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Abstract

We study a contextual version of online combi-
natorial optimisation with full and semi-bandit
feedback. In this sequential decision-making
problem, an online learner has to select an action
from a combinatorial decision space after seeing
a vector-valued context in each round. As a result
of its action, the learner incurs a loss that is a bi-
linear function of the context vector and the vec-
tor representation of the chosen action. We con-
sider two natural versions of the problem: semi-
bandit where the losses are revealed for each
component appearing in the learner’s combina-
torial action, and full-bandit where only the total
loss is observed. We design computationally ef-
ficient algorithms based on a new loss estimator
that takes advantage of the special structure of the
problem, and show regret bounds order

√
T with

respect to the time horizon. The bounds demon-
strate polynomial scaling with the relevant prob-
lem parameters which is shown to be nearly op-
timal. The theoretical results are complemented
by a set of experiments on simulated data.

1 INTRODUCTION

The theory of multi-armed bandits has inspired several
practical applications and extensions to the basic setup
(Lattimore and Szepesvári, 2020). The two most funda-
mental extensions to the standard multi-armed bandit setup
are contextual bandits, which allow taking contextual in-
formation into account during decision making, and com-
binatorial bandits, which allow the formulation of large-
scale decision making problems with combinatorial deci-
sion spaces. Both of these aspects are important to handle
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in the key application areas of bandit algorithms, includ-
ing online advertising and recommendation systems (Li
et al., 2010), and sequential treatment allocation (Tewari
and Murphy, 2017). For instance, recommendation sys-
tems often need to produce structured lists of recommenda-
tions (providing a combinatorial aspect), while also taking
into account the unique preferences of the user (providing
a contextual aspect). The two aspects have been success-
fully addressed in the framework of contextual combinato-
rial bandits in a sequence of works initiated by Qin et al.
(2014). All of these previous works have focused on the
relatively simple scenario where the losses associated with
the learner’s actions are generated independently at random
from a fixed distribution throughout the decision-making
process. In the present work, we study the nonstochas-
tic version of the contextual combinatorial bandit problem,
where the sequence of losses incurred by the learning agent
does not necessarily come from a fixed distribution, but
can be possibly influenced by an external (even malicious)
force. Since the real world is rarely stationary, this exten-
sion is of key practical importance as it significantly broad-
ens the scope of the existing theory.

The setting we consider unifies many previous problem set-
tings, and presents a new level of challenges that have not
been encountered in previous work. In particular, handling
the nonstochastic setting requires a drastically different set
of tools than needed in the i.i.d. case considered in all past
work on contextual combinatorial bandits: while all known
approaches in this latter scenario are based on the principle
of optimism in the face of uncertainty (Auer, 2002; Auer
et al., 2002a), this idea is known to fail when the losses
can be generated by an adversarial external process—see,
e.g., Cesa-Bianchi and Lugosi, 2006, Section 4.1. A nat-
ural alternative route that we follow in this paper is to
adapt the classic Exp3 algorithm of Auer et al. (2002b)
to deal with the potential nonstationarity of the losses via
the use of an importance-weighted loss estimator. This
method has been adapted to deal with combinatorial ac-
tion spaces by Cesa-Bianchi and Lugosi (2012) and Au-
dibert et al. (2014), and to deal with contextual informa-
tion by Neu and Olkhovskaya (2020). Both of these exten-
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sions are based on generalizing the standard scalar-valued
importance-weighted estimator of Auer et al. (2002b) to be
able to directly estimate an unknown vector-valued prob-
lem parameter. A direct combination of these techniques
to tackle our problem is far from straightforward due to the
fact that our scenario requires the estimation of a matrix-
valued parameter. Our main contribution is addressing this
challenge via designing a range of new estimation proce-
dures suitable for estimating such parameter matrices based
on limited observations, and using them in conjunction
with online decision making algorithms.

Following the terminology of Audibert et al. (2014), we
consider two different feedback models: semi-bandit feed-
back, where the learner gets to observe the feedback as-
sociated with each component of its combinatorial action,
and full-bandit feedback, where the learner only observes
the total loss associated with its decision (for formal def-
initions, see Section 2). For both of these scenarios, we
design new loss estimators based on the geometric resam-
pling method proposed by Neu and Olkhovskaya (2020),
which itself is a generalization of the geometric resampling
method of Neu and Bartók (2013, 2016). The most chal-
lenging full-bandit scenario requires rather sophisticated
treatment: here, our estimators are based on calculating and
manipulating certain linear operators over matrices, which
we represent by tensors of appropriate size. The estimation
procedure used in this setting as well as the control over the
resulting estimator is probably the most advanced technical
tool we develop in this paper.

The concrete results we achieve in this work are the follow-
ing. We suppose that the context vectors are d-dimensional,
that the actions can be represented by K-dimensional bi-
nary vectors with at most m components being equal to
1, and that the losses suffered by the learner are linear in
both the contexts and the actions, parametrized by a K × d
matrix specifying the loss function. In this setting, we
prove regret bounds of order

√
mKT max{d,m/λmin} in

the semi-bandit setting and m3/2
√
KT max{d,m/λmin}

in the full-bandit setting (neglecting minor logarithmic fac-
tors). Here, λmin is a lower bound on the smallest eigen-
value of the covariance matrix of the contexts. These
bounds are achieved by combining the estimators men-
tioned in the previous paragraph with appropriately cho-
sen extensions of the classic Exp3 and FTRL algorithms
adapted to the combinatorial setting (Cesa-Bianchi and Lu-
gosi, 2012; Audibert et al., 2014). The best known results
are recovered for both adversarial contextual bandits1 when
m = 1 (Neu and Olkhovskaya, 2020) and for combinato-
rial bandits and semi-bandits when d = 1 (Audibert et al.,
2014). Our algorithms can be implemented with polyno-

1The bounds stated by Neu and Olkhovskaya (2020) do not ex-
plicitly feature the 1/λmin factor, although a careful inspection of
their proofs reveal that their bounds should indeed increase with
this quantity.

mial runtime whenever the decision space allows an effi-
cient implementation of the FTRL/Exp3 variants our meth-
ods are based on—more details are given in Sections 3
and 4 presenting the two methods.

Similar results have been achieved previously for the sim-
pler i.i.d. setting. Qin et al. (2014) consider a scenario
where the loss function is determined by a single d-
dimensional parameter vector and the context can be repre-
sented by a K×d matrix. They propose an algorithm based
on the principle of optimism in the face of uncertainty and
achieve a regret guarantee of order d

√
mT log(KT ) for

this setting2. Similar results have been achieved by Li et al.
(2016) (and a sequence of follow-up works) who consider
a slightly different observation model generalizing semi-
bandit feedback. On the side of non-stochastic losses, the
only relevant works we are aware of are those of Kale et al.
(2010) and Krishnamurthy et al. (2016), who both consider
the semi-bandit setting with loss functions that are poten-
tially non-linear with respect to the contexts, but are re-
stricted to work with a finite policy class that maps con-
texts to combinatorial actions. A naı̈ve instantiation of
their bounds roughly3 results in a regret bound of order
K
√
dmT log(T ). Implementing these latter algorithms re-

quires either a full enumeration of the exponentially-sized
policy space or access to a non-standard optimization ora-
cle. In comparison, the computational steps required by our
algorithms are relatively standard, and our methods can be
implemented efficiently in a range of practically interesting
problem settings.

The rest of the paper is organised as follows. In Section 2
we formally introduce the setting and corresponding as-
sumptions. In Section 3 we the algorithm and analysis of
the algorithm for the semi-bandit setting and in Section 4
we do the same for the full-bandit setting. In Section 5 we
provide lower bounds and finally, in Section 6 we empiri-
cally evaluate our algorithms.

2 PRELIMINARIES

As outlined in the introduction, we are considering a non-
stochastic bandit problem with combinatorial actions and
contexts provided in each timestep. Given an action set
A ⊆ {0, 1}K , a context space X ⊆ Rd, and a distribu-
tion D over X , our learning protocol can be described as

2Their dependence on K is much milder due to the number
of parameters to estimate being only d as opposed to Kd in our
setting. The dependence on

√
m we claim here follows from in-

stantiating their bound with C = m which is required when con-
sidering linear losses. Their bounds actually hold with slightly
greater generality, allowing generalized linear loss functions.

3This follows from discretizing the space of loss matrices at
a resolution of order 1/T , and considering the class of greedy
policies with respect to this cover. Details of how such an argu-
ment can be fully worked out are non-trivial, and a fully rigorous
argument may likely lead to a worse regret bound.
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follows. In each round t:

1. The (nonoblivious) adversary picks a loss matrix Θt ∈
Rd×K

2. The environment draws an independent context vector
Xt ∈ X from distribution D

3. The learner observes Xt and picks an action from the
action set At ∈ A ⊆ {0, 1}K

4. The learner incurs the loss X⊤
t ΘtAt

5. The learner observes:
full-bandit: X⊤

t ΘtAt

semi-bandit: X⊤
t Θt ⊙At

where ⊙ is the elementwise multiplication of two vectors.
Without loss of generality, the matrix A is full rank.

Additional notation. We denote by EX [·] the expecta-
tion over random variable X . We denote by EX [·|Y ]
the expectation over random variable X conditioned on
Y . When we write E[X] (E[X|Y ]) we take the expecta-
tion (conditioned on Y ) with respect to all sources of ran-
domness in X . Furthermore we will define the filtration
Ft = σ(X1, ξ1, A1, . . . , Xt, ξt, At), where ξt captures any
randomness employed by the learner in timesteps up to and
including t. Each element A of the action set A is called
an action. Each one of the K dimensions that make up the
action set is called a sub-action, and a single action A has at
most m active sub-actions,

∥∥A∥∥
1
≤ m. We use λmin(·) to

denote the smallest eigenvalue of a matrix or tensor,
∥∥·∥∥

op

to denote the operator norm of a matrix given by the largest
eigenvalue λmax(·) of that matrix, and ei to denote the ba-
sis vector in direction i.

Our results rely on the following assumptions that are
rather standard in the combinatorial and contextual bandit
literature.

• The distribution D from which the contexts are inde-
pendently drawn is known and satisfies E[XX⊤] =
Σ ≻ 0I;

• there exists a σ > 0 such that
∥∥X∥∥

2
≤ σ holds D-

almost surely;
• maxt

∥∥Θt

∥∥
F
≤ G for some G > 0, where

∥∥·∥∥
F

is the
Frobenius norm;

• maxt ∥(Θt)·,k∥2 ≤ R for all k ∈ K, where (·)·,k is
the k−th row of a matrix;

• maxt maxi(|X⊤Θt|)i ≤ 1 holds D-almost surely,
where (·)i is the i−th element of a vector.

Estimators and Matrix Geometric Resampling. In the
paper we introduce two new unbiased estimators and two
new biased estimators. Both unbiased estimators require
us to invert a matrix of an expectation of outer products.
While computing the expectation explicitly is possible, it
might be computationally prohibitive. In order to reduce
the computational burden we use the Matrix Geometric Re-
sampling (MGR) method of Neu and Olkhovskaya (2020)

Algorithm 1 MGR
Require: Sampling Scheme S, β > 0,M > 0

1: for k = 1, . . . ,M : do
2: Draw P̂k according to S

3: Compute Ck =
∏k

j=1(I − βP̂j)
4: end for
5: Output P̂+ = β

∑M
k=0 Ck

to obtain a biased estimate of the inverse. The definition of
MGR can be found in Algorithm 1, which is a more general
version than MGR as introduced by Neu and Olkhovskaya
(2020). The algorithm needs to be supplied by a sampling
scheme and will output an estimate of the inverse of the
expected matrix. Throughout the paper we will repeat-
edly make use of Lemma 1 below, which contains several
crucial properties of MGR. The proof of Lemma 1 can be
found in Appendix A.

Lemma 1. Let P̂+ be defined by the MGR procedure (Al-
gorithm 1) run for M iterations where each P̂k ∈ Rb×b

drawn in Step 2 of Algorithm 1 is symmetric, positive semi-
definite, and such that E[P̂k] = P , where P is also sym-
metric and positive semi-definite. Choose β ≤ 1

λmax(P ) ,
then

tr
(
EMGR[PP̂+⊤PP̂+]

)
< 2b

EMGR[P̂
+]P = I − (I − βP )M∥∥P̂+
∥∥
op

≤ (M + 1)β .

Computational efficiency of MGR. If i.i.d. samples
from the context distribution D and from the distibution
πt(·|X) over A are both available through sampling ora-
cles, then MGR can be run in time of order MKd +Kd2

(Neu and Olkhovskaya, 2020), where we assume both or-
acles can return a random draw from their corresponding
distributions in unit time. Conditions on A enabling an ef-
ficient implementation of the sampling oracle for πt(·|X)
are discussed in Sections 3 and 4.

Regret Decomposition. The regret in our setting is de-
fined by the best context-to-action mapping π : X → A in
hindsight

RT = max
π∈Π

E

[
T∑

t=1

(
X⊤

t ΘtAt −X⊤
t Θtπ(Xt)

)]

Now we can define the regret R̂T (x) that the algorithm
incurs at any context x ∈ X by using an unbiased estimator
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Θ̂t as follows

R̂T (x) = E

[
T∑

t=1

(
x⊤Θ̂tAt − x⊤Θ̂tπ

∗
T (x)

)]
(1)

π∗
T (x) = min

A∈A
E

[
T∑

t=1

(
x⊤ΘtA

)]

Borrowing an idea from Neu and Olkhovskaya (2020), we
introduce a ghost context X0 ∼ D drawn independently of
all other contexts Xt. A crucial property of the regret is
stated in Lemma 2 below.

Lemma 2 (Neu and Olkhovskaya (2020, Equation (6))).
Let Θ̃t be some estimator of Θt with bias Bt = Θt − Θ̃t,
then for any X0 ∼ D

RT ≤ EX0

[
R̂T (X0)

]
+ 2E

[
T∑

t=1

max
A∈A

∣∣∣E[X⊤
0 BtA

∣∣Ft−1

]∣∣∣]

Because of Lemma 2 we only need to control the re-
gret of any algorithm against a fixed context x ∈ X and
any bias introduced by MGR. We will repeatedly use this
fact throughout the paper, both for the upper and lower
bounds we provide. Crucially, X0 is independent from
X1, . . . , XT used to construct the loss estimators.

