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Abstract

We study the problem of online learning in finite episodic Markov decision pro-
cesses (MDPs) where the loss function is allowed to change between episodes.
The natural performance measure in this learning problem is the regret defined as
the difference between the total loss of the best stationary policy and the total loss
suffered by the learner. We assume that the learner is given access to a finite action
space A and the state space X has a layered structure with L layers, so that state
transitions are only possible between consecutive layers. We describe a variant of
the recently proposed Relative Entropy Policy Search algorithm and show that its
regret after T episodes is 2

√
L|X ||A|T log(|X ||A|/L) in the bandit setting and

2L
√
T log(|X ||A|/L) in the full information setting, given that the learner has

perfect knowledge of the transition probabilities of the underlying MDP. These
guarantees largely improve previously known results under much milder assump-
tions and cannot be significantly improved under general assumptions.

1 Introduction

In this paper, we study the problem of online learning in a class of finite non-stationary episodic
Markov decision processes. The learning problem that we consider can be formalized as a sequential
interaction between a learner (often called agent) and an environment, where the interaction between
the two entities proceeds in episodes. Every episode consists of multiple time steps: In every time
step of an episode, a learner has to choose one of its available actions after observing some part
of the current state of the environment. The chosen action influences the observable state of the
environment in a stochastic fashion and imposes some loss on the learner. However, the entire state
(be it observed or not) also influences the loss. The goal of the learner is to minimize its total
(non-discounted) loss that it suffers. In this work, we assume that the unobserved part of the state
evolves autonomously from the observed part of the state or the actions chosen by the learner, thus
corresponding to a state sequence generated by an oblivious adversary such as nature. Otherwise,
absolutely no statistical assumption is made about the mechanism generating the unobserved state
variables. As usual for such learning problems, we set our goal as minimizing the regret defined as
the difference between the total loss suffered by the learner and the total loss of the best stationary
state-feedback policy. This setting fuses two important paradigms of learning theory: online learning
[5] and reinforcement learning [21, 22].

The learning problem outlined above can be formalized as an online learning problem where the
actions of the learner correspond to choosing policies in a known Markovian decision process where
the loss function changes arbitrarily between episodes. This setting is a simplified version of the
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learning problem first addressed by Even-Dar et al. [8, 9], who consider online learning unichain
MDPs. In their variant of the problem, the learner faces a continuing MDP task where all policies
are assumed to generate a unique stationary distribution over the state space and losses can change
arbitrarily between consecutive time steps. Assuming that the learner observes the complete loss
function after each time step (that is, assuming full information feedback), they propose an algorithm
called MDP-E and show that its regret is O(τ2

√
T log |A|), where τ > 0 is an upper bound on the

mixing time of any policy. The core idea of MDP-E is the observation that the regret of the global
decision problem can be decomposed into regrets of simpler decision problems defined in each state.
Yu et al. [23] consider the same setting and propose an algorithm that guarantees o(T ) regret under
bandit feedback where the learner only observes the losses that it actually suffers, but not the whole
loss function. Based on the results of Even-Dar et al. [9], Neu et al. [16] propose an algorithm
that is shown to enjoy an O(T 2/3) bound on the regret in the bandit setting, given some further
assumptions concerning the transition structure of the underlying MDP. For the case of continuing
deterministic MDP tasks, Dekel and Hazan [7] describe an algorithm guaranteeing O(T 2/3) regret.
The immediate precursor of the current paper is the work of Neu et al. [14], who consider online
learning in episodic MDPs where the state space has a layered (or loop-free) structure and every
policy visits every state with a positive probability of at least α > 0. Their analysis is based on a
decomposition similar to the one proposed by Even-Dar et al. [9], and is sufficient to prove a regret
bound of O(L2

√
T |A| log |A|/α) in the bandit case and O(L2

√
T log |A|) in the full information

case.

