)) - V_t(x) \right)$

A SOLUTION

Lemma (Neu, György and Szepesvári, 2010): $\hat{L}_T = \sum_{x} \mu^*(x) \sum_{t=1}^{T} \left(Q_t(x, \pi_T^*(x)) - V_t(x) \right)$ Regret in an online learning problem with reward sequence $\{Q_t(x, \cdot)\}_{t=1}^{T}$

A SOLUTION

Lemma (Neu, György and Szepesvári, 2010): $\hat{L}_T = \sum_{x} \mu^*(x) \sum_{t=1}^{T} \left(Q_t(x, \pi_T^*(x)) - V_t(x) \right)$ Regret in an online learning problem with reward sequence $\{Q_t(x, \cdot)\}_{t=1}^{T}$

> Use an instance of a stateless bandit algorithm in all states $x \in X!$ MDP-EXP3

MDP-EXP3

In round t,

• Define action-value function

$$Q_t(x,a) = \mathbf{E}\left[\sum_{x',a'} u(x',a')r_t(x',a') \middle| \mathbf{u} \sim (\pi_t, P, (x,a))\right]$$

For all states, define partition function

$$Z_t(x) = \sum_a \pi_t(a|x) e^{\eta Q_t(x,a)}$$

MDP-EXP3

In round $t_{,}$

• Define action-value function

$$Q_t(x,a) = \mathbf{E} \left| \sum_{x',a'} u(x',a') r_t(x',a') \right| \mathbf{u} \sim (\pi_t, P, (x,a))$$

For all define partition function

 $nO_{+}(x,a)$

Update policy as

$$\pi_{t+1}(a|x) = \frac{\pi_t(a|x)e^{\eta Q_t(x,a)}}{Z_t(x)}$$

MDP-EXP3: GUARANTEES

Theorem 1 (Neu, György and Szepesvári, 2010): Under full information, MDP-EXP3 satisfies $\hat{L}_T = O\left(L^2\sqrt{T\log|A|}\right)$

Theorem 2 (Neu, György and Szepesvári, 2010): Under bandit information, MDP-EXP3 satisfies $\hat{L}_T = O\left(L^2\sqrt{T|A|\log|A|/\alpha}\right)$

MDP-EXP3: GUARANTEES

Theorem 1 (Neu, György and Szepesvári, 2010): Under full information, MDP-EXP3 satisfies $\hat{L}_T = O\left(L^2\sqrt{T\log|A|}\right)$

Theorem 2 (Neu, György and Szepesvári, 2010): Under bandit information, MDP-EXP3 satisfies $\hat{L}_T = O\left(L^2\sqrt{T|A|\log|A|/\alpha}\right)$

> Decompose-then-bound inevitably leads to loose bounds!

Average reward in episode t under π :

$$\rho_t^{\pi} = \mathbf{E}\left[\sum_{x,a} u(x,a)r_t(x,a) \, \middle| \, \boldsymbol{u} \sim (\pi,P)\right]$$

A GLOBAL SOLUTION

Average reward in episode t under π :

$$\rho_t^{\pi} = \mathbf{E} \left[\sum_{x,a} u(x,a) r_t(x,a) \, \middle| \, \boldsymbol{u} \sim (\pi, P) \right]$$
$$= \sum_{x,a} p^{\pi}(x,a) r_t(x,a) = \langle \boldsymbol{p}^{\pi}, \boldsymbol{r}_t \rangle$$

A GLOBAL SOLUTION

Average reward in episode t under π :

$$\rho_t^{\pi} = \mathbf{E} \left[\sum_{x,a} u(x,a) r_t(x,a) \, \middle| \, \mathbf{u} \sim (\pi, P) \right]$$
$$= \sum_{x,a} p^{\pi}(x,a) r_t(x,a) = \langle \mathbf{p}^{\pi}, \mathbf{r}_t \rangle$$

Rewards are linear in some representation!