3 SEMI-BANDIT SETTING

In this section we introduce CO2-FTRL (Algorithm 2),
our algorithm for the contextual combinatorial setting with
semi-bandit feedback. CO2-FTRL is a instance of Follow
The Regularized Leader run with a suitable estimator.

Recall that in the semi-bandit setting we are able to observe
the losses of all the individual sub-actions by observing the
vector X⊤

t Θt⊙At. This allows us to construct an estimator
of the loss matrix Θt as follows. The columns of estimator
Θ̂t ∈ Rd×K are defined to be

(Θ̂t)·,k = Σ−1
t,kXt(X

⊤
t Θt)k(At)k (2)

where Σt,k = EAt,X

[
(At)kXX⊤ | Ft−1

]
. A crucial prop-

erty is that the columns of Θ̂t are unbiased estimators of the
columns of Θt:

EAtXt

[
(Θ̂t)·,k | Ft−1

]
= Σ−1

t,k EAt,Xt

[
XtX

⊤
t (At)k | Ft−1

]
(Θt)·,k = (Θt)·,k

where the last equality follows from the definition of Σt,k.

However, note that Θ̂t requires us to compute the inverse
of the d × d covariance matrix Σt,k K times, which can
be computationally intensive. As discussed in Section 2,
we make use of the MGR method (Neu and Olkhovskaya,

2020) to construct a potentially computationally cheaper
estimator of Σt,k. We denote the estimated version of Σ−1

t,k

by Σ̂+
t,k = MGR(S(D, πt, k), β,M), where S is Sampling

Scheme 4 defined in Appendix B. The corresponding esti-
mator of Θt is denoted by Θ̃t and has columns

(Θ̃t)·,k = Σ̂+
t,kXt(X

⊤
t Θt)k(At)k . (3)

An apparent drawback of using the above estimator rather
than the estimator defined in (2) is that the estimator (3) is
biased. Fortunately, Lemma 1 gives us the tools to control
the bias. In particular, by using the fact that P̂k is unbiased,
we can see that

E
[
Θt − Θ̃t | Ft−1

]
= (I − βΣt,k)

M .

Now, by Hölder’s inequality and our assumptions on X ,
Θt, and A, we have that for any A ∈ A and any x ∈ X

E
[
x⊤(Θt − Θ̃t)A | Ft−1

]
≤ R

√
mσ

∥∥(I − βΣt,k)
M
∥∥

op

Since Σt,k ⪰ Iλmin(Σt,k), we have that

∥(I − βΣt,k)
M∥op ≤

(
1− βλmin(Σt,k)

)M
and so, using 1 + x ≤ exp(x), the bias can be bounded by
R
√
mσ exp

(
−Mβλmin(Σt,k)

)
.

To control the bias of the estimator, we thus need to control
λmin(Σt,k). Our solution is quite straightforward. We first
construct an exploration set E ⊆ A such that there is at
least one A ∈ E satisfying (A)k = 1 for each k ∈ [K]. To
ensure that E always exists, we assume that for each k ∈ K
there exists at least one A ∈ A with (A)k = 1. If this is
not the case, one can trivially reduce the problem to a lower
dimension. Given context X , our predictions are sampled
from πt(·|X), defined in Step 5 of Algorithm 2, which is
a mixture with parameter γ ∈ (0, 1) between distribution
pt(·|X) over A and the uniform distribution over E. Since
this πt guarantees that Pt

(
(At)k = 1

)
≥ γ|E|−1, it is

straightforward to see that λmin(Σt,k) ≥ γλmin(Σ)|E|−1.
The formal result can be found in Lemma 3 and its proof in
Appendix B.

Lemma 3. Let β ≤ mint,k
1

λmax(Σt,k)
. For any A ∈ A and

all x ∈ X Algorithm 2 guarantees

E
[
x⊤(Θ̂t − Θ̃t)A

∣∣Ft−1

]
≤ R

√
mσ e−

Mβγ
|E| λmin(Σ)

simultaneously for all t = 1, . . . , T .

We now specify distribution pt(·|Xt), which is inspired
by the non-contextual algorithms of Koolen et al. (2010)
and Audibert et al. (2014). First we compute Āt(Xt), de-
fined in Step 3 of Algorithm 2, which is the prediction of
FTRL on the convex hull of A with cumulative loss esti-
mate Xt

∑t−1
s=1 Θ̃sA. Distribution pt(·|Xt) is then chosen
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such that EA∼pt(·|Xt)[A] = Āt(Xt). Since any A sampled
from pt(·|Xt) is equal to Āt(Xt) in expectation, we can
analyse the algorithm as if the predictions are Āt(Xt).

The last missing piece is the FTRL regularizer φ. We use
the unnormalized negative entropy (Koolen et al., 2010;
Audibert et al., 2014) defined as

φ(A) =
1

η

K∑
k=1

(
(A)k ln(A)k − (A)k

)
. (4)

The next result is a regret bound for the predictions Āt(Xt).
The proof can be found in Appendix B and follows from
standard arguments.

Lemma 4. Let β = 1
σ2 and let η ≤ ln(2)

M+1 . For any x ∈ X ,
Āt(x) defined by (5) and any u ∈ A with φ as in equa-
tion (4) guarantees

T∑
t=1

x⊤Θ̃t(Āt(x)− u)

≤
m
(
1 + ln

(
K
m

))
η

+ η

T∑
t=1

K∑
k=1

(x⊤Θ̃t)
2
k(Āt(x))k .

Next, we need to control the
∑K

k=1(x
⊤Θ̃t)

2
k(Āt(x))k

terms in Lemma 4. First we show that
E
[
(x⊤Θ̃t)

2
k(Āt(x))k

∣∣Ft−1

]
is upper bounded by

2E
[
tr
(
Σt,kΣ̂

+,⊤
t,k Σt,kΣ̂

+
t,k

) ∣∣Ft−1

]
, after which we can

use Lemma 1 to control the bias. The result can be found
in Lemma 5 and the complete proof in Appendix B.

Lemma 5. For any γ ∈ (0, 1) and for all t ∈ [T ] we have
that

E

[
K∑

k=1

(
X⊤

0 Θ̃t

)2
k

(
Āt(X0)

)
k

∣∣∣Ft−1

]
≤ 3Kd

1− γ

By combining Lemmas 3, 4, 5 we arrive at the final re-
gret bound in Theorem 6, whose proof is implied by Theo-
rem 16 in Appendix B.

Theorem 6. Algorithm 2 with appropriate tuning satisfies

RT ∈ O

(√
mKT

(
1 + ln

K

m

)
max

{
d,

mσ2 ln(T )

λmin(Σ)

})

Computational efficiency. Given a sampling oracle for
D, the running time of CO2-FTRL on a pair (D,A) is es-
sentially the same as the running time of the OSMD algo-
rithm on A. Audibert et al. (2014, Section 2) discuss the
conditions on A that allow an efficient implementation of
OSMD.

Algorithm 2 CO2-FTRL
Require: learning rate η > 0, exploration rate γ ∈ (0, 1)
Require: exploration set E ⊆ A

1: for t in [T ] do
2: Observe Xt

3: Compute

Āt(Xt) = argmin
A∈Conv(A)

t−1∑
s=1

X⊤
t Θ̃sA+ φ(A) (5)

4: Find probability distribution pt(·|Xt) such that
EA∼pt(·|Xt)[A] = Āt(Xt)

5: Set

πt(A|X) = (1− γ)pt(A|X) + γ
1[A ∈ E]

|E|
(6)

6: Draw and play At ∼ πt(·|Xt)

7: Observe loss X⊤
t Θt⊙At and compute Θ̃t using (3).

8: end for

4 FULL-BANDIT SETTING

In this section we describe our results in the full-bandit set-
ting, where we only have access to the total loss X⊤

t ΘtAt

incurred at each timestep t rather than the loss components
X⊤

t Θt⊙At that we had access to in the semi-bandit setting.

We start by describing how to construct an unbiased esti-
mator for Θt. In order to do so we need to introduce several
definitions related to tensors.

Tensor definitions. For a more extensive background on
tensors we refer the reader to Appendix D. Here we intro-
duce the definitions necessary to understand the ideas be-
hind our algorithm. Let Φ ∈ Rd×d×K×K be a tensor and
let Θ ∈ Rd×K be a matrix. Tensor Φ acting on Θ is de-
noted by Φ(Θ) = B, where B ∈ Rd×K is a matrix with
elements

Bi,k =

d∑
a

K∑
b

Φi,a,b,kΘa,b

The definition of a tensor acting on a tensor is given in Def-
inition D.1 in Appendix D. Tensors are associative in the
sense that Φ(Ψ(Θ)) = Φ(Ψ)(Θ) where Ψ ∈ Rd×d×K×K ,
see Lemma 20.

The tensor product between matrices Θ and Θ′ ∈ Rd×K is
defined as (Θ ⊗ Θ′) = W ∈ Rd×d×K×K , which has ele-
ments Wi,i′,k,k′ = Θi,kΘ

′
i′,k′ . We define an identity tensor

I, which satisfies I(Θ) = Θ for all Θ. If the inverse exists,
then the inverse of tensor Φ is denoted by Φ−1, which sat-
isfies Φ−1(Φ) = I. The central equality, which we use in
our novel estimator, can be found in Lemma 7 whose proof
is in Appendix D.
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Lemma 7. DCB⊤ = (D ⊗ B)(C), where B,C,D are
matrices of appropriate size.

With the above definitions and equalities, we are ready to
construct our unbiased estimator defined as

Θ̂t = Ψ−1
t

(
XtX

⊤
t ΘtAtA

⊤
t

)
(7)

where Ψt = EXt,At

[(
XtX

⊤
t ⊗AtA

⊤
t

)∣∣∣Ft−1

]
.

In Lemma 41 in Appendix E we show that the inverse of
tensor Ψt indeed exists. To see that Θ̂t is unbiased, we use
Lemma 7 to see that, conditioned on Ft−1,

EXt,At

[
Θ̂t

]
= EXt,At

[
Ψ−1

t

(
XtX

⊤
t ΘtAtA

⊤
t

)]
= EXt,At

[
Ψ−1

t

(
(XtX

⊤
t ⊗AtA

⊤
t )(Θt)

)]
= Ψ−1

t

(
Ψt(Θt)

)
.

Now, using the associative property of tensors and the def-
inition of inverses of tensors, we can see that

Ψ−1
t

(
Ψt(Θt)

)
= Ψ−1

t

(
Ψt

)
(Θt) = I(Θ) = Θ.

As in the semi-bandit setting, we make use of the MGR al-
gorithm (Algorithm 1) to construct a computationally more
efficient version of the unbiased estimator. In particular, we
aim at constructing Ψ−1

t more efficiently. Unfortunately,
the MGR algorithm as stated in Section 2 only works for
matrices. To resolve this issue, we temporarily flatten the
tensor to a matrix (Definition D.8). It turns out that the
MGR algorithm applied to the flattened version of Ψt,
which we denote by ΨF

t , returns a matrix which we can
unflatten (Definition D.9). We denote by ΘU the unflatten-
ing of a matrix Θ.

The estimator that makes use of the MGR algorithm to es-
timate Ψ−1

t is defined by

Θ̃t = Ψ̂+
t

(
XtX

⊤
t ΘtAtA

⊤
t

)
(8)

where Ψ̂+
t = MGR(S(D, πt), β,M)U and S is the Sam-

pling Scheme 5, defined in Appendix E. The number M of
iterations the MGR is run for and β are hyper-parameters
of the algorithm set according to Theorem 43. Using the
sampling scheme with the MGR like this means that we do
not need to compute any expectation explicitly to run the
algorithm.

As in the semi-bandit setting we need to ensure that the
eigenvalues of the the tensor Ψ−1

t are not too large, see
Definition D.10 for the definition of eigenvalues of tensors.
We ensure this by employing an exploration distribution µ
over A based on the Kiefer-Wolfowitz theorem (see also
Theorem 40 in the appendix). And the result is shown by
arguing that the smallest eigenvalue of the flattened tensor
ΨF

t is properly bounded, see Lemma 11 below.

The exploration scheme is mixed with a version of Exp3
(Auer et al., 2002b). In particular, we simply run Exp3
on all the actions in A, an approach also used by Cesa-
Bianchi and Lugosi (2012). The full algorithm is specified
in Algorithm 3 and is aptly named Exp3-Tensor. Its regret
bound can be found in Theorem 8, whose proof is implied
by Theorem 43 in Appendix E.
Theorem 8. Algorithm 3 with appropriate tuning satisfies

RT ∈ O

(
m3/2

√
KT ln(K)max

{
d,

mσ2 ln(T )

λmin(Σ)

})
.

In the remainder of this section we provide a sketch of the
proof of Theorem 43.

As a first step, observe that we need to control the bias of
our estimator: the E

[
X⊤

0 BtA | Ft−1

]
term of Lemma 2.

We do precisely this in the following Lemma.
Lemma 9. Suppose that β ≤ 1

λmax(ΨF
t )

. Then for Θ̃t de-
fined in equation (8)

E
[
X⊤

0 (Θt − Θ̃t)A | Ft−1

]
≤ σG

√
me−

Mβγm
K λmin(Σ)

The proof of Lemma 9 can be found in Appendix E. The
proof is very similar to the proof of Lemma 3, with the main
difference being the fact that we need to carefully track the
effect of the flattening and unflattening operations.

Another part of the proof is bounding the regret of Exp3.
The following result can be derived from the standard Exp3
analysis (Auer et al., 2002b) and is provided in Lemma 10
(recall the definition (1) of auxiliary game).
Lemma 10. Fix any x ∈ X and suppose that Θ̃t and η > 0
are such that maxt η|x⊤Θ̃tA| < 1 for all A ∈ A. Then the
regret of Algorithm 3 in the auxiliary game at x satisfies

R̂T (x) ≤
ln(|A|)

η
+ γ UT (x)

+ ηE

[
T∑

t=1

EA∼πt(·|x)
[
(x⊤Θ̃tA)2|Ft−1

]]

where UT (x) =
∑T

t=1

∑
A∈A µAx

⊤Θ̃t

(
A − π∗

T (x)
)

and
µ is the distribution on A defined by the Kiefer-Wolfowitz
theorem.