In this paper, we present a learning algorithm that directly aims to minimize the global regret of the
algorithm instead of trying to minimize the local regrets in a decomposed problem. Our approach
is motivated by the insightful paper of Peters et al. [17], who propose an algorithm called Relative
Entropy Policy Search (REPS) for reinforcement learning problems. As Peters et al. [17] and Kakade
[11] point out, good performance of policy search algorithms requires that the information loss
between the consecutive policies selected by the algorithm is bounded, so that policies are only
modified in small steps. Accordingly, REPS aims to select policies that minimize the expected loss
while guaranteeing that the state-action distributions generated by the policies stay close in terms
of Kullback–Leibler divergence. Further, Daniel et al. [6] point out that REPS is closely related
to a number of previously known probabilistic policy search methods. Our paper is based on the
observation that REPS is closely related to the Proximal Point Algorithm (PPA) first proposed by
Martinet [13] (see also [20]).

We propose a variant of REPS called online REPS or O-REPS and analyze it using fundamen-
tal results concerning the PPA family. Our analysis improves all previous results concerning on-
line learning in episodic MDPs: we show that the expected regret of O-REPS is bounded by
2
√
L|X ||A|T log(|X ||A|/L) in the bandit setting and 2L

√
T log(|X ||A|/L) in the full informa-

tion setting. Unlike previous works in the literature, we do not have to make any assumptions about
the transition dynamics apart from the loop-free assumption. The full discussion of our results is
deferred to Section 5.

Before we move to the technical content of the paper, we first fix some conventions. Random
variables will be typeset in boldface (e.g., x,a) and indefinite sums over states and actions are to be
understood as sums over the entire state and action spaces. For clarity, we assume that all actions
are available in all states, however, this assumption is not essential. The indicator of any event A
will be denoted by I {A}.

2 Problem definition

An episodic loop-free Markov decision process is formally defined by the tuple M = {X ,A, P},
where X is the finite state space, A is the finite action space, and P : X × X × A is the transition
function, where P (x′|x, a) is the probability that the next state of the Markovian environment will
be x′, given that action a is selected in state x. We will assume that M satisfies the following
assumptions:

• The state space X can be decomposed into non-intersecting layers, i.e. X =
⋃L
k=0 Xk

where Xl ∩ Xk = ∅ for l 6= k.
• X0 and XL are singletons, i.e. X0 = {x0} and XL = {xL}.
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• Transitions are possible only between consecutive layers. Formally, if P (x′|x, a) > 0, then
x′ ∈ Xk+1 and x ∈ Xk for some 0 ≤ k ≤ L− 1.

The interaction between the learner and the environment is described on Figure 1. The interaction
of an agent and the Markovian environment proceeds in episodes, where in each episode the agent
starts in state x0 and moves forward across the consecutive layers until it reaches state xL.1 We
assume that the environment selects a sequence of loss functions {`t}Tt=1 and the losses only change
between episodes. Furthermore, we assume that the learner only observes the losses that it suffers
in each individual state-action pair that it visits, in other words, we consider bandit feedback.2

Parameters: Markovian environment M = {X ,A, P};
For all episodes t = 1, 2, . . . , T , repeat

1. The environment chooses the loss function `t : X ×A → [0, 1].
2. The learner starts in state x0(t) = x0.
3. For all time steps l = 0, 1, 2, . . . , L− 1, repeat

(a) The learner observes xl(t) ∈ Xl.
(b) Based on its previous observations (and randomness), the learner selects al(t).
(c) The learner suffers and observes loss `t(xl(t),al(t)).
(d) The environment draws the new state xl+1(t) ∼ P (·|xl(t),al(t)).

Figure 1: The protocol of online learning in episodic MDPs.

