
ONLINE LEARNING IN MARKOV
DECISION PROCESSES

Gergely Neu

INRIA Lille, Sequel

Joint work with Alexander

Zimin, Csaba Szepesvári

and András György

OUTLINE

1. The learning model

2. Regret

3. A simple algorithm: MDP-EXP3

4. A near-optimal algorithm: Relative
Entropy Policy Search

5. Conclusions

AN EXAMPLE

AN EXAMPLE

AN EXAMPLE

AN EXAMPLE

AN EXAMPLE: EASY PART

∼ Simple random dynamics

AN EXAMPLE: DIFFICULT
PART

∼ Nontrivial dynamics

MARKOV DECISION PROCESSES

MARKOV DECISION PROCESSES

Goal: maximize 𝑟(𝑥𝑡 , 𝑎𝑡)
𝑇
𝑡=1

MARKOV DECISION PROCESSES

Goal: maximize 𝑟(𝑥𝑡 , 𝑎𝑡)
𝑇
𝑡=1

ONLINE LEARNING

ONLINE LEARNING

Goal: minimize regret

max
𝑎

 𝑟(𝑦𝑡, 𝑎)

𝑇

𝑡=1

− 𝑟 𝑦𝑡, 𝐚𝑡

𝑇

𝑡=1

ONLINE LEARNING

Goal: minimize regret

max
𝑎

 𝑟(𝑦𝑡, 𝑎)

𝑇

𝑡=1

− 𝑟 𝑦𝑡, 𝐚𝑡

𝑇

𝑡=1

ONLINE LEARNING IN MDPS

ONLINE LEARNING IN MDPS

Stationary part:

𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥𝑡. 𝑎𝑡

ONLINE LEARNING IN MDPS

Stationary part:

𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥𝑡. 𝑎𝑡

Non-stationary part:

no assumptions about

𝑦𝑡 𝑡=1
𝑇

SOME EXAMPLES

 Sequential investment
 We influence positions, but not
prices

 Prices effect revenue

SOME EXAMPLES

 Sequential investment
 We influence positions, but not
prices

 Prices effect revenue

 Inventory management

 Optimal control

 Sequential routing

SOME EXAMPLES

 Sequential investment
 We influence positions, but not
prices

 Prices effect revenue

 Inventory management

 Optimal control

 Sequential routing

 Common factor
 Part of the state is controlled,
with a well understood
dynamics

 Part of the state is uncontrolled,
complicated dynamics,
unobserved state variable

 Only the reward is influenced
by the uncontrolled component

NOTATION

 𝑋: finite set of states of controlled dynamics (state space)

 𝐴 =∪𝑥∈𝑋 𝐴(𝑥): finite action space

 𝑃: 𝑋 × 𝑋 × 𝐴 → 0,1 : known model of controlled states

NOTATION

 𝑋: finite set of states of controlled dynamics (state space)

 𝐴 =∪𝑥∈𝑋 𝐴(𝑥): finite action space

 𝑃: 𝑋 × 𝑋 × 𝐴 → 0,1 : known model of controlled states

 𝑃 𝑥′ 𝑥, 𝑎 is the probability of moving to state

𝑥′ when choosing action 𝑎 in state 𝑥

NOTATION

 𝑋: finite set of states of controlled dynamics (state space)

 𝐴 =∪𝑥∈𝑋 𝐴(𝑥): finite action space

 𝑃: 𝑋 × 𝑋 × 𝐴 → 0,1 : known model of controlled states

 𝑟𝑡: 𝑋 × 𝐴 → 0,1 : reward function in episode 𝑡

𝑃 𝑥′ 𝑥, 𝑎 is the probability of moving to state

𝑥′ when choosing action 𝑎 in state 𝑥

NOTATION

 𝑋: finite set of states of controlled dynamics (state space)

 𝐴 =∪𝑥∈𝑋 𝐴(𝑥): finite action space

 𝑃: 𝑋 × 𝑋 × 𝐴 → 0,1 : known model of controlled states

 𝑟𝑡: 𝑋 × 𝐴 → 0,1 : reward function in episode 𝑡

 𝑟𝑡 𝑥, 𝑎 is the reward given for choosing action

𝑎 in state 𝑥 in episode 𝑡

𝑃 𝑥′ 𝑥, 𝑎 is the probability of moving to state

𝑥′ when choosing action 𝑎 in state 𝑥

NOTATION

 𝑋: finite set of states of controlled dynamics (state space)