To ensure that we can apply Lemma 10, we only need to
show that our learning rate is chosen correctly and that
our estimator Θ̃t behaves nicely enough, which essentially
boils down to controlling the smallest eigenvalue of the flat-
tened tensor ΨF

t . This is shown in Lemma 11.
Lemma 11. For all t ≥ 1,

λmin(Ψ
F
t ) ≥

γKλmin(Σ)

m

Moreover, for η ≤ 1
m(M+1) , any A ∈ A, and any x in the

support of D it also holds that η
∣∣x⊤Θ̃tA

∣∣ < 1.
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While the regret of Exp3 is relatively straight-
forward to control with the standard importance
weighted estimator, here we face a complicated term
EA∼πt(·,x)

[
(x⊤Θ̃tA)2|Ft−1

]
due to our choice of esti-

mator Θ̃t. Not only is Θ̃t biased, but we also need to
significantly manipulate the (x⊤Θ̃tA)2 term in order
to recover an expression resembling the term we would
have if we were to use the standard importance weighted
estimator. We do so in Appendix E, which leads to the
following result.

Lemma 12. Fix a t ∈ [T ] and let A0 ∼ πt(·|X0). Then

E
[
(X⊤

0 Θ̃tA0)
2
∣∣Ft−1

]
≤ 2m2Kd

To finish the proof of Theorem 8, we only need to assemble
the pieces we have collected so far. Applying Lemma 12 to
the right-hand side of Lemma 10 gives.

EX0
[R̂T (X0)] ≤

ln(|A|)
η

+ ηTm2Kd+ γUT (X0)

The remaining steps are applying this result to Lemma 2,
applying Lemma 9, and tuning η, γ, M and β accordingly.
All details can be found in Theorem 43 in Appendix E.

Computational efficiency. The crucial steps in Exp3-
Tensor are the computation of µ via the Kiefer-Wolfowitz
theorem and the computation of (9) and (10). Computing
µ exactly is not efficient in general. However, there are ef-
ficient algorithms that compute approximations to µ (Lat-
timore and Szepesvári, 2020, Section 21.2, Note 3). Using
this approximation to µ does not deteriorate the order of re-
gret. The running time for executing the remaining steps is
essentially equivalent to the time it takes to run the corre-
sponding steps in CombBand plus the runtime of the MGR
procedure. Cesa-Bianchi and Lugosi (2012) show various
concrete examples of action sets A on which ComBand can
be run efficiently. Since the MGR procedure can be run ef-
ficiently, this implies that Exp3-Tensor is efficient on a pair
(D,A) whenever a sampling oracle for D is available and
CombBand can be run efficiently on A.

5 LOWER BOUNDS

In this section we provide lower bounds for both the full-
and semi-bandit settings. All details related to the results in
this section can be found in Appendix C. Our lower bounds
hold for a large class of algorithms which we call orthog-
onal algorithms. Informally, if two contexts xs and xt are
orthogonal, then orthogonal algorithms do not use informa-
tion from round s < t to compute a prediction for round t.
Essentially all algorithms using the estimators in Sections 3
and 4 are orthogonal algorithms. The lower bound for the
semi-bandit setting is provided below.

Algorithm 3 Exp3-Tensor
Require: η > 0, γ ∈ (0, 1),M > 0, β > 0

1: Find probability distribution µ over A as defined by the
Kiefer-Wolfowitz theorem (Theorem 40)

2: for t in [T ] do
3: Observe Xt and for all A ∈ A set

wt(Xt, A) = exp

(
−η

t−1∑
s=1

X⊤
t Θ̃sA

)
(9)

4: Draw At from

πt(A|Xt) =
(1− γ)wt(Xt, A)∑

A′∈A wt(Xt, A′)
+ γµA (10)

5: Observe loss X⊤
t ΘtA and compute Θ̃t using (8) and

Sampling Scheme 5 in Appendix E.
6: end for

Theorem 13. In the semi-bandit setting, any orthogonal
algorithm must suffer Ω(

√
dmKT ) regret.

Theorem 13 is implied by Theorem 18, whose proof fol-
lows from a reduction to online learning with stochastic
feedback graphs (Esposito et al., 2022).

For the full-bandit setting the result can be found below.
The result is implied by Theorem 19, whose proof follows
from carefully adapting the lower bound of Cohen et al.
(2017) to work in our setting.

Theorem 14. In the full-bandit setting, any orthogonal al-
gorithm must suffer Ω̃(m3/2

√
dKT ) regret.

Ignoring factors logarithmic in K, our upper bounds in
both settings have an extra max

{
d, mσ2 ln(T )

λmin(Σ)

}
factor. Al-

though the term d is captured by our lower bounds, the
mσ2 ln(T )
λmin(Σ) term is not. In particular, in the construction of

our lower bounds σ = 1 and λmin(Σ) = 1/d. Thus, with
the same set of losses as in the lower bound, our algorithms
suffer Õ(m2

√
dKT ) regret in the full-bandit setting and

Õ(m
√
dKT ) regret in the semi-bandit setting. This im-

plies that for m = 1 our algorithms as well as the algorithm
of Neu and Olkhovskaya (2020) have a tight regret bound.
However, a gap of

√
m exists when m is a parameter of the

problem.

6 EXPERIMENTS

The full code for the experiments can be found here4.

To the best of our knowledge, our work is the first one
in this setting, and thus there are no natural strong base-

4https://github.com/LukasZierahn/
Combinatorial-Contextual-Bandits

https://github.com/LukasZierahn/Combinatorial-Contextual-Bandits
https://github.com/LukasZierahn/Combinatorial-Contextual-Bandits
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lines to compare against in experiments. Our baselines
are RealLinExp3 (Neu and Olkhovskaya, 2020) and two
versions of CombBand (Cesa-Bianchi and Lugosi, 2012).
RealLinExp3 uses contextual information but ignores any
structure in the action set, implying that each action is
treated independently from the others. The first version
of ComBand that we compare with ignores contexts but
is able to exploit the combinatorial nature of actions. Al-
though our algorithms can handle arbitrary context distri-
butions (no expectation needs to be computed thanks to the
MGR procedure), to accommodate the reasonable baseline
of running one instance of ComBand algorithm per context,
we run our experiments on a finitely supported distribution
D.

Let BK,m = {x : x ∈ {0, 1}K ,
∥∥x∥∥

1
= m} be the

set containing all m-sized subsets of a base set of K ele-
ments. We use Bd,m with (d,m) ∈

{
(3, 1), (5, 2), (12, 3)

}
to define context spaces X , and BK,m with (K,m) ∈{
(3, 1), (5, 2), (8, 3)

}
to define action sets A. Our experi-

ments are run over a length of 105 timesteps and averaged
over 10 repetitions. The losses Θt are generated as fol-
lows: for each i ∈ [d] we choose m subactions that are
”good actions”. This means that (Θt)i,j is drawn from a
Bernoulli(0.4) distribution if j is a good action in i and
from a Bernoulli(0.5) distribution otherwise. The contexts
are drawn uniformly at random.

In our experiments, we did not use the MGR proce-
dure for any of the algorithms. While MGR enjoys a
O(MKd + Kd2) scaling in computational cost (Neu and
Olkhovskaya, 2020), due to the nature of the context dis-
tribution using the unbiased estimator turns out to be sig-
nificantly faster, as the M factor in the scaling of the run-
time of MGR is of order 1/γ and there exists a highly opti-
mised implementation of matrix inversion in NumPy (Har-
ris et al., 2020). We stress that this direct computation is
only possible due to the simple setting and if the expecta-
tion cannot be computed then the MGR is necessary.

We run experiments with Exp3-Tensor with theoretical tun-
ing, and using uniform random exploration instead of the
Kiefer-Wolfowitz based exploration to ease implementa-
tion. All the baseline algorithm also use theoretical tun-
ing. While the exploration rate for Exp3-Tensor is very
large (equal to γ = 51.66% in the case where d = 12
and K = 8), the algorithm is only marginally falling be-
hind the other algorithms (see Figure 6 and the figures
in Appendix F) with exploration rate of 1.32% for Re-
alLinExp3, 5.38% for Comband, and 18.64% for the Com-
band One-Per-Context. We conjecture that the theoretical
tuning might be too restrictive in these artificial scenarios
with a finite number of contexts, which we designed to ac-
commodate our baselines. More experiments, using more
general context spaces and improved tunings, are necessary
to gain a better understanding of the algorithms’ behaviour.

Figure 1: Boxplots over 10 repetitions showing the regret
of the four algorithms (lower is better).

7 DISCUSSION

As already discussed in Section 5, our bounds are tight with
respect to all parameters except m. More precisely, there is
an extra factor

√
m in the upper bounds for both semi and

full bandit settings. We leave open the question whether
this extra term is necessary or not.

One direction for future work is to empirically evaluate our
algorithm as well as the baselines we specified in Section 6
in more general experimental settings. The experiments
in Section 6 were specified to accommodate the baselines
and it would be interesting to understand how all algo-
rithms fare under different circumstances. One such cir-
cumstance could be replacing the discrete distribution over
context in our experiments with a continuous distribution,
even though it is not clear how to accommodate all base-
lines for such a context distribution.
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Neu, G. and Bartók, G. (2016). Importance weighting with-
out importance weights: An efficient algorithm for com-
binatorial semi-bandits. Journal of Machine Learning
Research, 17:1–21.

Neu, G. and Olkhovskaya, J. (2020). Efficient and robust
algorithms for adversarial linear contextual bandits. In
Conference on Learning Theory, pages 3049–3068.

Orabona, F. (2019). A modern introduction to online learn-
ing. CoRR, abs/1912.13213.

Qin, L., Chen, S., and Zhu, X. (2014). Contextual combi-
natorial bandit and its application on diversified online
recommendation. In Proceedings of the 2014 SIAM In-
ternational Conference on Data Mining, pages 461–469.

Tewari, A. and Murphy, S. A. (2017). From ads to interven-
tions: Contextual bandits in mobile health. In Mobile
Health - Sensors, Analytic Methods, and Applications,
pages 495–517.

Van der Hoeven, D., Van Erven, T., and Kotłowski, W.
(2018). The many faces of exponential weights in on-
line learning. In Conference on Learning Theory, pages
2067–2092.

Warmuth, M. K. and Kuzmin, D. (2008). Randomized on-
line pca algorithms with regret bounds that are logarith-
mic in the dimension. Journal of Machine Learning Re-
search, 9(75):2287–2320.



Nonstochastic Contextual Combinatorial Bandits

A DETAILS OF SECTION 2 (PRELIMINARIES)

Lemma 1. Let P̂+ be defined by the MGR procedure (Algorithm 1) run for M iterations where each P̂k ∈ Rb×b drawn
in Step 2 of Algorithm 1 is symmetric, positive semi-definite, and such that E[P̂k] = P , where P is also symmetric and
positive semi-definite. Choose β ≤ 1

λmax(P ) , then

tr
(
EMGR[PP̂+⊤PP̂+]

)
< 2b

EMGR[P̂
+]P = I − (I − βP )M∥∥P̂+
∥∥
op

≤ (M + 1)β .

Proof. The second and third statement of the lemma are proven in Section 4.2 of Neu and Olkhovskaya (2020). While a
similar statement to the first statement of the lemma can be found in Neu and Olkhovskaya (2020), there is a transpose
missing from their statement compared to ours. In particular, since P̂+ might not be symmetric we can not conclude that
P̂+⊤ = P̂+. Therefore, we need to prove the first statement of the lemma.

A central part of our consideration of that will be P̂+⊤, which we explore now. For that we will employ the definitions of
P̂+⊤ and Ck as given by the MGR procedure in Algorithm 1 and the fact that (I − βP̂k) is symmetric as P̂k is symmetric
by assumption.

P̂+⊤ =

(
β

M∑
k=0

Ck

)⊤

= β

M∑
k=0

C⊤
k

= β

M∑
k=0

 k∏
j=1

(I − βP̂k)

⊤

= β

M∑
k=0

k∏
j=1

(I − βP̂k−j+1)
⊤

= β

M∑
k=0

k∏
j=1

(I − βP̂k−j+1)︸ ︷︷ ︸
Dk−j+1

,

where we also introduced the notation Dj = (I − βP̂j).

Now we are equipped to focus on P̂+⊤PP̂+, which we do by using the above equation for P̂+⊤. We then multiply out to
obtain

P̂+⊤PP̂+ =

β

M∑
k=0

k∏
j=1

Dk−j+1

P

β

M∑
k=0

k∏
j=1

Dj


= β2

M∑
k=0

M∑
k′=0

 k∏
j=1

Dk−j+1

P

 k′∏
j=1

Dj

 .

Throughout the remainder of the proof we will use that

E

 k∏
j=1

Dkmin−j+1

P

 k′∏
j=1

Dj

 = E [Dk′Dk′−1 . . . D2D1PD1D2 . . . Dk−1Dk] .

As a next step we take the expectation over P̂j for all j ∈ [M ]. We start by looking at the individual terms of the sum.

Define kmin = min(k, k′) and kmax = max(k, k′). For k ≤ k′ we have that in the term
(∏k′

j=1 Dj

)
there are k′ − k Dj
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terms that do not appear in
(∏k

j=1 Dk−j+1

)
. Similarly, for k ≥ k′ we have that in the term

(∏k
j=1 Dk−j+1

)
there are

k − k Dj terms that do not appear in
(∏k′

j=1 Dj

)
. Therefore, by linearity of the expectation and the tower rule we have

that

EMGR

[
P̂+⊤PP̂+

]
= EMGR

β2
M∑
k=0

M∑
k′=0

 k∏
j=1

Dk−j+1

P

 k′∏
j=1

Dj


= β2

M∑
k=0

M∑
k′=0

EMGR

 k∏
j=1

Dk−j+1

P

 k′∏
j=1

Dj


= β2

M∑
k=0

M∑
k′=0

EP̂1,...,P̂kmin

EP̂kmin
,...,P̂kmax

 k∏
j=1

Dk−j+1

P

 k′∏
j=1

Dj

∣∣∣P̂1, . . . , P̂kmin


= β2

M∑
k=0

M∑
k′=0

EP̂1,...,P̂kmin

(I − βP )max{kmax−k,0}

kmin∏
j=1

Dkmin−j+1

P

kmin∏
j=1

Dj

 (I − βP )max{kmax−k′,0}

 .