For defining our performance measure, we need to specify a set of reference controllers that is made
available to the learner. To this end, we define the concept of (stochastic stationary) policies: A
policy is defined as a mapping π : A× X → [0, 1], where π(a|x) gives the probability of selecting
action a in state x. The expected total loss of a policy π is defined as

LT (π) = E

[
T∑
t=1

L−1∑
k=0

`t(x
′
k,a
′
k)

∣∣∣∣∣P, π
]
,

where the notation E [ ·|P, π] is used to emphasize that the random variables x′k and a′k are gener-
ated by executing π in the MDP specified by the transition function P . Denote the total expected
loss suffered by the learner as L̂T =

∑T
t=1

∑L−1
k=0 E [`t(xk(t),ak(t))|P ], where the expectation is

taken over the internal randomization of the learner and the random transitions of the Markovian
environment. Using these notations, we define the learner’s goal as minimizing the (total expected)
regret defined as

R̂T = L̂T −min
π
LT (π),

where the minimum is taken over the complete set of stochastic stationary policies.3

It is beneficial to introduce the concept of occupancy measures on the state-action space X ×A: the
occupancy measure qπ of policy π is defined as the collection of distributions generated by executing
policy π on the episodic MDP described by P :

qπ(x, a) = P
[
x′k(x) = x,a′k(x) = a

∣∣∣P, π] ,
where k(x) denotes the index of the layer that x belongs to. It is easy to see that the occupancy
measure of any policy π satisfies∑

a

qπ(x, a) =
∑

x′∈Xk(x)−1

∑
a′

P (x|x′, a′)qπ(x′, a′), (1)

1Such MDPs naturally arise in episodic decision tasks where some notion of time is present in the state
description.

2In the literature of online combinatorial optimization, this feedback scheme is often called semi-bandit
feedback, see Audibert et al. [2].

3The existence of this minimum is a standard result of MDP theory, see Puterman [18].
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for all x ∈ X \{x0, xl}, with qπ(x0, a) = π(a|x0) for all a ∈ A. The set of all occupancy measures
satisfying the above equality in the MDP M will be denoted as ∆(M). The policy π is said to
generate the occupancy measure q ∈ ∆(M) if

π(a|x) =
q(x, a)∑
b q(x, b)

holds for all (x, a) ∈ X ×A. It is clear that there exists a unique generating policy for all measures
in ∆(M) and vice versa. The policy generating q will be denoted as πq . In what follows, we will
redefine the task of the learner from having to select individual actions ak(t) to having to select
occupancy measures qt ∈ ∆(M) in each episode t. To see why this notion simplifies the treatment
of the problem, observe that

E

[
L−1∑
k=0

`t(x
′
k,a
′
k)

∣∣∣∣∣P, πq
]

=

L−1∑
k=0

∑
x∈Xk

∑
a

q(x, a)`t(x, a)

=
∑
x,a

q(x, a)`t(x, a)
def
= 〈q, `t〉 ,

(2)

where we defined the inner product 〈·, ·〉 on X × A in the last line. Using this notation, we can
reformulate our original problem as an instance of online linear optimization with decision space
∆(M). Assuming that the learner selects occupancy measure qt in episode t, the regret can be
rewritten as

R̂T = max
q∈∆(M)

E

[
T∑
t=1

〈qt − q, `t〉

]
.

3 The algorithm: O-REPS

Using the formalism introduced in the previous section, we now describe our algorithm called Online
Relative Entropy Policy Search (O-REPS). O-REPS is an instance of online linear optimization
methods usually referred to as Follow-the-Regularized-Leader (FTRL), Online Stochastic Mirror
Descent (OSMD) or the Proximal Point Algorithm (PPA)—see, e.g., [1], [19], [3] and [2] for a
discussion of these methods and their relations. To allow comparisons with the original derivation of
REPS by Peters et al. [17], we formalize our algorithm as an instance of PPA. Before describing the
algorithm, some more definitions are in order. First, define D (q‖q′) as the unnormalized Kullback–
Leibler divergence between two occupancy measures q and q′:

D (q‖q′) =
∑
x,a

q(x, a) log
q(x, a)

q′(x, a)
−
∑
x,a

(q(x, a)− q′(x, a)) .

Furthermore, let R(q) define the unnormalized negative entropy of the occupancy measure q:

R(q) =
∑
x,a

q(x, a) log q(x, a)−
∑
x,a

q(x, a).

