Online Learning in Episodic Markovian Decision Processes by Relative Entropy Policy Search

Institute of Science and Technology

Episodic loop-free MDP

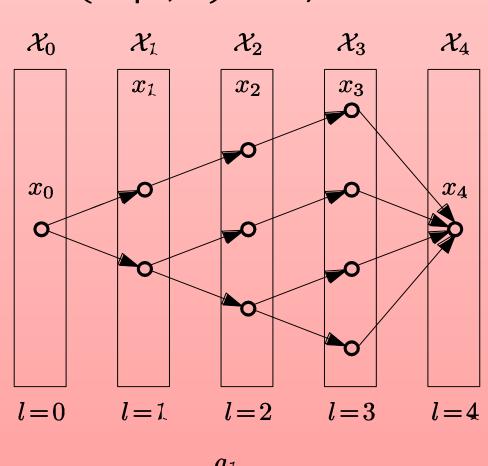
MDP is a tuple $\{X, A, P\}$:

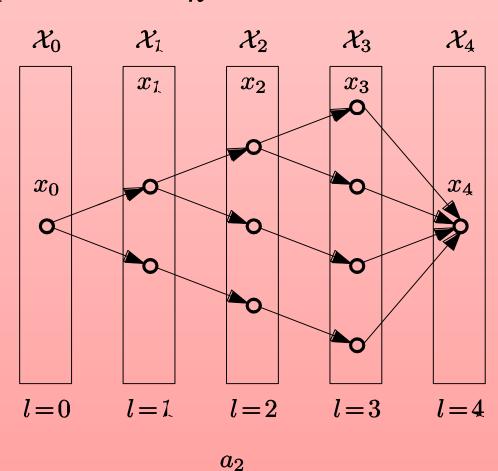
- X: finite known state space
- *A*: finite known action space

•
$$P: X \times X \times A \rightarrow [0,1]$$
: transition function

Main assumption:

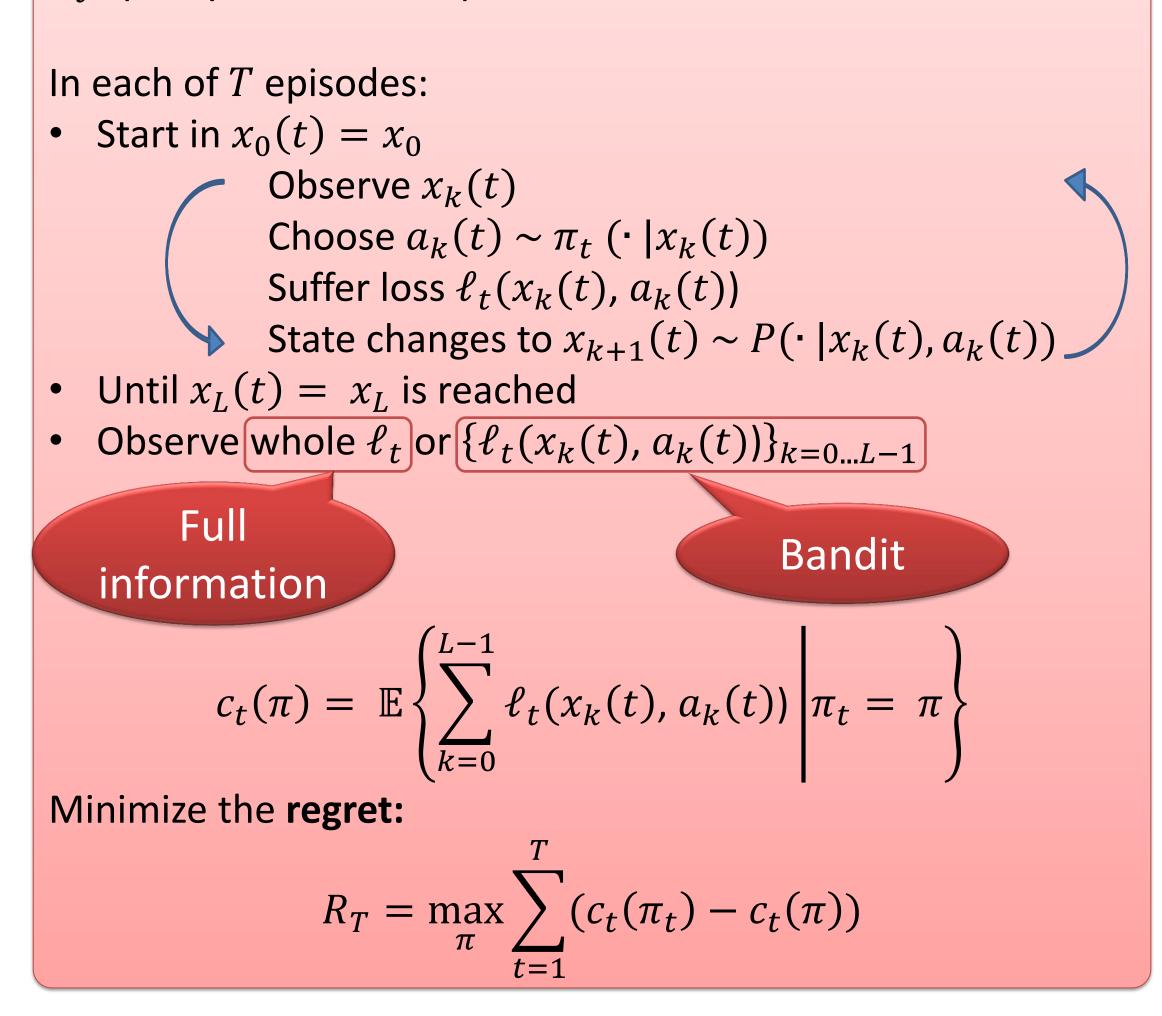
- Interaction goes in episodes, starts in x_0 , ends in x_L
- State space consists of layers, i.e. $X = \bigcup_{k=0}^{L} X_k$, where $X_k \cap X_j = \emptyset$ for $k \neq j$
- X_0 and X_L are singletons, i.e. $X_0 = \{x_0\}$ and $X_L = \{x_L\}$
- Transitions are possible only between layers, i.e. if P(x'|x,a) > 0, then $x' \in X_{k+1}$ and $x \in X_k$ for some k