(11)

Fix some k ∈ [M ], now we will inspect EP̂1,...,P̂k

[(∏kmin

j=1 Dkmin−j+1

)
P
(∏kmin

j=1 Dj

)]
. Pick some j ∈ [k], some matrix

H that is commutative with P , i.e., HP = PH . By using P̂j ⪯ λmax(P̂j)I ⪯ β−1I we can see that

EP̂j
[DjHDj ] = EP̂j

[(I − βP̂j)H(I − βP̂j)]

= EP̂j
[H − βP̂jH − βHP̂j + β2P̂jHP̂j ]

⪯ EP̂j
[H − βP̂jH − βHP̂j + βHP̂j ]

= H − βPH

= (I − βP )H

It is also clear that if H and P commute then so do H − βPH and P . Thus we can now use the above idea recursively
kmin times in total, starting with H = P .

EP̂1,...,P̂k

kmin∏
j=1

Dkmin−j+1

P

kmin∏
j=1

Dj

 ⪯ P (I − βP )kmin

Plugging this into equation (11) to find

EMGR

[
P̂+⊤PP̂+

]
= EMGR

β2

 k∏
j=1

Dk−j+1

P

 k′∏
j=1

Dj


= β2

M∑
k=0

M∑
k′=0

EP̂1,...,P̂kmin

(I − βP )max{kmax−k,0}

kmin∏
j=1

Dkmin−j+1

P

kmin∏
j=1

Dj

 (I − βP )max{kmax−k′,0}


⪯ β2

M∑
k=0

M∑
k′=0

(I − βP )max{kmax−k,0}P (I − βP )kmin(I − βP )max{kmax−k′,0}

= β2P

M∑
k=0

M∑
k′=0

(I − βP )kmax . (12)
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Let ak′,k = (I − βP )kmax . We can order the double sum as
∑M

k=0

∑M
k′=0 ak,k′ = 2

∑M
k=0

∑M
k′=k ak,k′ −

∑M
k=0 ak,k

since ak,k′ = ak′,k. Thus, by using that (I − βP ) ⪯ I , we can see that

M∑
k=0

M∑
k′=0

(I − βP )kmax = 2

M∑
k=0

M∑
k′=k

(I − βP )kmax −
M∑
k=0

(I − βP )kmax

⪯ 2

M∑
k=0

M∑
k′=k

(I − βP )kmax

= 2

M∑
k=0

M∑
k′=k

(I − βP )k
′

= 2

M∑
k=0

(I − βP )k
M∑

k′=k

(I − βP )k
′−k

where in the third equality we replaced kmax by k′. By using the equality P−1 = β
∑∞

k=0(I − β)k (equation (3) of Neu
and Olkhovskaya (2020)) and the fact that I − βP and P are positive semi-definite we can see that

2

M∑
k=0

(I − βP )k
M∑

k′=k

(I − βP )k
′−k = 2

M∑
k=0

(I − βP )k(β−1P−1 − (I − βP )M−kβ−1P−1)

⪯ 2

M∑
k=0

(I − βP )kβ−1P−1

= 2(β−1P−1 − (I − βP )Mβ−1P−1)β−1P−1

⪯ 2β−2P−2. (13)

Using equations (13) and (12) we may conclude the proof as

tr
(
EMGR[P

⊤P̂+⊤PP̂+]
)
≤ tr

(
P⊤β2P

M∑
k=0

M∑
k′=0

(I − βP )kmax

)
≤ 2 tr

(
P⊤β2P (β−2P−2)

)
= 2 tr

(
Pβ2Pβ−2P−2

)
= 2b.

Lemma 2 (Neu and Olkhovskaya (2020, Equation (6))). Let Θ̃t be some estimator of Θt with bias Bt = Θt − Θ̃t, then
for any X0 ∼ D

RT ≤ EX0

[
R̂T (X0)

]
+ 2E

[
T∑

t=1

max
A∈A

∣∣∣E[X⊤
0 BtA

∣∣Ft−1

]∣∣∣]

Proof. The result is stated in equation (6) of Neu and Olkhovskaya (2020).

B DETAILS OF SECTION 3 (SEMI-BANDIT SETTING)

We explicitly define a sampling scheme usable by the MGR for the semi-bandit case in Sampling Scheme 4.
Lemma 3. Let β ≤ mint,k

1
λmax(Σt,k)

. For any A ∈ A and all x ∈ X Algorithm 2 guarantees

E
[
x⊤(Θ̂t − Θ̃t)A

∣∣Ft−1

]
≤ R

√
mσ e−

Mβγ
|E| λmin(Σ)

simultaneously for all t = 1, . . . , T .
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Sampling Scheme 4 CO2-FTRL Sampling Scheme
Require: Context distribution D, current policy πt, k

1: Draw X ∼ D
2: Draw A ∼ πt(·|X)
3: Output (A)kXX⊤

Proof. By using the fact that P̂k is unbiased we can see that

E
[
Θt − Θ̃t | Ft−1

]
= (I − βΣt,k)

M

Now, by Hölder’s inequality and our assumptions on X , Θt, and A, we have that for any A ∈ A and any x ∈ X

E
[
x⊤(Θt − Θ̃t)A | Ft−1

]
≤ R

√
mσ

∥∥(I − βΣt,k)
M
∥∥

op

Since Σt,k ⪰ Iλmin(Σt,k), we have that ∥(I − βΣt,k)
M∥

op
≤
(
1− βλmin(Σt,k)

)M
and therefore

E
[
x⊤(Θt − Θ̃t)A | Ft−1

]
≤

√
mσR exp

(
−Mβλmin(Σt,k)

)
,

where we used 1 + x ≤ exp(x).

By construction of E πt guarantees that Pt

(
(At)k = 1

)
≥ γ|E|−1. Therefore we may conclude that λmin(Σt,k) ≥

γλmin(Σ)|E|−1.

Lemma 4. Let β = 1
σ2 and let η ≤ ln(2)

M+1 . For any x ∈ X , Āt(x) defined by (5) and any u ∈ A with φ as in equation (4)
guarantees

T∑
t=1

x⊤Θ̃t(Āt(x)− u)

≤
m
(
1 + ln

(
K
m

))
η

+ η

T∑
t=1

K∑
k=1

(x⊤Θ̃t)
2
k(Āt(x))k .

Proof. In order to decompose the regret into auxiliary games, we fix a context x ∈ X .

We define Ft(A) =
∑t

s=1 x
⊤Θ̃sA + φ(A). We will use Orabona (2019, Lemma 7.13) to control the regret. We restate a

less general version in our notation here.

Lemma 15 (Orabona (2019, Lemma 7.13)). Let A to be non-empty and closed and argminA∈A Ft(A) exists and is non-
empty. Assume φ(·) is twice differentiable with a positive definite Hessian in the interior of its domain. Then, for all t =
1, . . . , T there exists a zt on the line segment between Āt(x) = argminA∈Conv(A) Ft−1 and Ãt+1(x) = argminA∈RK Ft

such that the following holds for any u ∈ A

T∑
t=1

x⊤Θ̃t(Āt(x)− u) ≤ φ(u)− φ(Ā1(x)) +
1

2

T∑
t=1

∥∥x⊤Θ̃t

∥∥2(
∂2

(∂zt)
2 φ(zt)

)−1 ,

where
∥∥x⊤Θ̃t

∥∥2(
∂2

(∂zt)
2 φ(zt)

)−1 = x⊤
(

∂2

(∂zt)2
φ(zt)

)−1

x.

Since the Hessian of φ at A is a diagonal matrix with diagonal elements 1/(A)1, . . . , 1/(A)K it is clear to see that this
Hessian is positive definite for all A ∈ int

(
Conv(A)

)
and thus the requirements of the lemma are met.
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We proceed to bound −φ(A) and for any A ∈ Conv(A) we have that

−φ(A) = −1

η

K∑
k=1

(
(A)k ln(A)k − (A)k

)
=

1

η
∥A∥1

K∑
k=1

(
(A)k
∥A∥1

ln
1

(A)k

)
+

∥A∥1
η

≤ 1

η
∥A∥1 ln

(
K∑

k=1

(A)k
∥A∥1

1

(A)k

)
+

∥A∥1
η

≤
m
(
1 + ln(Km )

)
η

, (14)

where in the second inequality we used Jensen’s inequality and in the last inequality we used that x ln(K/x) + x is
increasing in x for x ∈ [1,K] and the assumption that ∥A∥1 ≤ m.

Now, to control the
∥∥x⊤Θ̃t

∥∥2(
∂2

(∂zt)
2 φ(zt)

)−1 term we need to control zt. Recall that by assumption |(x⊤Θt)k| ≤ 1 for any

x ∈ X . Therefore we have that

max
k∈[K]

∣∣ηx⊤(Θ̃t)k
∣∣ = max

k∈[K]

∣∣ηx⊤(Θ̃t)k
∣∣

= max
k∈[K]

∣∣∣ηx⊤Σ̂+
t,kXt(X

⊤
t Θt)k(At)k

∣∣∣
≤ max

k∈[K]

∣∣ηx⊤Σ̂+
t,kXt

∣∣
≤ ησ2 max

k∈[K]

∥∥Σ̂+
t,k

∥∥
op

≤ ησ2β(M + 1)

≤ ln(2),

where the second inequality is Hölder’s inequality, the third inequality is due to Lemma 1, and the last equality holds
since by assumption η ≤ ln(2)

(M+1) and β = 1
σ2 . Since (Ãt+1(x))k = (Āt(x))k exp(−η(x⊤Θ̃t)k) this means that

(Ãt+1(x))k(x) ∈ [0.5Āt(x), 2Āt(x)]. Now, since zt is on the line segment between Ãt+1(x) and Āt(x), it follows
that (zt)k ≤ 2(Āt(x))k for all k ∈ [K]. This in turn implies that∥∥x⊤Θ̃t

∥∥2(
∂2

(∂zt)
2 φ(zt)

)−1 ≤ 2
∥∥x⊤Θ̃t

∥∥2(
∂2

(∂Āt(x))2
φ(Āt(x))

)−1 ,

which, when combined with Lemma 15 and equation (14) completes the proof.

Lemma 5. For any γ ∈ (0, 1) and for all t ∈ [T ] we have that

E

[
K∑

k=1

(
X⊤

0 Θ̃t

)2
k

(
Āt(X0)

)
k

∣∣∣Ft−1

]
≤ 3Kd

1− γ

Proof. By using that X⊤
t (Θt)k ≤ 1 we can see that

EX0

[
E
[ K∑
k=1

(X⊤
0 Θ̃t)

2
k(Āt(X0))k

∣∣∣X0,Ft−1

]∣∣∣Ft−1

]

= EX0

[
E
[ K∑
k=1

(
X⊤

0 Σ̂+
t,kXt(X

⊤
t Θt)k(At)k

)2
(Āt(X0))k

∣∣∣X0,Ft−1

]∣∣∣Ft−1

]

≤ EX0

[
E
[ K∑
k=1

(X⊤
0 Σ̂+

t,kXt)
2(At)k(Āt(X0))k

∣∣∣X0,Ft−1

]∣∣∣Ft−1

]
.



Lukas Zierahn, Dirk van der Hoeven, Nicolò Cesa-Bianchi, Gergely Neu

Now, by writing out the square we can see that

(1− γ)EX0

[
E
[ K∑
k=1

(X⊤
0 Σ̂+

t,kXt)
2(At)k(Āt(X0))k

∣∣∣X0,Ft−1

]∣∣∣Ft−1

]

= (1− γ)EX0

[
E
[ K∑
k=1

X⊤
0 Σ̂+

t,kXtX
⊤
t (At)kΣ̂

+⊤
t,k X0(Āt(X0))k

∣∣∣X0,Ft−1

]∣∣∣Ft−1

]

= (1− γ)EX0

[
K∑

k=1

X⊤
0 Σ̂+

t,kΣt,kΣ̂
+⊤
t,k X0(Āt(X0))k

∣∣∣Ft−1

]
,

where in the last equality we used the definition of Σt,k. Now, using the definition of πt we can see that

(1− γ)EX0

[
K∑

k=1

X⊤
0 Σ̂+

t,kΣt,kΣ̂
+⊤
t,k X0(Āt(X0))k

∣∣∣Ft−1

]

≤ EX0,A∼πt(·|X0)

[
K∑

k=1

X⊤
0 Σ̂+

t,kΣt,kΣ̂
+⊤
t,k X0(A)k

∣∣∣Ft−1

]

= EX0,A∼πt(·|X0)

[
K∑

k=1

tr(Σ̂+
t,kΣt,kΣ̂

+⊤
t,k X0X

⊤
0 (A)k

∣∣∣Ft−1

]

= EMGRt

[
K∑

k=1

tr(Σ̂+
t,kΣt,kΣ̂

+⊤
t,k Σt,k)

∣∣∣Ft−1

]

= EMGRt

[
K∑

k=1

tr(Σt,kΣ̂
+⊤
t,k Σt,kΣ̂

+
t,k)
∣∣∣Ft−1

]
≤ 3Kd,

where the last inequality follows from Lemma 1. Dividing by (1− γ) completes the proof.

Theorem 16. Let β = 1
σ2 , let η ≤ ln(2)

(M+1) , and let γ ∈ (0, 1
2 ). Algorithm 2 guarantees

RT ≤
2m
(
1 + ln

(
K
m

))
η

+ 3ηTKd+ 2γTm+ 2TmσRe−Mβγ
λmin(Σ)

|E|

Furthermore, if M = |E| ln(T )
γβλmin(Σ) , γ = min

{
1,
√

(1+ln(K/m))|E| ln(T )
Tβλmin(Σ)

}
, and η = min

{
ln(2)

(M+1) ,

√
m(1+ln(K

m ))
3KdT

}
then

Algorithm 2 guarantees

RT ≤ 2
√
3dmKT (1 + ln(K/m)) + 6m

√
σ2(1 + ln(K/m))

T |E| ln(T )
λmin(Σ)

+ 2mσR+
m(1 + ln(K/m))

ln(2)

+
2|E| ln(T )mσ2(1 + ln(K/m))

λmin(Σ)
.