We are now ready to define O-REPS formally. In the first episode, O-REPS chooses the uniform
policy with π1(a|x) = 1/|A| for all x and a, and we let q1 = qπ1 .4 Then, the algorithm proceeds
recursively: After observing

ut = (x0(t),a0(t), `t(x0(t),a0(t)), . . . ,xL−1(t),aL−1(t), `t(xL−1(t),aL−1(t)),xL(t))

in episode t, we define the loss estimates ˆ̀
t as

ˆ̀
t =

`t(x, a)

qt(x, a)
I {(x, a) ∈ ut} ,

where we used the notation (x, a) ∈ ut to indicate that the state-action pair (x, a) was observed dur-
ing episode t. After episode t, O-REPS selects the occupancy measure that solves the optimization
problem

qt+1 = arg min
q∈∆(M)

{
η
〈
q, ˆ̀

t

〉
+D(q||qt)

}
. (3)

4Note that qπ can be simply computed by using (1) recursively.
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In episode t, our algorithm follows the policy πt = πqt . Defining Ut = (u1,u2, . . . ,ut), we
clearly have that qt(x, a) = P [ (x, a) ∈ ut|Ut−1], so ˆ̀

t(x, a) is an unbiased estimate of `t(x, a)
for all (x, a) such that qt(x, a) > 0:

E
[

ˆ̀
t(x, a)

∣∣∣Ut−1

]
=
`t(x, a)

qt(x, a)
P [ (x, a) ∈ ut|Ut−1] = `t(x, a). (4)

We now proceed to explain how the policy update step (3) can be implemented efficiently. It is
known (see, e.g., Bartók et al. [3, Lemma 8.6]) that performing this optimization can be reformulated
as first solving the unconstrained optimization problem

q̃t+1 = arg min
q

{
η
〈
q, ˆ̀

t

〉
+D(q||qt)

}
and then projecting the result to ∆(M) as

qt+1 = arg min
q∈∆(M)

D (q‖q̃t+1) .

The first step can be simply carried out by setting q̃t+1(x, a) = qt(x, a)e−η
ˆ̀
t(x,a). The projection

step, however, requires more care. To describe the projection procedure, we need to introduce some
more notation. For any function v : X → R and loss function ` : X × A → [0, 1] we define a
function

δ(x, a|v, `) = −η`(x, a)−
∑
x′∈X

v(x′)P (x′|x, a) + v(x). (5)

As noted by Peters et al. [17], the above function can be regarded as the Bellman error corresponding
to the value function v. The next proposition provides a succinct formalization of the optimization
problem (3).
Proposition 1. Let t > 1 and define the function

Zt(v, k) =
∑

x∈Xk,a∈A
qt(x, a)eδ(x,a|v,

ˆ̀
t).

The update step (3) can be performed as

qt+1(x, a) =
qt(x, a)eδ(x,a|v̂t, ˆ̀t)

Zt(v̂t, k(x))
,

where

v̂t = arg min
v

L∑
k=0

lnZt(v, k). (6)

Minimizing the expression on the right-hand side of Equation (6) is an unconstrained convex op-
timization problem (see Boyd and Vandenberghe [4] and the comments of Peters et al. [17]) and
can be solved efficiently. It is important to note that since q1(x, a) > 0 holds for all (x, a) pairs,
qt(x, a) is also positive for all t > 0 by the multiplicative update rule, so Equation 4 holds for all
state-action pairs (x, a) in all time steps.

The proof follows the steps of Peters et al. [17], however, their original formalization of REPS is
slightly different, which results in small changes in the analysis as well. For further comments
regarding the differences between O-REPS and REPS, see Section 5.