 𝐴 =∪𝑥∈𝑋 𝐴(𝑥): finite action space

 𝑃: 𝑋 × 𝑋 × 𝐴 → 0,1 : known model of controlled states

 𝑟𝑡: 𝑋 × 𝐴 → 0,1 : reward function in episode 𝑡

 𝜋: 𝐴 × 𝑋 → 0,1 : policy

𝑟𝑡 𝑥, 𝑎 is the reward given for choosing action

𝑎 in state 𝑥 in episode 𝑡

𝑃 𝑥′ 𝑥, 𝑎 is the probability of moving to state

𝑥′ when choosing action 𝑎 in state 𝑥

NOTATION

 𝑋: finite set of states of controlled dynamics (state space)

 𝐴 =∪𝑥∈𝑋 𝐴(𝑥): finite action space

 𝑃: 𝑋 × 𝑋 × 𝐴 → 0,1 : known model of controlled states

 𝑟𝑡: 𝑋 × 𝐴 → 0,1 : reward function in episode 𝑡

 𝜋: 𝐴 × 𝑋 → 0,1 : policy

𝑟𝑡 𝑥, 𝑎 is the reward given for choosing action

𝑎 in state 𝑥 in episode 𝑡

𝑃 𝑥′ 𝑥, 𝑎 is the probability of moving to state

𝑥′ when choosing action 𝑎 in state 𝑥

𝜋(𝑎|𝑥) is the probability of choosing action 𝑎

in state 𝑥

LOOP-FREE EPISODIC MDPS

 Number of layers: 𝐿

ONLINE LEARNING IN EPISODIC MDPS

• For each episode 𝑡 = 1,2,… , 𝑇
• Learner chooses policy 𝜋𝑡

• Adversary selects rewards 𝒓𝑡 ∈ [0,1]𝑋×𝐴

• Learner traverses path 𝒖𝑡 ∼ (𝜋𝑡 , 𝑃)
• Learner gains 〈𝒖𝑡 , 𝒓𝑡〉
• Based on 𝒖𝑡 and 𝒓𝑡, the learner gets

some feedback

ONLINE LEARNING IN EPISODIC MDPS

• For each episode 𝑡 = 1,2,… , 𝑇
• Learner chooses policy 𝜋𝑡

• Adversary selects rewards 𝒓𝑡 ∈ [0,1]𝑋×𝐴

• Learner traverses path 𝒖𝑡 ∼ (𝜋𝑡 , 𝑃)
• Learner gains 〈𝒖𝑡 , 𝒓𝑡〉
• Based on 𝒖𝑡 and 𝒓𝑡, the learner gets

some feedback

 Full info: 𝒓𝑡

Bandit info: 𝑟𝑡(𝑥, 𝑎)
for all 𝑥, 𝑎 ∈ 𝒖𝑡

REGRET

 Let

𝜌𝑡
𝜋 = 𝐄𝒖∼ 𝜋,𝑃 𝑢 𝑥, 𝑎 𝑟𝑡 𝑥, 𝑎

𝑥,𝑎

= 𝐄𝒖∼ 𝜋,𝑃 𝒖, 𝒓𝑡

REGRET

 Let

𝜌𝑡
𝜋 = 𝐄𝒖∼ 𝜋,𝑃 𝑢 𝑥, 𝑎 𝑟𝑡 𝑥, 𝑎

𝑥,𝑎

= 𝐄𝒖∼ 𝜋,𝑃 𝒖, 𝒓𝑡

 Goal: choose policies 𝜋1, 𝜋2, … , 𝜋𝑇 such that

 𝜌𝑡
𝜋𝑡

𝑇

𝑡=1

→ max

REGRET

 Let

𝜌𝑡
𝜋 = 𝐄𝒖∼ 𝜋,𝑃 𝑢 𝑥, 𝑎 𝑟𝑡 𝑥, 𝑎

𝑥,𝑎

= 𝐄𝒖∼ 𝜋,𝑃 𝒖, 𝒓𝑡

 Goal: choose policies 𝜋1, 𝜋2, … , 𝜋𝑇 such that

 𝜌𝑡
𝜋𝑡

𝑇

𝑡=1

→ max

 Performance is measured in terms of regret:

𝐿 𝑇 = max

𝜋
 𝜌𝑡

𝜋

𝑇

𝑡=1

− 𝜌𝑡
𝜋𝑡

𝑇

𝑡=1

→ min

A SOLUTION

Lemma (Neu, György and Szepesvári, 2010):

𝐿 𝑇 = 𝜇∗ 𝑥 𝑄𝑡 𝑥, 𝜋𝑇
∗ 𝑥 − 𝑉𝑡 𝑥

𝑇

𝑡=1𝑥

A SOLUTION

Lemma (Neu, György and Szepesvári, 2010):

𝐿 𝑇 = 𝜇∗ 𝑥 𝑄𝑡 𝑥, 𝜋𝑇
∗ 𝑥 − 𝑉𝑡 𝑥

𝑇

𝑡=1𝑥

Regret in an online learning problem with

reward sequence 𝑄𝑡 𝑥,⋅ 𝑡=1
𝑇

A SOLUTION

Lemma (Neu, György and Szepesvári, 2010):

𝐿 𝑇 = 𝜇∗ 𝑥 𝑄𝑡 𝑥, 𝜋𝑇
∗ 𝑥 − 𝑉𝑡 𝑥

𝑇

𝑡=1𝑥

Use an instance of a stateless bandit algorithm in

all states 𝑥 ∈ 𝑋!

MDP-EXP3

Regret in an online learning problem with

reward sequence 𝑄𝑡 𝑥,⋅ 𝑡=1
𝑇

MDP-EXP3

In round 𝑡,
• Define action-value function

𝑄𝑡 𝑥, 𝑎 = 𝐄 𝑢 𝑥′, 𝑎′ 𝑟𝑡 𝑥′, 𝑎′

𝑥′,𝒂′

𝒖 ∼ 𝜋𝑡 , 𝑃, 𝑥, 𝑎

• For all states, define partition function

𝑍𝑡 𝑥 = 𝜋𝑡 𝑎|𝑥 𝑒𝜂𝑄𝑡 𝑥,𝑎

𝑎

MDP-EXP3

In round 𝑡,
• Define action-value function

𝑄𝑡 𝑥, 𝑎 = 𝐄 𝑢 𝑥′, 𝑎′ 𝑟𝑡 𝑥′, 𝑎′

𝑥′,𝒂′

𝒖 ∼ 𝜋𝑡, 𝑃, 𝑥, 𝑎

• For all states, define partition function

𝑍𝑡 𝑥 = 𝜋𝑡 𝑎|𝑥 𝑒𝜂𝑄𝑡 𝑥,𝑎

𝑎

Update policy as

𝜋𝑡+1 𝑎|𝑥 =
𝜋𝑡 𝑎|𝑥 𝑒𝜂𝑄𝑡 𝑥,𝑎

𝑍𝑡(𝑥)

MDP-EXP3: GUARANTEES

Theorem 1 (Neu, György and Szepesvári, 2010):

Under full information, MDP-EXP3 satisfies

𝐿 𝑇 = 𝑂 𝐿2 𝑇 log 𝐴

Theorem 2 (Neu, György and Szepesvári, 2010):

Under bandit information, MDP-EXP3 satisfies

𝐿 𝑇 = 𝑂 𝐿2 𝑇 𝐴 log 𝐴 /𝛼

MDP-EXP3: GUARANTEES

Theorem 1 (Neu, György and Szepesvári, 2010):

Under full information, MDP-EXP3 satisfies

𝐿 𝑇 = 𝑂 𝐿2 𝑇 log 𝐴

Theorem 2 (Neu, György and Szepesvári, 2010):

Under bandit information, MDP-EXP3 satisfies

𝐿 𝑇 = 𝑂 𝐿2 𝑇 𝐴 log 𝐴 /𝛼
:’(

:’(

Decompose-then-bound

inevitably leads to loose bounds!

A GLOBAL SOLUTION

 Average reward in episode 𝑡 under 𝜋:

𝜌𝑡
𝜋 = 𝐄 𝑢 𝑥, 𝑎 𝑟𝑡 𝑥, 𝑎

𝑥,𝑎

𝒖 ∼ 𝜋, 𝑃

A GLOBAL SOLUTION

 Average reward in episode 𝑡 under 𝜋:

𝜌𝑡
𝜋 = 𝐄 𝑢 𝑥, 𝑎 𝑟𝑡 𝑥, 𝑎

𝑥,𝑎

𝒖 ∼ 𝜋, 𝑃

 = 𝑝𝜋(𝑥, 𝑎)𝑟𝑡 𝑥, 𝑎

𝑥,𝑎

= 𝒑𝜋, 𝒓𝑡

A GLOBAL SOLUTION

 Average reward in episode 𝑡 under 𝜋:

𝜌𝑡
𝜋 = 𝐄 𝑢 𝑥, 𝑎 𝑟𝑡 𝑥, 𝑎

𝑥,𝑎

𝒖 ∼ 𝜋, 𝑃

 = 𝑝𝜋(𝑥, 𝑎)𝑟𝑡 𝑥, 𝑎

𝑥,𝑎

= 𝒑𝜋, 𝒓𝑡

Rewards are linear in

some representation!

THE STATE-ACTION POLYTOPE

 Elements 𝒑 of state-action polytope Δ satisfy:

 𝑝(𝑥, 𝑎)

𝑎

= 𝑃 𝑥 𝑥′, 𝑎′ 𝑝 𝑥′, 𝑎′

𝑥′,𝑎′

 (∀𝑥)

 𝑝(𝑥, 𝑎)

𝑎𝑥∈𝑋𝑘

= 1 (∀𝑘)

𝑝 𝑥, 𝑎 ≥ 0 (∀𝑥, 𝑎)

THE STATE-ACTION POLYTOPE

 Elements 𝒑 of state-action polytope Δ satisfy:

 𝑝(𝑥, 𝑎)

𝑎

= 𝑃 𝑥 𝑥′, 𝑎′ 𝑝 𝑥′, 𝑎′

𝑥′,𝑎′

 (∀𝑥)

 𝑝(𝑥, 𝑎)

𝑎𝑥∈𝑋𝑘

= 1 (∀𝑘)

𝑝 𝑥, 𝑎 ≥ 0 (∀𝑥, 𝑎) Extracting policy:

𝜋 𝑎 𝑥 =
𝑝 𝑥, 𝑎

 𝑝 𝑥, 𝑏𝑏

ONLINE LEARNING IN EPISODIC MDPS

• For each episode 𝑡 = 1,2,… , 𝑇
• Learner chooses policy 𝜋𝑡

• Adversary selects rewards 𝒓𝑡 ∈ [0,1]𝑋×𝐴

• Learner traverses path 𝒖𝑡 ∼ (𝜋𝑡 , 𝑃)
• Learner gains 〈𝒖𝑡 , 𝒓𝑡〉
• Based on 𝒖𝑡 and 𝒓𝑡, the learner gets

some feedback

 Full info: 𝒓𝑡

Bandit info: 𝑟𝑡(𝑥, 𝑎)
for all 𝑥, 𝑎 ∈ 𝒖𝑡

ONLINE LEARNING IN EPISODIC MDPS

• For each episode 𝑡 = 1,2,… , 𝑇
• Learner chooses distribution 𝒑𝑡 ∈ Δ

• Adversary selects rewards 𝒓𝑡 ∈ [0,1]𝑋×𝐴

• Learner traverses path 𝒖𝑡 ∼ 𝒑𝑡

• Learner gains 〈𝒖𝑡 , 𝒓𝑡〉
• Based on 𝒖𝑡 and 𝒓𝑡, the learner gets

some feedback

 Full info: 𝒓𝑡

Bandit info: 𝑟𝑡(𝑥, 𝑎)
for all 𝑥, 𝑎 ∈ 𝒖𝑡

AN ALGORITHM: MIRROR DESCENT

 Let 𝒑1 ∈ Δ and

𝑝𝑡+1 = argmin
𝑝∈Δ

− 𝒑,𝑹𝑡 + 𝐷 𝒑 𝒑𝑡 ,

𝒑𝑡+1 = argmin
𝒑∈Δ

−𝜂 𝒑, 𝒓𝑡 + 𝐷 𝒑 𝒑𝑡

AN ALGORITHM: MIRROR DESCENT

 Let 𝒑1 ∈ Δ and

𝑝𝑡+1 = argmin
𝑝∈Δ

− 𝒑,𝑹𝑡 + 𝐷 𝒑 𝒑𝑡 ,

𝒑𝑡+1 = argmin
𝒑∈Δ

−𝜂 𝒑, 𝒓𝑡 + 𝐷 𝒑 𝒑𝑡

𝐷 𝒑 𝒒 = 𝑝 𝑥, 𝑎 log
𝑝 𝑥, 𝑎

𝑞 𝑥, 𝑎
𝑥,𝑎

− 𝑝 𝑥, 𝑎 − 𝑞 𝑥, 𝑎

𝑥,𝑎

GUARANTEES

Theorem 1 (Zimin and Neu, 2013, Dick et al. 2014):