Proof. Define

R̃T (x) = E

[
T∑

t=1

(
x⊤Θ̃tĀt(x)− x⊤Θ̃tπ

∗
T (x)

)]

and π∗
T (x) = minA∈A EFT

[∑T
t=1

(
x⊤ΘtA

)]
. We start from a slightly modified version of Lemma 2:

RT ≤ (1− γ)EX0

[
R̃T (X0) + 2E

[ T∑
t=1

max
A∈A

∣∣∣E[X⊤
0 (Θ̂t − Θ̃t)A|Ft−1

]∣∣∣]]+ 2γTm

where we used that EAt
[At|Ft−1, X0] = (1− γ)Āt(X0) +

γ
|E|
∑

A∈E A and that γ
|E|
∑

A∈E X⊤
0 ΘtA ≤ γm.
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Note that since Σt,k ⪯ Σ ⪯ σ2I setting β = 1
σ2 ≤ 1

λmax(Σt,k)
is a valid choice to use in Lemma 3. By Lemma 3 we have

that

2E

[
T∑

t=1

max
A∈A

∣∣∣E[X⊤
0 (Θ̂t − Θ̃t)|Ft−1

]∣∣∣] ≤ 2T
√
mσRe−Mβγ

λmin(Σ)

|E| .

Now, by Lemmas 4 and 5 we have that

(1− γ)EX0

[
R̃T (X0)

]
≤

m
(
1 + ln

(
K
m

))
η

+ 3ηTKd

Combining the above we find

RT ≤
2m
(
1 + ln

(
K
m

))
η

+ 3ηTKd+ 2γTm+ 2T
√
mσRe−Mβγ

λmin(Σ)

|E| .

Now, setting M = |E| ln(T )
γβλmin(Σ) we find

RT ≤
m
(
1 + ln

(
K
m

))
η

+ 3ηTKd+ 2γTm+ 2
√
mσR.

Set γ = min
{
1,
√

(1+ln(K/m))|E| ln(T )
Tβλmin(Σ)

}
to find that M = max

{
|E| ln(T )
βλmin(Σ) ,

√
T |E| ln(T )

(1+ln(K/m))βλmin(Σ)

}
and

RT ≤
m
(
1 + ln

(
K
m

))
η

+ 3ηTKd+ 2m

√
(1 + ln(K/m))

T |E| ln(T )
βλmin(Σ)

+ 2
√
mσR.

Finally, setting η = min
{

ln(2)
(M+1) ,

√
m(1+ln(K

m ))
3KdT

}
and replacing M by its value we find

RT ≤ 2
√
3dmKT (1 + ln(K/m)) + 2m

√
(1 + ln(K/m))

T |E| ln(T )
βλmin(Σ)

+ 2mσR+
(M + 1)m(1 + ln(K/m))

ln(2)

≤ 2
√
3dmKT (1 + ln(K/m)) + 6m

√
(1 + ln(K/m))

T |E| ln(T )
βλmin(Σ)

+ 2mσR+
m(1 + ln(K/m))

ln(2)

+
2|E| ln(T )m(1 + ln(K/m))

βλmin(Σ)
,

after which replacing β = 1
σ2 completes the proof.

C DETAILS OF SECTION 5 (LOWER BOUNDS)

Before we prove the lower bound we first describe a peculiar property of our estimators. Suppose X consists of only basis
vectors. Also suppose that in round t the context was a basis vector in direction i. Then the feedback obtained at round t
does not affect the algorithm’s prediction at all subsequent rounds where the context is a basis vector in direction i′ ̸= i.
More formally if Xt = ei ̸= ej = Xt′ then for all A

X⊤
t′ Θ̃tA = 0.

The proof of this statement can be found in Lemma 17. This implies that equation (5) in Algorithm 2 reduces to

Āt(ei) = argmin
A∈Conv(A)

t−1∑
s=1

e⊤i Θ̃sA+ φ(A) = argmin
A∈Conv(A)

∑
s<t :Xs=ei

e⊤i Θ̃sA+ φ(A)

Similarly equation (9) of Tensor-Exp3 (Algorithm 3) reduces to

wt(Xt, A) = exp

(
−η

t−1∑
s=1

X⊤
t Θ̃sA

)
= exp

(
−η

∑
s<t :Xs=ei

X⊤
t Θ̃sA

)
.

Hence, both algorithms ignore feedback from any previous round s in which Xt ̸= Xs.
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Lemma 17. Let X consist of only basis vectors and pick some t ∈ [T ]. Let Xt′ ̸= Xt and let A ∈ A, then

X⊤
t′ Θ̃tA = 0

holds for the biased and unbiased estimators of CO2-FTRL (equation (3) and equation (2)) as well as the biased and
unbiased estimators of Tensor-EXP3 (equation (8) and equation (7)).

Proof. First we introduce the concept of a n-sparse matrix which we define as a matrix such that Ai,j = 0 if i ̸≡ j mod n.

Now let D and E be n-sparse, then so is E +D as well as ED, which we can recognise by spelling out

ED = {Ea
bDb

c}a c.

Then ED at the index a, c can only be non-zero if there exist some b such that a ≡ b mod n and c ≡ b mod n, which
can only exist if a ≡ c mod n.

Let P̂+ be a sample of the MGR process, we can conclude that it is n-sparse if all samples P̂j are also n-sparse by writing
out

P̂+ = β

M∑
k=0

k∏
j=1

(I − βP̂j).

Let P̂ ∈ Rd×d be a sample generated by the Sampling Scheme 4, used by CO2-FTRL. Then P̂ is diagonal and thus
d-sparse. It follows that Σ−1

t,k is also diagonal for all k. Let Xt′ = ei and Xt = ej and pick k ∈ [K]. We now consider the

kth entry of the product X⊤
t′ Θ̃t, given by the biased estimator for CO2-FTRL as defined in equation (3). First we recognise

that Xt′ selects the ith row in the first equality. In the second equality we pull out the scalars (X⊤
t Θt)k(At)k and we finish

in the last equality be recognising that Xt selects the jth column.

(X⊤
t′ Θ̃t)k = (Θ̃t)i,k

= (Σ−1
t,kXt(X

⊤
t Θt)k(At)k)i

= (Σ−1
t,kXt)i(X

⊤
t Θt)k(At)k

= (Σ−1
t,k)i,j(X

⊤
t Θt)k(At)k

From here it is clear that (Σ−1
t,k)i,j can only be non-zero if i = j and if j ̸= i, we conclude that

X⊤
t′ Θ̃tA = 0,

showing the first result.

For the biased estimator of Tensor-EXP3, as given in equation (8), we investigate (B ⊗ C)F for some matrices B,C. By
the definition of ⊗ (Definition D.6) and flattening (Definition D.8), we have that

(B ⊗ C)F = ({Ba
bC⊤

c
d}a b

c
d)F

= {B(a mod m)+1
(b mod m)+1C⊤

⌊b/m⌋+1
⌊a/m⌋+1}a b.

If B is now a diagonal matrix of dimension n, then it is clear that any entry of (B ⊗ C)F at the index a, b must be zero
if a ̸≡ b mod n, we conclude that (B ⊗ C)F is n-sparse. It follows that any P̂ drawn using Sampling Scheme 5, the
sampling scheme associated with Tensor-Exp3, is d-sparse. As a conclusion Ψ̂+

t
F is also d-sparse.

Unflattening (Definition D.9) some n-sparse matrix C ∈ Rmn×mn can only be non-zero for some indices a, b, c, d if a ≡ b
mod n as CU

a
b
c
d = C(a−1)+(d−1)n

(b−1)+(c−1)n.

We first apply the definition of Θ̃t (equation (8)) and then apply Lemma 7

X⊤
t′ Θ̃tA = Xt′Ψ̂

+
t

(
XtX

⊤
t ΘtAtA

⊤
t

)
A

= X⊤
t′ Ψ̂

+
t

(
(XtX

⊤
t ⊗AtA

⊤
t )
)
(Θt)A

= X⊤
t′ {Ψ̂+

t a
b
c
dXt bX

⊤
t

eAt fA
⊤
t

c)}a e
f
d(Θt)A

= {X⊤
t′

aΨ̂+
t a

b
c
dXt bX

⊤
t

eAt fA
⊤
t

c)}a e
f
d(Θt)A = 0,
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where in the third equality we used definitions of the tensor product (Definition D.6) and of Ψ(Φ) (Definition D.1). The
final equality is due to the fact that Ψ̂+

t a
b
c
d = 0 if a ̸= b that for any Xt′ ̸= Xt and any A.

For the unbiased estimator of CO2-FTRL, as given in equation (2), it is enough to simply recognise that
EAt,X

[
(At)kXX⊤ | Ft−1

]
is always diagonal if all X are basis vectors. The statement follows by the same arguments

as above. For the unbiased estimator of Tensor-EXP3, as given in equation (8), we recognise that applying the MGR with
Sampling Scheme 5 and M = ∞ yields Ψ−1F

t as shown in Section 3.2 of Neu and Olkhovskaya (2020). To find the i, j
coordinate of Ψ−1F

t we can write

(Ψ−1F
t )i,j =

(
β

∞∑
k=0

Ck

)
i,j

= β

∞∑
k=0

(Ck)i,j ,

where all Ck, as defined by the MGR, are d-sparse as shown above. The rest of the argument follows as above by thus
recognising Ψ−1F

t as d-sparse.

Theorem 18. In the semi-bandit setting, for all T ≥ 0.0064 dK3 and for any possibly randomized orthogonal algorithm,
there exists a sequence of losses Θ1, . . . ,ΘT such that RT ≥ 0.017

√
dmKT .

Proof. In the construction of the lower bound we consider sequences of losses that are independent of the actions of the
learner and contexts. The contexts are basis vectors sampled uniformly at random. For any sequence of (randomized)
context to action mapping πt we have that

RT = E
[ T∑

t=1

e⊤i Θtπt(ei)− min
A∈A

T∑
t=1

e⊤i ΘtA
]

= E
[ T∑

t=1

(Θt)i,·πt(ei)− min
A∈A

T∑
t=1

(Θt)i,·A
]
.

Note that introduced the ghost sample X0 = ei as in Lemma 2.

Since we assume that πt is a orthogonal algorithm, it does not use information from rounds in which Xs ̸= ei for s < t to
compute πt.

To prove the lower bound we will use Yao’s minimax principle, which tells us that it is sufficient to provide a stochastic
strategy for the adversary on which the expected regret of any deterministic algorithm is lower bounded. In the construction
of the lower bound the action set A is the set of basis vectors. The losses are generated as follows. We sample Z from
the uniform distribution over [K]. Conditioned on Z = k, the loss (Θt)i,k′ is sampled from an independent Bernoulli
distribution with mean 1

2 if k′ ̸= k and it is sampled from Bernoulli distribution with mean 1
2 − ϵ for some ϵ ∈ [0, 1

4 ].

We follow the proof of Theorem 7 by Esposito et al. (2022). Esposito et al. (2022) construct a lower bound for online
learning with stochastic feedback graphs, where the only edges in the feedback graphs are self loops which realise with
probability 1

d (the lower bound constructed by Esposito et al. (2022) is more general, but for our results we only require
this particular instance).

Random variables T1, . . . , TK denote the number of times that the learner played an πt(ei) = Ai
t such that (Ai

t)k = 1.
For each k ∈ [K] we introduce notations Pk and Ek to denote the probability and expectation with respect to the marginal
distributions under which Z = k. From equation (16) in (Esposito et al., 2022) we have that for any deterministic algorithm

RT ≥ ϵ

(
T − 1

K

K∑
k=1

Ek[Tk]

)

We also consider auxiliary distribution P0, which is equivalent to distribution Pk as specified above but with ϵ = 0 for all
k. We denote the corresponding expectation by E0. Denote by λt the feedback set in round t. Denote by λt = (λ1, . . . , λt)
the tuple of feedback sets the learner has access to in round t+ 1.

Since the action πt(ei) is fully determined by λt−1, the central object of interest is the distribution over λt−1 and in
particular the information the learner gains from observing certain losses. Observe that if the action in round t given λt−1

is not equal to ek then the learner does not obtain any information. If the action of the learner given the history of losses is
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equal to ek the learner only obtains information if Xt = ei. To formalise this idea, we use equation (17) of Esposito et al.
(2022):

Ek[Tk]− E0[Tk] ≤

√√√√ 1
2

T∑
t=1

∑
λt−1

KL(P0,t∥Pk,t),

where Pk,t(λt) = Pk(λt|λt−1) and KL is the KL-divergence. Since the distribution of λt given λt−1 is the same under P0

and Pk when πt(ei) ̸= ek the KL-divergence is 0. If πt(ei) ̸= ek then with probability 1
d the learner observes the loss and

with probability 1− 1
d the learner does not observe anything. Thus, by equation (18) of Esposito et al. (2022) we have that

KL(P0,t∥Pk,t) ≤ 8 ln(4/3)ϵ2 1
d . Thus, for all T ≥ 0.0064 dK3, we can now simply follow the remainder of the proof of

Theorem 7 of Esposito et al. (2022) and use the same parameters to arrive at(
E

[
T∑

t=1

(Θt)i,·πt(ei)

]
− E

[
min
A

T∑
t=1

(Θt)i,·A

])
≥ 0.017

√
dKT .

Therefore, we may conclude that any orthogonal algorithm satisfies

RT ≥ 0.017
√
dKT

which, after observing that m = 1, completes the proof.

Theorem 19. Suppose T ≥ dmK and that K ≥ 2m. In the full-bandit setting, any orthogonal algorithm satisfies

RT ≥ m3/2
√
dKT

16(192 + 96 ln(T ))

Proof. As in the proof of Theorem 18 the proof heavily relies on the following. In the construction of the lower bound we
consider sequences of losses that are independent of the actions of the learner and contexts. The context are basis vectors
sampled uniformly at random. For any sequence of (randomized) context to action mapping πt we have that

RT = E
[ T∑

t=1

e⊤i Θtπt(ei)− min
A∈A

T∑
t=1

e⊤i ΘtA
]

= E
[ T∑

t=1

(Θt)i,·πt(ei)− min
A∈A

T∑
t=1

(Θt)i,·A
]
.