THE STATE-ACTION POLYTOPE

Elements $oldsymbol{p}$ of state-action polytope Δ satisfy:

$$\sum_{a} p(x,a) = \sum_{x',a'} P(x|x',a')p(x',a') \quad (\forall x)$$
$$\sum_{x \in X_k} \sum_{a} p(x,a) = 1 \qquad (\forall k)$$
$$p(x,a) \ge 0 \quad (\forall x,a)$$

THE STATE-ACTION POLYTOPE

Elements $oldsymbol{p}$ of state-action polytope Δ satisfy:

$$\sum_{a} p(x,a) = \sum_{x',a'} P(x|x',a')p(x',a') \quad (\forall x)$$
$$\sum_{x \in X_k} \sum_{a} p(x,a) = 1 \qquad (\forall k)$$
$$p(x,a) \ge 0 \quad (\forall x,a) \qquad \text{Extracting policy:}$$
$$\pi(a|x) = \frac{p(x,a)}{\sum_b p(x,b)}$$

ONLINE LEARNING IN EPISODIC MDPS

• For each episode t = 1, 2, ..., T

- Learner chooses policy π_t
- Adversary selects rewards $r_t \in [0,1]^{X \times A}$
- Learner traverses path $oldsymbol{u}_t \sim (\pi_t, P)$
- Learner gains $\langle \pmb{u}_t, \pmb{r}_t
 angle$
- Based on u_t and r_t , the learner gets some feedback

Bandit info: $r_t(x, a)$ for all $(x, a) \in \mathbf{u}_t$

Full info: r_t

ONLINE LEARNING IN EPISODIC MDPS

• For each episode t = 1, 2, ..., T

- Learner chooses distribution $oldsymbol{p}_t\in\Delta$
- Adversary selects rewards $r_t \in [0,1]^{X \times A}$
- Learner traverses path $oldsymbol{u}_t \sim oldsymbol{p}_t$
- Learner gains $\langle \pmb{u}_t, \pmb{r}_t
 angle$
- Based on u_t and r_t , the learner gets some feedback

Bandit info: $r_t(x, a)$ for all $(x, a) \in \mathbf{u}_t$

Full info: r_t

AN ALGORITHM: MIRROR DESCENT

Let
$$p_1 \in \Delta$$
 and
 $p_{t+1} = \arg \min_{p \in \Delta} \left(-\eta \langle p, r_t \rangle + D(p|p_t) \right)$

AN ALGORITHM: MIRROR DESCENT

Let
$$p_1 \in \Delta$$
 and
 $p_{t+1} = \arg \min_{p \in \Delta} \left(-\eta \langle p, r_t \rangle + D(p|p_t) \right)$
 $D(p|q) = \sum_{x,a} p(x,a) \log \frac{p(x,a)}{q(x,a)} - \sum_{x,a} \left(p(x,a) - q(x,a) \right)$

GUARANTEES

Theorem 1 (Zimin and Neu, 2013, Dick et al. 2014): Under full information, Mirror Descent satisfies $\hat{L}_T = O\left(L\sqrt{T\log|A|}\right)$

Theorem 2 (Zimin and Neu, 2013, Dick et al. 2014): Under bandit information, Mirror Descent satisfies $\hat{L}_T = O\left(\sqrt{L|X||A|T\log|A|}\right)$

Proofs are similar to Koolen, Warmuth and Kivinen (2010), Audibert, Bubeck and Lugosi (2011,2014)

GUARANTEES

Theorem 1 (Zimin and Neu, 2013, Dick et al. 2014): Under full information, Mirror Descent satisfies $\hat{L}_T = O\left(L\sqrt{T\log|A|}\right)$

Theorem 2 (Zimin and Neu, 2013, Dick et al. 2014): Under bandit information, Mirror Descent satisfies $\widehat{L}_T = O\left(\sqrt{L|X||A|T\log|A|}\right)$

Proofs are similar to Koolen, Warmuth and Kivinen (2010), Audibert, Bubeck and Lugosi (2011,2014)

"WHERE HAVE I SEEN THIS BEFORE?"

Mirror descent:

$$p_{t+1} = \arg\min_{p \in \Delta} \left(-\eta \langle p, r_t \rangle + D(p|p_t) \right)$$

Relative Entropy Policy Search (Peters, Mülling, Altun, 2010):