Proof of Proposition 1. We start with formulating the projection step as a constrained optimization
problem:

min
q
D (q‖q̃t+1)

subject to
∑
a

q(x, a) =
∑
x′,a′

P (x|x′, a′)q(x′, a′) for all x ∈ X \ {x0, xl},∑
x∈Xk

∑
a

q(x, a) = 1 for all k = 0, 1, . . . , L− 1.
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To solve the problem, consider the Lagrangian:

Lt(q) =D (q‖q̃t+1) +

L−1∑
k=0

λk

 ∑
x∈Xk,a∈A

q(x, a)− 1


+

L−1∑
k=1

∑
x∈Xk

v(x)

 ∑
x′∈Xk−1

∑
a′

q(x′, a′)P (x|x′, a′)−
∑
a

q(x, a)


=D (q‖q̃t+1) +

∑
a

q(x0, a)

(
λ0 +

∑
x′

v(x′)P (x′|x0, a)

)
−
L−1∑
k=0

λk

+
∑
x 6=x0

∑
a

q(x, a)

(
λk(x) +

∑
x′

v(x′)P (x′|x, a)− v(x)

)
,

where {λk}L−1
k=0 and {v(x)}x∈X\{x0,xl} are Lagrange multipliers. In what follows, we set v(x0) =

v(xL) = 0 for convenience. Differentiating the Lagrangian with respect to any q(x, a), we get

∂Lt(q)
∂q(x, a)

= ln q(x, a)− ln q̃t+1(x, a) + λk(x) +
∑
x′

v(x′)P (x′|x, a)− v(x).

Hence, setting the gradient to zero, we obtain the formula for qt+1(x, a):

qt+1(x, a) = q̃t+1(x, a)e−λk(x)−
∑

x′ v(x′)P (x′|x,a)+v(x).

Substituting the formula for q̃t+1(x, a), we get

qt+1(x, a) = qt(x, a)e−λk(x)+δ(x,a|v, ˆ̀t).

Using the second constraint, we have for every k = 0, 1, . . . , L− 1 that∑
x∈Xk

∑
a

qt(x, a)e−λk+δ(x,a|v, ˆ̀t) = 1,

yielding e−λk = 1/Zt(v, k), which leaves us with computing the value of v at the optimum. This
can be done by solving the dual problem of maximizing∑

x,a

q̃t+1(x, a)− L−
L−1∑
k=0

λk

over {λk}L−1
k=0 . If we drop the constants and express each λk in terms of Zt(v, k), then the problem

is equivalent to maximizing −
∑L−1
k=0 lnZt(v, k), that is, solving the optimization problem (6).

4 Analysis

The next theorem states our main result concerning the regret of O-REPS under bandit feedback. The
proof of the theorem is based on rather common ideas used in the analysis of FTRL/OSMD/PPA-
style algorithms (see, e.g., [24], Chapter 11 of [5], [1], [12], [2]). After proving the theorem, we also
present the regret bound for O-REPS when used in a full information setting where the learner gets
to observe `t after each episode t.
Theorem 1. Assuming bandit feedback, the total expected regret of O-REPS satisfies

R̂T ≤ η|X ||A|T +
L log |X ||A|L

η
.

In particular, setting η =

√
L

log
|X||A|

L

T |X ||A| yields

R̂T ≤ 2

√
L|X ||A|T log

|X ||A|
L

.
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Proof. By standard arguments (see, e.g., [19, Lemma 12], [3, Lemma 9.2] or [5, Theorem 11.1]),
we have

T∑
t=1

〈
qt − q, ˆ̀

t

〉
≤

T∑
t=1

〈
qt − q̃t+1, ˆ̀

t

〉
+
D (q‖q1)

η
. (7)

Using the exact form of q̃t+1 and the fact that ex ≥ 1 + x, we get that

q̃t+1(x, a) ≥ qt(x, a)− ηqt(x, a) ˆ̀
t(x, a)

and thus
T∑
t=1

〈
qt − q̃t+1, ˆ̀

t

〉
≤ η

T∑
t=1

∑
x,a

qt(x, a) ˆ̀2
t (x, a)

≤ η
T∑
t=1

∑
x,a

qt(x, a)
`t(x, a)

qt(x, a)
ˆ̀
t(x, a) ≤ η

T∑
t=1

∑
x,a

ˆ̀
t(x, a).