Note that introduced the ghost sample X0 = ei as in Lemma 2. Since we assume that πt is an orthogonal algorithm, it
does not use information from rounds in which Xs ̸= ei for s < t to compute πt. For simplicity we write Ai

t = πt(ei)
and assume that n = K/m is an integer. The set of actions we consider is

A =

A ∈ {0, 1}K : ∀j ∈ [m]

jn∑
k=(j−1)n+1

Ak = 1

 .

In other words, we consider m instances of the n-armed bandit problem.

As in to the proof of Theorem 18, to prove the lower bound we use Yao’s minimax principle. The sequence of stochastic
losses that we use is almost exactly the same as the sequence of stochastic losses chosen by Cohen et al. (2017).

As in the proof of the lower bound by Cohen et al. (2017), we first construct an environment which generates unbounded
losses, after which we adapt the lower bound to the bounded loss setting.

Let ε = σ
√

dmK/4T for some σ > 0. In each of the m bandit problems, the environment samples the best action
uniformly at random. Denote by A⋆ ∈ A the vector of the best composite action. In every round t, the environment
samples ζt ∼ N (0, σ) and sets (Θt)i,k = 1

2 − ε(A⋆)k + ζt.

We now follow the proof by Cohen et al. (2017, Lemma 4). We denote by a⋆1, . . . , a
⋆
n the locations of the non-zero

coordinates of A⋆, arranged in increasing order. Random variables T1, . . . , Tm denote the number of times that the learner
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played an Ai
t such that (Ai

t)a⋆
j
= 1. For each A ∈ A we introduce notations PA and EA to denote the probability and

expectation with respect to the marginal distributions under which A = A⋆. By Cohen et al. (2017, equation (5)) we have
that

E

[
T∑

t=1

(Ai
t −A⋆)(Θt)·,i

]
= ε

mT −
m∑
j=1

1

nm

∑
A∈A

EA[Tj ]

 . (15)

For every A ∈ A we also define the auxillary distribution PA,−j and corresponding expectation EA,−j . This is the same
distribution as PA except with (Θt)i,k = 1

2 + ζt. Denote by λt the loss observed in round t and by λt = (λ1, . . . , λt)
the tuple of losses observed up to and including round t. Crucially, λt might be empty since the learner does not observe
(Θt)·,i whenever Xt ̸= ei. Since the sequence λT determines the actions of the algorithm over the game we have that by
Pinsker’s inequality

EA[Tj ]− EA,−j [Tj ] ≤ T
√

1
2KL

(
PA[λT ]∥PA,−j [λT ]

)
= T

√
1
2Eλt−1∼PA,−j

[
KL
(
PA[λt|λt−1]∥PA,−j [λt|λt−1]

)]
(16)

We now shift our attention to the single terms in the sum. If Xt ̸= ei then λt is the same under PA and PA,−j irrespective
of Ai

t and thus the KL divergence is 0. Similarly, if (Ai
t)a⋆

j
= 0 then λt is the same under PA and PA,−j . Otherwise, if

Xt ̸= ei and (Ai
t)a⋆

j
= 1 then PA and PA,−j are Gaussian distributions with the same variance σ2m2 whose means are ε

apart. Therefore, by the log-sum inequality we have that

KL
(
PA[λt|λt−1]∥PA,−j [λt|λt−1]

)
= KL

(
(1− 1

d )PA[λt|λt−1, Xt ̸= ei] +
1
d PA[λt|λt−1, Xt = ei] ∥ (1− 1

d )PA,−j [λt|λt−1, Xt ̸= ei]

+ 1
d PA,−j [λt|λt−1, Xt = ei]

)
≤ 1

d
KL
(
PA,−j [λt|λt−1, Xt = ei] ∥ PA,−j [λt|λt−1, Xt = ei]

)
=

ε2

d2m2σ2

Using the above inequality in equation (16) we can see that

EA[Tj ] ≤ EA,−j [Tj ] +
εT

2mσ2

√√√√ 1
d

T∑
t=1

PA,−j [(Ai
t)a⋆

j
= 1]

= EA,−j [Tj ] +
εT

2mσ2

√
1
dEA,−j [Tj ].

Thus, by Jensen’s inequality we have that

1

nm

∑
A∈A

EA[Tj ] ≤
1

nm

∑
A∈A

EA,−j [Tj ] +
εT

2mσ2

1

nm

∑
A∈A

√
1
dEA,−j [Tj ]

≤ 1

nm

∑
A∈A

EA,−j [Tj ] +
εT

2mσ2

1

nm

∑
A∈A

√
1

dnm

∑
A∈A

EA,−j [Tj ]

≤ T

2
+

εT

2σ

√
T

dmK

where the last inequality follows from Lemma 7 by Cohen et al. (2017) and the assumption that K ≥ 2m.

Returning to equation (15) we can see that

E

[
T∑

t=1

(Ai
t −A⋆)(Θt)·,i

]
≥ εm

(
1
2 − ε

2σ

√
T

dmK

)
=

σ

8
m3/2

√
dKT
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where the equality follows from ε = σ
√
dmK/4T .

As a final step we have to convert the regret on the unconstrained sequence of losses to the regret on a constrained sequence
of losses. Luckily the steps in the proof of Cohen et al. (2017, Theorem 5) apply to our setting too, and we can see that as
long as T ≥ dmK we can simply set σ2 = 1

192+96 ln(T ) and choose losses (Θt)
′
i,k = max

{
min{(Θt)i,k, 1}, 0

}
to show

that

RT ≥ m3/2
√
dKT

16(192 + 96 ln(T ))

which completes the proof.

D TENSOR BACKGROUND

In this section of the appendix we will rigorously introduce tensors. While tensors enjoy a wide employment in physics
and other fields, to the best of our knowledge this is their first usage in bandit literature which justifies some background
on tensors. Nevertheless, we only define some narrow concepts which may or may not align with how tensors have been
used before.

Let Rd be a vectorspace made up of (column) vectors x ∈ Rd equipped with the standard basis. Covectors are now (row)
vectors, which are elements of the dual space that are linear functions that map vectors to the reals, i.e., covectors are
elements of the form f : Rd → R. Thus we can combine a vector and a covector to a single real number or we could
combine two covectors and get a function that takes two vectors as arguments and then returns a real number.

Tensors are now made up of vectors and covectors and we will write the rank of a vector as rank(a, b), where a is the
number of vector and b the number of covector elements. A vector is of rank(1, 0), a covector is rank(0, 1), a matrix is
of rank(1, 1). We will primarily be interested in tensors of rank(2, 2). While vectors and matrices are also tensors, from
here on out we will usually only refer to rank(2, 2) tensors as tensors, which we denote by Φ,Ψ ∈ Rm×m×n×n. It is
not required for general tensors that the first two and last two dimension agree but that will be the case for all tensors we
will consider. Furthermore, we will also follow the notation introduced by Einstein (1916) and index vector elements by a
lower index like this xi and covectors with an upper index like this xi. Since a matrix is made up of a vector and covector
part, we will index it as follows Ai

j . The Einstein notation also seeks to omit a lot of the sums and clutter associated with
writing tensors usually. Instead of writing all sums explicitly, when an indexing variable appears once in a vector and once
in a covector component then we are implicitly summing over the variable, if it only appears once then it is an index, let
B,C ∈ Rm×n and x ∈ Rn:

Bi
jxj =

m∑
j

Ai
jxj = (Bx)i

Bi
kCk

j =

m∑
k

Bi
kCk

j = (BC)i,j .

Finally, we will extend the notation by curly brackets that collect all free parameters and compile them to a single object,
which gives greater clarity on which parameters act as free indices and which are being summed over:

Bx =
∑
j

Bi
jxj = {Bi

jxj}i

BC =
∑
k

Bi
kCk

j = {Bi
kCk

j}i j

x⊤Bx =
∑
i

∑
j

x⊤ iBi
jxj = {x⊤ iBi

jxj}R,

where {·}R is a real number, i.e., all indices are being summed over. To reiterate, {Ψa
b
c
d}a b

c
d is a tensor, Ψa

b
c
d ∈ R

is an element of Ψ at the position a, b, c, d, and {Ψa
b
c
d}R ∈ R is obtained by summing over all indices of the tensor.
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Definition D.1. Let Ψ,Φ ∈ Rm×m×n×n and B,C ∈ Rm×n, then we will define the following basic operations

Ψ(B) = {Ψa
b
c
dBb

c}a d

Ψ ·B = {Ψa
b
c
dBd

e}a b
c
e

Ψ(Φ) = {Ψa
b
c
dΦb

e
f
c}a e

f
d

B(C) = {Ba
bCb

a}R
B ·Ψ = {Be

aΨa
b
c
d}e b

c
d.

Here it is important to pay close attention to the dimensions of each element. Ψ(A) is rank(1, 1) tensor, i.e., a matrix while
Ψ ·A is a rank(2, 2) tensor. All of the above operations are linear.

We denote by δa,b the Kronecker delta defined as δa,b = 1[a = b] with the indicator function 1 which is 1 if the condition
is true and 0 otherwise. The neutral element in our tensor space is given in the following definition.

Definition D.2. We will call the neutral element of the tensor space I and define it as follows I = {δa,bδc,d}a b
c
d =

{1[a = b ∧ c = d]}a b
c
d.

Thus, Ia b
c
d is one if a = b and c = d and zero otherwise, in a sense the elements of any tensor where Ψa

a
b
b for some

a, b can be seen as the diagonal of the tensor and we will define the trace in terms of these elements later. I is then the
tensor with ones on the diagonal and zeros everywhere else.

Observe that I in fact is the identity for all operations defined above:

I(B) = {Ia b
c
dBb

c}a d = B

I(Ψ) = {Ia b
c
dΨb

e
f
c}a e

f
d = Ψ.

We will define the inverse Φ of a tensor Ψ in terms of this neutral element I as follows.

Definition D.3. Let Φ be a tensor, we will call Φ an inverse of Φ if

Φ(Ψ) = I ⇐⇒ {Ψa
b
c
dΦb

e
f
c}a e

f
d = {δa,eδf,d}a e

f
d.

If such a Φ exists, it will also be denoted by Ψ−1 and we will call Φ invertible if Ψ−1 exists.

Lemma 20. Let Ψ, Φ be tensors of equal dimension and let B be a matrix of appropriate dimension, then tensors are
associative:

Φ(Ψ(B)) = (Φ(Ψ))(B).

Proof. The proof follows from repeatedly applying the definition of Ψ(B) and Φ(Ψ) in D.1.

Φ(Ψ(B)) = Φ({Ψa
b
c
dBb

c}a d)

= {Φe
a
d
fΨa

b
c
dBb

c}e f )

= {(Φ(Ψ))e
b
c
fBb

c}e f

= (Φ(Ψ))(B).

We now introduce our definition of the Frobenius inner product.

Definition D.4. Let Ψ, Φ be tensors. The Frobenius inner product between Ψ and Φ is defined as

⟨Ψ,Φ⟩ = {Ψa
b
c
dΦb

a
d
c}R.

For matrices B,C the Frobenius inner product is defined as

⟨B,C⟩ = {B a
bCb

a}R = B(C).

The following Lemma characterises how the inner product acts on inverses.
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Lemma 21. Let Ψ ∈ Rm×m×n×n, be invertible, then

⟨Ψ,Ψ−1⟩ = mn.

For this proof, it is more intuitive to write the sums explicitly, first we apply the definition of ⟨·, ·⟩ (Definition D.4), then
reordering the sums, then applying the definition of Ψ(Φ) (Definition D.1), while the last steps only consist of applying
the definition of Ψ−1 (Definition D.3) and I (Definition D.2).

Proof.

⟨Ψ,Ψ−1⟩ = {Ψa
b
c
dΨ−1

b
a
d
c}R

=

m∑
a

m∑
b

n∑
c

n∑
d

Ψa
b
c
dΨ−1

b
a
d
c

=

m∑
a

n∑
d

n∑
c

m∑
b

Ψa
b
c
dΨ−1

b
a
d
c

=
m∑
a

n∑
d

Ψ(Ψ−1)a
a
d
d

=

m∑
a

n∑
d

Ia a
d
d

= mn.

We will also need to define the transpose of the tensor.

Definition D.5. Let Ψ be a tensor, then the transpose of Ψ is defined as

Ψ⊤
a
b
c
d = Ψb

a
d
c.

A tensor is called symmetric iff it is invariant under transpose, i.e., Ψ⊤ = Ψ.

Lemma 22. Let Φ be an invertible tensor, then transposing and inverting can be interchanged, i.e.,

(Ψ−1)⊤ = (Ψ⊤)−1.

Proof. We will show the claim be showing that (Ψ−1)⊤ is the inverse of Ψ⊤ by first applying the definition of Φ(Ψ)
(Definition D.1), applying the definition of the transpose (Definition D.5) twice, reordering and applying the transpose to
the entire expression and finally applying Φ(Ψ) again:

(Ψ−1)⊤(Ψ⊤) = {(Ψ−1)⊤ a
b
c
dΨ⊤

b
e
f
c}a e

f
d

= {Ψ−1
b
a
d
cΨ e

b
c
f}a e

f
d

= {Ψ e
b
c
fΨ−1

b
a
d
c}a e

f
d

=
(
{Ψ e

b
c
fΨ−1

b
a
d
c}e a

d
f
)⊤

= (Ψ(Ψ−1))⊤.

We write the tensor product as ⊗. It will take two arbitrary tensors as input and output another tensor, we will only
concretely define the following for two vectors x, y and two matrices B,C:

Definition D.6. Let x, y be vectors and B,C be matrices, then we define the tensor product ⊗ as follows

(x⊗ y) = xay
⊤ b = xy⊤

(B ⊗ C) = Ba
bC⊤

c
d.
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It is important to notice that x ⊗ y is a matrix of rank(1, 1) and (B ⊗ C) is a tensor of rank(2, 2). The following Lemma
details the relationship between the tensor product and tensor matrix operations.