$$p_{t+1} = \arg\min_{p \in \Delta} (-\langle p, r_t \rangle)$$

s.t. $D(p|p_t) \le \varepsilon$

MIRROR DESCENT = ONLINE REPS

In round t,

• For a value function $v: X \to \mathbf{R}$, define Bellman error

$$\delta_t(x, a | v) = \eta r_t(x, a) + \sum_{v, v} P(x' | x, a) v(x') - v(x)$$

х

• For all layers k = 0, 1, ..., L - 1, define partition function

$$Z_t(v,k) = \sum_{x \in X_k, a} p_t(x,a) e^{\delta_t(x,a|v)}$$

Solve

$$V_t = \arg\min_{v} \sum_{k=0}^{L-1} \log Z_t(v,k)$$

MIRROR DESCENT = ONLINE REPS

In round $t_{,}$

• For a value function $v: X \to \mathbf{R}$, define Bellman error

$$\delta_t(x,a|v) = \eta r_t(x,a) + \sum_i P(x'|x,a)v(x') - v(x)$$

 $\boldsymbol{\chi}$

• For all lay

I - 1, define partition function

$$p_{t+1}(x,a) = \frac{p_t(x,a)e^{\delta_t(x,a|V_t)}}{Z_t(V_t,k)}$$

• Solve

 $V_t = \arg\min_{v} \sum_{k=1}^{\infty} V_t$

•Rewrite update in two steps: $\widetilde{p}_{t+1} = \arg \min_{\substack{p \in R^{|X| \times |A|} \\ p_{t+1} = \arg \min_{p \in \Delta} D(p|\widetilde{p}_{t+1})} (-\eta \langle p, r_t \rangle + D(p|p_t))$

•Rewrite update in two steps: $\widetilde{p}_{t+1} = \arg \min_{\substack{p \in \mathbb{R}^{|X| \times |A|} \\ p_{t+1} = \arg \min_{p \in \Delta} D(p|\widetilde{p}_{t+1})} (-\eta \langle p, r_t \rangle + D(p|p_t))$

•The first step is easy: $p_{t+1}(x, a) = p_t(x, a)e^{\eta r_t(x, a)}$

•Rewrite update in two steps: $\widetilde{p}_{t+1} = \arg \min_{\substack{p \in \mathbb{R}^{|X| \times |A|} \\ p_{t+1} = \arg \min_{p \in \Delta} D(p|\widetilde{p}_{t+1})} (-\eta \langle p, r_t \rangle + D(p|p_t))$

•The first step is easy: $p_{t+1}(x, a) = p_t(x, a)e^{\eta r_t(x, a)}$

 The projection step is a constrained optimization problem with equality constraints → Lagrange multipliers:

- v(x) for flow constraints
- $Z_t(v, k)$ for normalization constraints

•Rewrite update in two steps: $\widetilde{p}_{t+1} = \arg \min_{\substack{p \in \mathbb{R}^{|X| \times |A|} \\ p_{t+1} = \arg \min_{p \in \Delta} D(p|\widetilde{p}_{t+1})} (-\eta \langle p, r_t \rangle + D(p|p_t))$

•The first step is easy: $p_{t+1}(x, a) = p_t(x, a)e^{\eta r_t(x, a)}$

 The projection step is a constrained optimization problem with equality constraints → Lagrange multipliers:

• v(x) for flow constraints • $Z_t(v,k)$ for normalization constraints from solving the dual

MDP-EXP3 VS O-REPS

	MDP-EXP3	O-REPS
Value function	Solve Bellman-eq. (Global)	Solve dual (Global)
Update rule	$\pi_t(a x)e^{\eta Q_t(x,a)}$ (Local)	$p_t(x,a)e^{\delta_t(x,a V_t)}$ (Global)
Normalization	Per state (Local)	Per layer (Global)
Guarantees	$\hat{L}_T(x) = \tilde{O}(L\sqrt{T})$ (Per state, local)	$\widehat{L}_T = \widetilde{O}(L\sqrt{T})$ (Global)

WHAT'S THE LESSON?

Suboptimal ideas:

- Decomposition
- Sticking to traditional Bellmanequations

WHAT'S THE LESSON?

Suboptimal ideas:

- Decomposition
- Sticking to traditional Bellmanequations

Good ideas:

- Using the LP formulation
- Regularizing with relative entropy

OPEN PROBLEMS & FUTURE DIRECTIONS

- •Computing the O-REPS updates
 - •Needs solving an unconstrained convex program
 - Might be solvable by dynamic programming (Gerhard Neumann, p.c.)

OPEN PROBLEMS & FUTURE DIRECTIONS

•Computing the O-REPS updates

- Needs solving an unconstrained convex program
- Might be solvable by dynamic programming (Gerhard Neumann, p.c.)

Analyzing the original REPS

- Parameter tuning seems easier
- Standard analysis tools no longer apply

OPEN PROBLEMS & FUTURE DIRECTIONS

•Computing the O-REPS updates

- Needs solving an unconstrained convex program
- Might be solvable by dynamic programming (Gerhard Neumann, p.c.)

Analyzing the original REPS

- Parameter tuning seems easier
- Standard analysis tools no longer apply
- •Scaling it up to large/continuous state spaces
 - Approximate updates or feature-based REPS

THANKS!