Combining this with (7), we get
T∑
t=1

〈
qt − q, ˆ̀

t

〉
≤ η

T∑
t=1

∑
x,a

ˆ̀
t(x, a) +

D (q‖q1)

η
. (8)

Next, we take an expectation on both sides. By Equation (4), we have

E

[
T∑
t=1

∑
x,a

ˆ̀
t(x, a)

]
≤ |X ||A|T.

It also follows from Equation (4) that E
[〈
q, ˆ̀

t

〉]
= 〈q, `t〉 and E

[〈
qt, ˆ̀

t

〉]
= E [〈qt, `t〉]. Finally,

notice that

D (q‖q1) ≤R(q)−R(q1) ≤
L−1∑
k=0

∑
x∈Xk

∑
a

q1(x, a) log
1

q1(x, a)

(since R(q) ≤ 0)

≤
L−1∑
k=0

log |Xk||A| ≤ L log
|X ||A|
L

,

where we used the trivial upper bound on the entropy of distributions and Jensen’s inequality in
the last step. Plugging the above upper bound into Equation (8), we obtain the statement of the
theorem.

Theorem 2. Assuming full feedback, the total expected regret of O-REPS satisfies

R̂T ≤ ηLT +
L log |X ||A|L

η
.

In particular, setting η =

√
log
|X||A|

L

T yields

R̂T ≤ 2L

√
T log

|X ||A|
L

.

The proof of the statement follows directly from the proof of Theorem 1, with the only difference
that we set ˆ̀

t = `t and we can use the tighter upper bound
T∑
t=1

〈qt − q̃t+1, `t〉 ≤ η
T∑
t=1

∑
x,a

qt(x, a)`2t (x, a)

≤ η
T∑
t=1

∑
x,a

qt(x, a) = ηLT,

where we used that
∑
x∈Xk

∑
a qt(x, a) = 1 for all layers k.
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5 Conclusions and future work

Comparison with previous results We first compare our regret bounds with previous results from
the literature. First, our guarantees for the full information case trade off a factor of L present in
the bounds of Neu et al. [14] to a (usually much smaller) factor of

√
log |X |. More importantly,

our bounds trade off a factor of L3/2/α in the bandit case to a factor of
√
|X |. This improvement

is particularly remarkable considering that we do not need to assume that α > 0, that is, we drop
the rather unnatural assumption that every stationary policy has to visit every state with positive
probability. In particular, dropping this assumption enables our algorithm to work in deterministic
loop-free MDPs, that is, to solve the online shortest path problem (see, e.g., [10]). In the shortest
path setting, O-REPS provides an alternative implementation to the Component Hedge algorithm
analyzed by Koolen et al. [12], who prove identical bounds in the full information case. As shown
by Audibert et al. [2], Component Hedge achieves the analog of our bounds in the bandit case as
well.

O-REPS also bears close resemblance to the algorithms of Even-Dar et al. [9] and Neu et al. [16] who
also use policy updates of the form πt+1(a|x) ∝ πt(a|x) exp(−η`t(x, a)−

∑
x′ P (x′|x, a)vt(x

′)).
The most important difference between their algorithm and O-REPS is that their value functions vt
are computed as the solution of the Bellman-equations instead of the solution of the optimization
problem (6). By a simple combination of our analysis and that of Even-Dar et al. [9], it is possible to
show that O-REPS attains a regret of Õ(

√
τT ) in the unichain setting with full information feedback,

improving their bound by a factor of τ3/2 under the same assumptions. It is an interesting open
problem to find out if using the O-REPS value functions is a strictly better idea than solving the
Bellman equations in general. Another important direction of future work is to extend our results to
the case of unichain MDPs with bandit feedback and the setting where the transition probabilities of
the underlying MDP is unknown (see Neu et al. [15]).

Lower bounds Following the proof of Theorem 10 in Audibert et al. [2], it is straightforward
to construct an MDP consisting of |X |/L chains of L consecutive bandit problems each with |A|
actions such that no algorithm can achieve smaller regret than 0.03L

√
T log(|X ||A|) in the full in-

formation case and 0.04
√
L|X ||A|T in the bandit case. These results suggest that our bounds can-

not be significantly improved in general, however, finding an appropriate problem-dependent lower
bound remains an interesting open problem in the much broader field of online linear optimization.