Lemma 7. DCB⊤ = (D ⊗B)(C), where B,C,D are matrices of appropriate size.

Proof. We will proof by starting from the other side and applying the definition of the tensor product (Definition D.6),
followed by the definition of Φ(Ψ) (Definition D.1) and rearranging.

(D ⊗B)(C) = ({Da
bB⊤

c
d}a b

c
d)(C)

= {Da
bB⊤

c
dCb

c}a d

= {Da
bCb

cB⊤
c
d}a d

= DCB⊤.

Lemma 23. Let B and C be symmetric matrices such that B = B⊤ and C = C⊤, now (B ⊗ C) is a symmetric tensor,
i.e.,

(B ⊗ C) = (B ⊗ C)⊤

Proof. Fix some a, b, c, d. First we use the definition of the tensor product (Definition D.6), and then we use the fact
that both B and C are symmetric. Then we use the definition of transposing for matrices and finally recognise the tensor
product again

(B ⊗ C)a
b
c
d = Ba

bCc
d

= B⊤
a
bC⊤

c
d

= Bb
aCd

c

= (B ⊗ C)⊤ a
b
c
d.

Next we introduce summing over tensors.

Definition D.7. Let Ψ,Φ be tensors, then Ψ+Φ = {Ψa
b
c
d +Φa

b
c
d}a b

c
d.

Lemma 24. Let C,B1, . . . , BN be matrices, then

N∑
n=1

(C ⊗Bn) = (C ⊗
N∑

n=1

Bn).

Proof. We will immediately apply the definition of the tensor outer product (Definition D.6), applying the definition of
summing tensors (Definition D.7) N times, using the associative property of Ca

b for any given a, b and finally the definition
of the tensor product (Definition D.6) again.

N∑
n=1

(C ⊗Bn) =

N∑
n=1

{Ca
bB⊤

n c
d}a b

c
d

= {
N∑

n=1

Ca
bB⊤

n c
d}a b

c
d

= {Ca
b

(
N∑

n=1

B⊤
n

)
c
d}a b

c
d

= (C ⊗
N∑

n=1

Bn)
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Lemma 25. Let Ψ be a tensor and let x, y, v, w be vectors, then

x⊤Ψ(yw⊤)v = ⟨Ψ, (yx⊤ ⊗ vw⊤)⟩ and ⟨wx⊤,Ψ(yv⊤)⟩ = ⟨Ψ, (yx⊤ ⊗ vw⊤)⟩

Proof. First we will write x⊤Ψ(yw⊤)v in tensor notation and then apply the Frobenius inner product (Definition D.4)
alongside the definition of the tensor product (Definition D.6)

x⊤Ψ(yw⊤)v = {x⊤ aΨ a
b
c
dy bw

⊤ cv d}R
= {Ψ a

b
c
dx⊤ ay bw

⊤ cv d}R
= ⟨Ψ, {x⊤ ay bw

⊤ cv d}b a
d
c⟩

= ⟨Ψ, {(yx⊤)b
a(vw⊤)d

c}b a
d
c⟩

= ⟨Ψ, (yx⊤ ⊗ vw⊤)⟩.

We will show the second statement by applying the common definition of the Frobenius inner product for matrices, followed
by applying the first half of the lemma

⟨wx⊤,Ψ(yv⊤)⟩ = {w bx
⊤ aΨ(yv⊤)a

b}R
= x⊤Ψ(yv⊤)w

= ⟨Ψ, (yx⊤ ⊗ vw⊤)⟩.

Next we relate previous definitions and operations to standard linear algebra. In order to do so we need the following
definitions, the first of which is the flattening operation that can act on a tensor or matrix.
Definition D.8. Let Ψ ∈ Rm×m×n×n be a tensor and A ∈ Rm×n be a matrix, then

ΨF
a
b = Ψ(a mod m)+1

(b mod m)+1
⌊b/m⌋+1

⌊a/m⌋+1

AF
a = A(a mod m)+1

⌊a/m⌋+1

Furthermore ΨF ∈ Rmn×mn and A ∈ Rmn.

Note that in the definition above there is a +1 is the indexes. These are necessary since our indices start counting from 1
and not from 0.

Similarly, we define how to unflatten a matrix or a vector.
Definition D.9. Let A ∈ Rmn×mn be a matrix and x ∈ Rmn be a vector, then we will define

AU
a
b
c
d = A(a−1)+(d−1)m

(b−1)+(c−1)m

xU
a
b = x(a−1)+(b−1)m

Furthermore AU ∈ Rm×m×n×n and x ∈ Rm×n.

We will not show this but to gain some intuition, observe that flattening the tensor product of two matrices is equal to the
Kronecker product of those matrices.

Next, we show that unflattening a flattened tensor recovers the original tensor.
Lemma 26. Let Ψ be a tensor, then unflattening is the inverse of flattening

(ΨF )U = Ψ.

Proof. Fix some a, b, c, d, then we first apply the definition of unflattening (Definition D.9) followed by the definition of
flattening (Definition D.8)

(ΨF )U a
b
c
d = ΨF

(a−1)+(d−1)m
(b−1)+(c−1)m

= Ψ((a−1)+(d−1)m mod m)+1
((b−1)+(c−1)m mod m)+1

(⌊(b−1)+(c−1)m/m⌋)+1
(⌊(a−1)+(d−1)m/m⌋)+1

= Ψa
b
c
d.
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Lemma 27. Let Ψ be a tensor, then ΨF is symmetric if and only if Ψ is symmetric.

Proof. Let Ψ be symmetric, we will now show that ΨF is symmetric. For that we use the definition of flattening (Defini-
tion D.8) alongside the symmetry of Ψ.

ΨF
a
b = Ψ(a mod m)+1

(b mod m)+1
⌊b/m⌋+1

⌊a/m⌋+1 = Ψ(b mod m)+1
(a mod m)+1

⌊a/m⌋+1
⌊b/m⌋+1 = ΨF

b
a

Now let ΨF be symmetric, now we show that Ψ is too. First we use the definition of unflatteing (Definition D.9) alongside
the symmetry of ΨF to show

Ψa
b
c
d = ΨF

(a−1)+(d−1)m
(b−1)+(c−1)m = ΨF

(b−1)+(c−1)m
(a−1)+(d−1)m = Ψb

a
d
c.

Lemma 28. Let Ψ,Φ ∈ Rm×m×n×n be tensors and B ∈ Rn×n a matrix, then Ψ acting on B or Φ is equivalent in the
higher or lower dimensional space

Ψ(Φ) = (ΨFΦF )U

Ψ(B) = (ΨFBF )U

where ΨFΦF is employing the usual matrix multiplication.

Proof. We start with the first claim by using the definition Ψ(B) and Φ(Ψ) (Definition D.1), writing the sums explicitly,
reindexing, applying the definition of flattening (Definition D.8) and recognising a matrix product before finally using the
definition of unflattening (Definition D.9)

Ψ(Φ) = {Ψa
b
c
dΦb

e
f
c}a e

f
d

= {
m∑
b=1

n∑
c=1

Ψa
b
c
dΦb

e
f
c}a e

f
d

= {
mn∑
i=1

Ψa
(i mod m)+1

⌊i/m⌋+1
dΦ(i mod m)+1

e
f
⌊i/m⌋+1}a e

f
d

= {
mn∑
i=1

ΨF
(a−1)+(d−1)m

iΦF
i
(e−1)+(f−1)m)}a e

f
d

= {(ΨFΦF )(a−1)+(d−1)m)
(e−1)+(f−1)m)}a e

f
d

= (ΨFΦF )U .

The second part of the proof follows the exact same steps except recognising a matrix vector product instead of a matrix
product in the second to last step

Ψ(B) = {Ψa
b
c
dBb

c}a d

= {
m∑
b=1

n∑
c=1

Ψa
b
c
dBb

c}a d

= {
mn∑
i=1

Ψa
(i mod m)+1

⌊i/m⌋+1
dB(i mod m)+1

⌊i/m⌋+1}a d

= {
mn∑
i=1

ΨF
(a−1)+(d−1)m)

iBF
i}a d

= {(ΨFBF )(a−1)+(d−1)m)}a d

= (ΨFBF )U .
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Lemma 29. Let Φ be an invertible tensor, then flattening and inverting can be interchanged, i.e.

(Ψ−1)F = (ΨF )−1

Proof. We will show that (Ψ−1)F is the inverse of ΨF by first using the fact that flattening and unflattening cancel another
(Lemma 26), followed by applying Ψ(Φ) = (ΨFΦF )U (Lemma 28) and the definition of Ψ−1 (Definition D.3)

ΨF (Ψ−1)F = ((ΨF (Ψ−1)F )U )F

= (Ψ(Ψ−1))F

= (I)F

= I

⇒(Ψ−1)F = (ΨF )−1

Lemma 30. Let Ψ be a tensor, then transposing and flattening can be interchanged, i. e.

Ψ⊤F = ΨF⊤

Proof. Fix some a, b. First we apply the definition of flattening (Definition D.8) and then the definition of transposing
(Definition D.5). We then proceed using the definition of flattening followed by the definition of transposing one more
time.

Ψ⊤F
a
b = Ψ⊤

(a mod m)+1
(b mod m)+1

⌊b/m⌋+1
⌊a/m⌋+1

= Ψ (b mod m)+1
(a mod m)+1

⌊a/m⌋+1
⌊b/m⌋+1

= Ψ (b mod m)+1
(a mod m)+1

⌊a/m⌋+1
⌊b/m⌋+1

= ΨF
b
a

= ΨF⊤
a
b

Next we will show two quick facts about how flattening and the tensor product interact

Lemma 31. Let Ψ be a tensor and let x, y, v, w be vectors, then we can perform the tensor product on x, y, v, w in a lower
dimension

(xy⊤ ⊗ wv⊤) =
(
(xw⊤)F ⊗ (vy⊤)F

)U
Proof. We start by applying the definition of the tensor product (Definition D.6), followed by the fact that flattening
and unflattening cancel another (Lemma 26), then the definition of flattening (Definition D.8), some rearranging before
applying the same flattening definition for matrices twice, lastly we apply the tensor product one more time

(xy⊤ ⊗ wv⊤) = {x ay
⊤ bv cw

⊤ d}a b
c
d

= (({x ay
⊤ bv cw

⊤ d}a b
c
d)F )U

=
(
{x(a mod m)+1y

⊤ (b mod m)+1v⌊b/m⌋+1w
⊤ ⌊a/m⌋+1}a b

)U
=
(
{x(a mod m)+1w

⊤ ⌊a/m⌋+1v⌊b/m⌋+1y
⊤ (b mod m)+1}a b

)U
=
(
{(xw⊤)F a((vy

⊤)F )⊤ b}a b
)U

=
(
(xw⊤)F ⊗ (vy⊤)F

)U
.
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Lemma 32. Let Ψ be a tensor and let x, y, v, w be vectors, then we also perform the Frobenius inner product between Ψ
and (xy⊤ ⊗ wv⊤) in a lower dimension

⟨Ψ, (xy⊤ ⊗ wv⊤)⟩ = ((yv⊤)F )⊤ΨF (xw⊤)F

Proof. First we apply the definition of the Frobenius inner product (Definition D.4), then the definition of the tensor prod-
uct, (Definition D.6), some rearranging, then we change the indexing by using the definition of flattening (Definition D.8)
on Ψ and then twice again on the vectors, finally we recognise the product between two tensors and a matrix

⟨Ψ, (xy⊤ ⊗ wv⊤)⟩ = {Ψa
b
c
d(xy⊤ ⊗ wv⊤)b

a
d
c}R

= {Ψa
b
c
dx by

⊤ av dw
⊤ c}R

= {Ψa
b
c
dy⊤ ax bw

⊤ cv d}R
= {ΨF

a
by⊤ (a mod m)+1x (b mod m)+1w

⊤ ⌊b/m⌋+1v ⌊a/m⌋+1}R
= {ΨF

a
b((yv⊤)F )⊤ a(xw⊤)F b}R

= ((yv⊤)F )⊤ΨF (xw⊤)F .

Lemma 33. Let B be a matrix and x, y be vectors, then

x⊤By = (xy⊤)F⊤BF

Proof. First we write x⊤B in the tensor notation and regroup y and x⊤ to a single matrix. Then we re-index by writing
the sums explicitly. Now we can transpose yx⊤ and use the flatten operator (Definition D.8)). Finally we write in Einstein
notation again and conclude by recognising the quantity on the left-hand side.

x⊤By = {x⊤ aBa
byb}R

= {(yx⊤)b
aBa

b}R
=
∑
i

(yx⊤)⌊i/m⌋+1
(i mod m)+1B(i mod m)+1

⌊i/m⌋+1

=
∑
i

(xy⊤)(i mod m)+1
⌊i/m⌋+1B(i mod m)+1

⌊i/m⌋+1

=
∑
i

(xy⊤)F iB
F

i

= {(xy⊤)F⊤ iBF
i}R

= (xy⊤)F⊤BF .

Next we will define eigenmatrices and eigenvalues for our definition of tensors.

Definition D.10. We will call a scalar λ ∈ R an eigenvalue of a tensor Ψ if there exists a matrix B such that

Ψ(B) = λB.

Such a matrix B is then called an eigenmatrix of Ψ.

In the next Lemma we will show that flattened tensors and tensors have the same eigenvalues, i.e. Ψ and ΨF have the same
eigenvalues.

Lemma 34.
Let λ′

1, . . . , λ
′
k′ be the eigenvalues of Ψ with eigenmatrices B′

1, . . . , B
′
k′ and let λ1, . . . , λk be the eigenvalues of ΨF with

eigenvectors B1, . . . , Bk, then k = k′ and there exists a permutation σ ∈ Sk such that

λ1, . . . , λk = λ′
σ(1), . . . , λ

′
σ(k)

B1, . . . , Bk = B′F
σ(1), . . . , B

′F
σ(k).
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Proof. Let all variables be defined as in the lemma. We now show that all eigenmatrices of Ψ are eigenvectors of ΨF , thus
let B′ be an eigenmatrix of Ψ with eigenvalue λ′

ΨF (B′F ) = (Ψ(B′))F = (λ′B′)F = λ′(B′)F ,

where we used the fact that an operation can be performed in lower or higher dimensional space (Lemma 28). Next we
will use the same lemma again to conclude that all eigenvectors of ΨF are eigenmatrices of Ψ if unflattened and thus let B
be an eigenvector of ΨF and λ the corresponding eigenvalue

Ψ(B) = (ΨF (BF ))U = (λBF )U = λB.