Under full information, Mirror Descent satisfies

𝐿 𝑇 = 𝑂 𝐿 𝑇 log 𝐴

Theorem 2 (Zimin and Neu, 2013, Dick et al. 2014):

Under bandit information, Mirror Descent satisfies

𝐿 𝑇 = 𝑂 𝐿 𝑋 𝐴 𝑇 log 𝐴

Proofs are similar to Koolen, Warmuth and Kivinen (2010),

Audibert, Bubeck and Lugosi (2011,2014)

GUARANTEES

Theorem 1 (Zimin and Neu, 2013, Dick et al. 2014):

Under full information, Mirror Descent satisfies

𝐿 𝑇 = 𝑂 𝐿 𝑇 log 𝐴

Theorem 2 (Zimin and Neu, 2013, Dick et al. 2014):

Under bandit information, Mirror Descent satisfies

𝐿 𝑇 = 𝑂 𝐿 𝑋 𝐴 𝑇 log 𝐴

Proofs are similar to Koolen, Warmuth and Kivinen (2010),

Audibert, Bubeck and Lugosi (2011,2014)

vs 𝑂 𝐿2 𝑇 log 𝐴

vs 𝑂 𝐿2 𝑇 𝐴 log 𝐴 /𝛼

“WHERE HAVE I SEEN THIS BEFORE?”

 Mirror descent:

 Relative Entropy Policy Search (Peters, Mülling,
Altun, 2010):

𝒑𝑡+1 = argmin
𝒑∈Δ

−𝜂 𝒑, 𝒓𝑡 + 𝐷 𝒑 𝒑𝑡

𝒑𝑡+1 = argmin
𝒑∈Δ

− 𝒑, 𝒓𝑡

 s.t. 𝐷 𝒑 𝒑𝑡 ≤ 𝜀

MIRROR DESCENT = ONLINE REPS

In round 𝑡,
• For a value function 𝑣: 𝑋 → 𝐑, define Bellman error

𝛿𝑡 𝑥, 𝑎 𝑣 = 𝜂𝑟𝑡 𝑥, 𝑎 + 𝑃 𝑥′ 𝑥, 𝑎 𝑣(𝑥′)

𝑥′

− 𝑣(𝑥)

• For all layers 𝑘 = 0,1,… , 𝐿 − 1, define partition function

𝑍𝑡 𝑣, 𝑘 = 𝑝𝑡 𝑥, 𝑎 𝑒𝛿𝑡 𝑥,𝑎 𝑣

𝑥∈𝑋𝑘,𝑎

• Solve

𝑉𝑡 = argmin
𝑣

 log𝑍𝑡(𝑣, 𝑘)

𝐿−1

𝑘=0

MIRROR DESCENT = ONLINE REPS

In round 𝑡,
• For a value function 𝑣: 𝑋 → 𝐑, define Bellman error

𝛿𝑡 𝑥, 𝑎 𝑣 = 𝜂𝑟𝑡 𝑥, 𝑎 + 𝑃 𝑥′ 𝑥, 𝑎 𝑣(𝑥′)

𝑥′

− 𝑣(𝑥)

• For all layers 𝑘 = 0,1,… , 𝐿 − 1, define partition function

𝑍𝑡 𝑣, 𝑘 = 𝑝𝑡 𝑥, 𝑎 𝑒𝛿𝑡 𝑥,𝑎 𝑣

𝑥∈𝑋𝑘,𝑎

• Solve

𝑉𝑡 = argmin
𝑣

 log𝑍𝑡(𝑣, 𝑘)

𝐿−1

𝑘=0

𝑝𝑡+1 𝑥, 𝑎 =
𝑝𝑡 𝑥, 𝑎 𝑒𝛿𝑡 𝑥,𝑎|𝑉𝑡

𝑍𝑡(𝑉𝑡 , 𝑘)

DERIVATION OF THE UPDATE RULE

•Rewrite update in two steps:

𝒑 𝑡+1 = arg min
𝒑∈𝑅 𝑋 × 𝐴

−𝜂 𝒑, 𝒓𝑡 + 𝐷 𝒑 𝒑𝑡

𝒑𝑡+1 = argmin
𝒑∈Δ

𝐷(𝒑|𝒑 𝑡+1)