Online learning in MDP

 $\{\ell_t\}_{t=1...T}$ – unknown sequence of losses π_t - policy to follow in episode t



Alexander Zimin

alexander.zimin@ist.ac.at

IST Austria

Previous results

Neu et al. (2010):

• Full information: $R_T = O(L^2 \sqrt{T \log(|A|)})$ • Bandit: $R_T = O(\frac{L^2 \sqrt{T|A| \log(|A|)}}{\alpha}), \alpha > 0$

Reduction to linear optimization

Occupancy measure q^{π} of a policy π is a family of distributions:

$$q^{\pi}(x,a) = \mathbb{P}(x'_{k(x)} = x, a'_{k(x)} = a | \pi)$$

layer of x

 Δ - set of all such measures

Any
$$q$$
 can be computed:

$$\sum_{a} q^{\pi}(x, a) = \sum_{x' \in X_{k(x)-1}} \sum_{a'} P(x|x', a') q^{\pi}(x', a')$$
starting from $q^{\pi}(x_0, a) = \pi(a|x_0)$

Given q^{π} we can extract π : $\pi(a|x) = \frac{q(x,a)}{\sum_{b} q(x,b)}$

Why are they helpful?

$$c_t(\pi) = \sum_{x,a} q^{\pi}(x,a) \ell_t(x,a) \stackrel{\text{\tiny def}}{=} \langle q^{\pi}, \ell_t \rangle$$

Instance of online linear optimization:

$$R_T = \max_{q \in \Delta} \mathbb{E} \left[\sum_{t=1}^{I} \langle \boldsymbol{q}_t - \boldsymbol{q}, \boldsymbol{\ell}_t \rangle \right]$$

Estimator of losses

History of interaction: $u_t = \{x_k(t), a_k(t), \ell_t(x_k(t), a_k(t))\}_{k=1..L-1}$

The unbiased estimator is

$$\hat{\ell}_t(x,a) = \frac{\ell_t(x,a)}{q_t(x,a)} \mathbb{I}\{(x,a) \in \boldsymbol{u}_t\}$$

Sta Aft

Wł

An

Fo

Tł

W

Gergely Neu gergely.neu@gmail.com INRIA Lille – Nord Europe

Online Relative Entropy Pole
art with uniform policy
$$\pi_1(a|x) = \frac{1}{|a|}$$
 and set $q_1 = q^{\pi_1}$
there pisode t :
$$q_{t+1}(x,a) = \underset{q \in \Delta}{\operatorname{argmin}} \{\eta(q,\ell_t) + D(q_{q \in \Delta}) + D(q_{q \in \Delta}) \}$$

where D is the unnormalized Kullback-Leibler divergence:
$$D(q|q') = \sum_{x,a} q(x,a) \log \frac{q(x,a)}{q'(x,a)} - \sum_{x,a} (q(x,a)) \log \frac{q(x,a)}{q'(x,a)} + \sum_{x,a} (q(x,a)) \log \frac{q$$

Full information

 $R_T \le 2L \int T \log \frac{|X||A|}{I}$