REPS vs. O-REPS As noted several times above, our algorithm is directly inspired by the work
of Peters et al. [17]. However, there is a slight difference between the original version of REPS and
O-REPS, namely, Peters et al. aim to solve the optimization problem qt+1 = arg minq∈∆(M)〈q, ˆ̀

t〉
subject to the constraint D (q‖qt) ≤ ε for some ε > 0. This is to be contrasted with the following
property of the occupancy measures generated by O-REPS (proved in the supplementary material):

Lemma 1. For any t > 0, D (qt‖qt+1) ≤ η2

2 〈qt, ˆ̀2
t 〉.

In particular, if the losses are estimated by bounded sample averages as done by Peters et al. [17],
this gives D (qt‖qt+1) ≤ η2/2. While this is not the exact same property as desired by REPS,
both inequalities imply that the occupancy measures stay close to each other in the 1-norm sense by
Pinsker’s inequality. Thus we conjecture that our formulation of O-REPS has similar properties to
the one studied by Peters et al. [17], while it might be somewhat simpler to implement.
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A Proof of Lemma 1

We start with expanding D (qt‖qt+1):

D (qt‖qt+1) =
∑
x,a

qt(x, a) ln
qt(x, a)

qt+1(x, a)

=
∑
x,a

qt(x, a) ln
Zt(v̂t, k)

eδ(x,a|v̂t, ˆ̀t)

=

L−1∑
k=0

lnZt(v̂t, k)−
∑
x,a

qt(x, a)δ(x, a|v̂t, ˆ̀
t). (9)

By Proposition 1, we have that

L−1∑
k=0

lnZt(v̂t, k) ≤
L−1∑
k=0

lnZt(0, k) =

L−1∑
k=0

ln
∑
x∈Xk

∑
a

qt(x, a)e−η
ˆ̀
t(x,a)

≤
L−1∑
k=0

ln

(
1− η

∑
x∈Xk

∑
a

qt(x, a) ˆ̀
t(x, a) +

∑
x∈Xk

∑
a

qt(x, a)
(−η ˆ̀

t(x, a))2

2

)

≤ −η
∑
x,a

qt(x, a) ˆ̀
t(x, a) +

∑
x,a

qt(x, a)
(−η ˆ̀

t(x, a))2

2

where we used the facts that es ≤ 1 + s + s2

2 holds for all s ≤ 0 and log(1 + s) ≤ s holds for all
s ∈ R.

The second term in (9) is rewritten as follows:∑
x,a

qt(x, a)δ(x, a|v̂t, ˆ̀
t) = −η

∑
x,a

qt(x, a) ˆ̀
t(x, a)

+
∑
x,a

qt(x, a)v̂t(x)−
∑
x,a

qt(x, a)
∑

x′∈Xk(x)+1

v̂t(x
′)P (x′|x, a).

By the property of the occupancy measure, we have for all k = 0, 1, . . . , L− 1 that∑
x∈Xk

∑
a

qt(x, a)
∑

x′∈Xk+1

v̂t(x
′)P (x′|x, a) =

∑
x′∈Xk+1

v̂t(x
′)
∑
x∈Xk

∑
a

qt(x, a)P (x′|x, a)

=
∑

x′∈Xk+1

v̂t(x
′)
∑
a

qt(x
′, a)

=
∑

x∈Xk+1

∑
a

qt(x, a)v̂t(x).

Since v̂t(x0) = v̂t(xL) = 0, we have∑
x,a

qt(x, a)δ(x, a|v̂t, ˆ̀
t) = −η

∑
x,a

qt(x, a) ˆ̀
t(x, a).

Combining the obtained expressions for the terms on the right-hand side of (9), we obtain the state-
ment of the lemma as

D (qt‖qt+1) ≤ η2

2

∑
x,a

qt(x, a) ˆ̀2
t (x, a).
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