DERIVATION OF THE UPDATE RULE

•Rewrite update in two steps:

𝒑 𝑡+1 = arg min
𝒑∈𝑅 𝑋 × 𝐴

−𝜂 𝒑, 𝒓𝑡 + 𝐷 𝒑 𝒑𝑡

𝒑𝑡+1 = argmin
𝒑∈Δ

𝐷(𝒑|𝒑 𝑡+1)

•The first step is easy: 𝑝𝑡+1 𝑥, 𝑎 = 𝑝𝑡 𝑥, 𝑎 𝑒𝜂𝑟𝑡 𝑥,𝑎

DERIVATION OF THE UPDATE RULE

•Rewrite update in two steps:

𝒑 𝑡+1 = arg min
𝒑∈𝑅 𝑋 × 𝐴

−𝜂 𝒑, 𝒓𝑡 + 𝐷 𝒑 𝒑𝑡

𝒑𝑡+1 = argmin
𝒑∈Δ

𝐷(𝒑|𝒑 𝑡+1)

•The first step is easy: 𝑝𝑡+1 𝑥, 𝑎 = 𝑝𝑡 𝑥, 𝑎 𝑒𝜂𝑟𝑡 𝑥,𝑎

•The projection step is a constrained optimization problem
with equality constraints → Lagrange multipliers:

• 𝑣(𝑥) for flow constraints

• 𝑍𝑡(𝑣, 𝑘) for normalization constraints

DERIVATION OF THE UPDATE RULE

•Rewrite update in two steps:

𝒑 𝑡+1 = arg min
𝒑∈𝑅 𝑋 × 𝐴

−𝜂 𝒑, 𝒓𝑡 + 𝐷 𝒑 𝒑𝑡

𝒑𝑡+1 = argmin
𝒑∈Δ

𝐷(𝒑|𝒑 𝑡+1)

•The first step is easy: 𝑝𝑡+1 𝑥, 𝑎 = 𝑝𝑡 𝑥, 𝑎 𝑒𝜂𝑟𝑡 𝑥,𝑎

•The projection step is a constrained optimization problem
with equality constraints → Lagrange multipliers:

• 𝑣(𝑥) for flow constraints

• 𝑍𝑡(𝑣, 𝑘) for normalization constraints

“Value function” comes

from solving the dual

MDP-EXP3 VS O-REPS

MDP-EXP3 O-REPS

Value function
Solve Bellman-eq.

(Global)

Solve dual

(Global)

Update rule
𝜋𝑡 𝑎 𝑥 𝑒𝜂𝑄𝑡(𝑥,𝑎)

(Local)

𝑝𝑡 𝑥, 𝑎 𝑒𝛿𝑡 𝑥,𝑎 𝑉𝑡

(Global)

Normalization
Per state

(Local)

Per layer

(Global)

Guarantees
𝐿 𝑇 𝑥 = 𝑂 𝐿 𝑇

(Per state, local)

𝐿 𝑇 = 𝑂 𝐿 𝑇

(Global)

WHAT’S THE LESSON?

 Suboptimal ideas:
• Decomposition

• Sticking to traditional Bellman-

equations

WHAT’S THE LESSON?

 Suboptimal ideas:
• Decomposition

• Sticking to traditional Bellman-

equations

Good ideas:
• Using the LP formulation

• Regularizing with relative entropy

OPEN PROBLEMS & FUTURE DIRECTIONS

•Computing the O-REPS updates

•Needs solving an unconstrained convex program

•Might be solvable by dynamic programming (Gerhard
Neumann, p.c.)

OPEN PROBLEMS & FUTURE DIRECTIONS

•Computing the O-REPS updates

•Needs solving an unconstrained convex program

•Might be solvable by dynamic programming (Gerhard
Neumann, p.c.)

•Analyzing the original REPS

•Parameter tuning seems easier

•Standard analysis tools no longer apply

OPEN PROBLEMS & FUTURE DIRECTIONS

•Computing the O-REPS updates

•Needs solving an unconstrained convex program

•Might be solvable by dynamic programming (Gerhard
Neumann, p.c.)

•Analyzing the original REPS

•Parameter tuning seems easier

•Standard analysis tools no longer apply

•Scaling it up to large/continuous state spaces

•Approximate updates or feature-based REPS

THANKS!