Since all eigenvectors of ΨF correspond to an eigenmatrix of Ψ and all eigenmatrices of ΨF correspond to an eigenvector
of ΨF , it is clear that k = k′ and that there exists an σ ∈ Sk such that λ1, . . . , λk = λ′

σ(1), . . . , λ
′
σ(k) and B1, . . . , Bk =

B′F
σ(1), . . . , B

′F
σ(k).

Lemma 35. Let D ∈ Rm×m, B ∈ Rn×n be matrices with eigenvalues λ1, . . . , λm and λ′
1, . . . , λ

′
n respectively, then the

eigenvalues of (D ⊗B) will be

λiλ
′
j ,∀i ∈ [m], j ∈ [n].

Proof. By Lemma 34 we can conclude that (D ⊗ B) has mn eigenvalues in total and we will show that λiλ
′
j for each of

the mn combinations of i ∈ [n] and j ∈ [m] is an eigenvalue of (D ⊗B).
Fix some i ∈ [n] and j ∈ [m] with eigenvectors xi and x′

j , then use the fact that ACB⊤ = (D ⊗ B)(C) (Lemma 7) to
show

(D ⊗B)((xi ⊗ x′
j)) = D(xi ⊗ x′

j)B
⊤

= Dxix
′
j
⊤
B⊤

= Dxi(Bx′
j)

⊤

= λixi(λ
′
jx

′
j)

⊤

= λiλ
′
j(xi ⊗ x′

j).

Definition D.11. We will define a notion of the trace for tensors as follows

tr(Ψ) = {Ψa
a
c
c}R

Similarly, the trace for a matrix B can be written in tensor notation as

tr(B) = {Ba
a}R

Lemma 36. Let Ψ ∈ Rm×m×n×n be a tensor, then the trace of a flattened tensor is equivalent to the trace of the tensor

tr(Ψ) = tr(ΨF ).

And if A ∈ Rm×m and C ∈ Rn×n are some matrices then the trace of the outer product is the product of the traces of the
matrices.

tr((B ⊗ C)) = tr(B) tr(C)

where the trace on the right-hand side of either equation is the classic trace for matrices.

Proof. The first result can be shown by writing out the definition of the trace (Definition D.11) followed by reindexing and
applying the definition of flattening (Definition D.8) alongside the definition of the trace for matrices

tr(Ψ) =

m∑
a=1

n∑
c=1

Ψa
a
c
c =

mn∑
a=1

Ψ(a mod m)+1
(a mod m)+1

⌊a/m⌋+1
⌊a/m⌋+1 = tr(ΨF ).
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The second result follows by applying the definition of the trace (Definition D.11) alongside the definition of the tensor
product (definitionD.6), followed by applying the definition of the trace for matrices twice

tr((B ⊗ C)) =

m∑
a=1

n∑
c=1

Aa
aBc

c

= tr(B)

n∑
c=1

Bc
c

= tr(B) tr(C).

Next we will see how the Frobenius inner product and the trace interact

Lemma 37. Let Ψ,Φ be tensors, then Frobenius product can be written as a trace

⟨Ψ,Φ⟩ = tr(Ψ(Φ)).

Proof. We start from the trace and apply the definition of one tensor being applied to another tensor (Definition D.1), then
the definition of the trace (Definition D.11), followed by the definition of the Frobenius product (Definition D.4)

tr(Ψ(Φ)) = tr({Ψa
b
c
dΦ b

e
f
c}a e

f
d)

= {Ψa
b
c
dΦ b

a
d
c}R

= ⟨Ψ,Φ⟩.

Lemma 38. Let B,C be matrices, then

tr(BTC) = tr(BCT )

Proof. First we apply the definition of matrix multiplication (Definition D.1), then the common definition of the trace for
matrices. We then transpose both B and C which does not change anything and then we reassemble by executing the first
two steps backwards.

tr(BTC) = tr({BT
a

bBb
c}a c)

= {BT
a

bBb
a}R

= {Bb
aCT

a
b}R

= tr({Bb
aCT

a
b}a c)

= tr(BCT ).

Lemma 39. Let Ψ be a tensor and B,C be matrices, then

tr(Ψ(B) · C) = ⟨B⊤,Ψ⊤(C⊤)⟩

where · is used to express matrix multiplication between B and C.

Proof. We start by using the definition of Ψ(B) (Definition D.1), immediately followed by the definitions for matrix
multiplication and the trace (Definition D.11). Then we transpose, recognise the definition of Ψ(B) again and finally apply
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Sampling Scheme 5 Tensor-Exp3 Sampling Scheme
Require: Context distribution D, current policy πt

1: Draw X ∼ D
2: Draw A ∼ πt(·|X)
3: Output (XX⊤ ⊗AA⊤)F

the definition of the Frobenius product (Definition D.4)

tr(Ψ(B) · C) = tr({Ψa
b
c
dBb

c}a d · C)

= tr({Ψa
b
c
dBb

cCd
e}a e)

= {Ψa
b
c
dBb

cCd
a}R

= {Ψ⊤
b
a
d
cB⊤

c
bC⊤

a
d}R

= {(Ψ⊤(C⊤))b
cB⊤

c
b}R

= ⟨B⊤,Ψ⊤(C⊤)⟩.

E FULL-BANDIT EXP3 PROOF DETAILS

For the exploration we will be using the Kiefer-Wolfowitz theorem used in Bubeck et al. (2012), which we will restate in
slightly changed notation here.

Theorem 40 (Kiefer–Wolfowitz Theorem, Lattimore and Szepesvári (2020, Theorem 21.1)). Let G ⊂ RK be a convex set
with span(G) = RK . Then there exists a probability distribution over the points of G, µg ∈ R for all g ∈ G with µ ∈ ∆K

such that

K = max
g∈G

∥∥g∥∥2
V −1 ,

where V =
∑

g∈G µggg
⊤. Furthermore, λmin(V ) ≥ K

m .

Proof. A µg such that K = maxg∈G
∥∥g∥∥2

V −1 with V as above exists by Lattimore and Szepesvári (2020, Theorem 21.1).

Left to prove is λmin(V ) ≥ K
m . We apply K = maxg∈G

∥∥g∥∥2
V −1 and continue as follows

K = max
g∈G

g⊤V −1g = mmax
g∈G

g⊤√
m
V −1 g√

m
≤ mλmax

(
V −1

)
= mλmin (V ) ,

where we used the fact that λmax(B) = max||x||2=1 x
⊤Bx. Dividing by m provides the desired result.

Lemma 41. Ψt = EXt,At

[(
XtX

⊤
t ⊗AtA

⊤
t

)∣∣∣Ft−1

]
is invertible.

Proof. We know from Lemma 11 that λmin(Ψ
F
t ) ≥

γKλmin(Σ)
m > 0. It thus follows that ΨF

t is invertible and we conclude
the proof by using the fact that Ψt is invertible if ΨF

t is (Lemma 29).

We explicitly define a sampling scheme usable by the MGR for the full-bandit case in Sampling Scheme 5.

Lemma 42. Samples generated by the sampling method detailed in Sampling Scheme 5 are unbiased samples of Ψt.

Proof. To show that (XX⊤ ⊗ AA⊤) is indeed an unbiased sample of Ψt it is sufficient to take the expectation over
(XX⊤ ⊗AA⊤) explicitly

EX∼D,A∼πt(·|X)

[
(XX⊤ ⊗AA⊤)

]
= Ψt.
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Lemma 10. Fix any x ∈ X and suppose that Θ̃t and η > 0 are such that maxt η|x⊤Θ̃tA| < 1 for all A ∈ A. Then the
regret of Algorithm 3 in the auxiliary game at x satisfies

R̂T (x) ≤
ln(|A|)

η
+ γ UT (x)

+ ηE

[
T∑

t=1

EA∼πt(·|x)
[
(x⊤Θ̃tA)2|Ft−1

]]

where UT (x) =
∑T

t=1

∑
A∈A µAx

⊤Θ̃t

(
A − π∗

T (x)
)

and µ is the distribution on A defined by the Kiefer-Wolfowitz
theorem.

Proof. The proof will follow the classical Exp3 analysis. By recognising that pt(A) ∝ wt(x,A) is the exponential weights
distribution we can apply Van der Hoeven et al. (2018, Lemma 1) to find

T∑
t=1

x⊤Θ̃t

(( ∑
A∈A

πt(A|x)A
)
− π⋆(x)

)

= (1− γ)

T∑
t=1

x⊤Θ̃t

( ∑
A∈A

pt(A)A
)
− π⋆(x)) + γ

T∑
t=1

∑
A∈A

µAx
⊤Θ̃t (A− π∗

T (x))︸ ︷︷ ︸
UT (x)

≤ (1− γ)
( ln(|A|)

η
+

T∑
t=1

x⊤Θ̃t

( ∑
A∈A

pt(A)A
)
+

1

η
ln
( ∑

A∈A
pt(A) exp

(
− ηx⊤Θ̃tA

)))
+ γUT (x). (17)

Since by assumption η|xΘ̃tA| ≤ 1 we may apply exp(−z) ≤ 1− z + z2 for |z| ≤ 1 to find

x⊤Θ̃t

( ∑
A∈A

pt(A)A
)
+

1

η
ln
( ∑

A∈A
pt(A) exp

(
− ηx⊤Θ̃tA

))
≤ x⊤Θ̃t

( ∑
A∈A

pt(A)A
)
+

1

η
ln
(
1−

∑
A∈A

pt(A)ηx⊤Θ̃tA+ η2
∑
A∈A

pt(A)(x⊤Θ̃tA)2
))

≤ η
∑
A∈A

pt(A)(x⊤Θ̃tA)2,

where the last inequality is because ln(1 + z) ≤ z for |z| ≤ 1. Using the above inequality in equation (17) we find

T∑
t=1

x⊤Θ̃t

(( ∑
A∈A

πt(A|x)A
)
− π⋆(x)

)
≤ ln(|A|)

η
+ η

T∑
t=1

∑
A∈A

(1− γ)pt(A)(x⊤Θ̃tA)2 + γUT (x)

≤ ln(|A|)
η

+ η

T∑
t=1

EA∼πt(·|x)(x
⊤Θ̃tA)2 + γUT (x),

which completes the proof after taking expectations.

Lemma 11. For all t ≥ 1,

λmin(Ψ
F
t ) ≥

γKλmin(Σ)

m

Moreover, for η ≤ 1
m(M+1) , any A ∈ A, and any x in the support of D it also holds that η

∣∣x⊤Θ̃tA
∣∣ < 1.

Proof. Let Ψt be as defined in equation (7), then

λmin(Ψ
F
t ) = λmin(Ψt)

= λmin

(
EXt,At

[(XtX
⊤
t ⊗AtA

⊤
t )|Ft−1]

)
= λmin

(
EXt

[EAt
[(XtX

⊤
t ⊗AtA

⊤
t )|Xt,Ft−1]]

)
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where we first used the fact that Ψt and ΨF
t agree on eigenvalues (Lemma 34) and plugged in the definition of Ψt (equa-

tion (7)).

Next we will write the expectation over At explicitly, plug in the definition of πt (equation (10)) and use the fact that∑
At∈A

(1− γ)
wt(Xt, At)∑

A′∈A wt(Xt, A′)
≥ 0

alongside the fact that (XtX
⊤
t ⊗AtA

⊤
t ) only has positive eigenvalues to continue like follows

λmin(Ψ
F
t ) = λmin

(
EXt

[∑
A∈A

πt(A|Xt)(XtX
⊤
t ⊗AA⊤)

])

= λmin

(
EXt

[∑
A∈A

(
(1− γ)

wt(Xt, A)∑
A′∈A wt(Xt, A′)

+ γµA

)
(XtX

⊤
t ⊗AA⊤)

])

≥ λmin

(
EXt

[∑
A∈A

γµA(XtX
⊤
t ⊗AA⊤)

])

Now the only thing that is left to do is to apply Lemma 24, use Lemma 35 to recognise that λmin((A ⊗ B)) =
λmin(A)λmin(B) and use the Kiefer-Wolfowitz theorem (Theorem 40).

λmin(Ψ
F
t ) ≥ λmin

(
EXt

[∑
A∈A

γµA(XtX
⊤
t ⊗AA⊤)

])

= γλmin

(
EXt

[XtX
⊤
t ]⊗

∑
A∈A

µAAA⊤

)

= γλmin(Σ)λmin

(∑
A∈A

µAAA⊤

)

=
γKλmin(Σ)

m

We now prove the second claim of the lemma. Let A ∈ A and x in the support of D. We can start by writing the in the
definition of Θ̃t, then upper bounding X⊤

t ΘtAt by m and then using Lemma 25.

|x⊤Θ̃tA| =
∣∣∣x⊤Ψ̂+

t (XtX
⊤
t ΘtAtA

⊤
t )A

∣∣∣
≤ m

∣∣∣x⊤Ψ̂+
t (XtA

⊤
t )A

∣∣∣
= m

∣∣∣((x⊤A)F )⊤(Ψ̂+
t )

F (XtA
⊤
t )

F
∣∣∣.

Now, observe that for any x in the support of D and A ∈ A

∥∥(xA⊤)F
∥∥
2
=

√√√√ d∑
i=1

K∑
k=1

(x)2i (A)2k =

√√√√( d∑
i=1

(x)2i

)(
K∑

k=1

(A)2k

)
≤ σ

√
m. (18)

By using that
∥∥(Ψ̂+

t )
F
∥∥
op

≤ (M + 1)β by Lemma 1, equation (18), and β ≤ 1
mσ2 we can see that

|x⊤Θ̃tA| ≤ m
∣∣∣((x⊤A)F )⊤(Ψ̂+

t )
F (XtA

⊤
t )

F
∣∣∣

≤ m
∥∥(xA⊤)F

∥∥
2

∥∥(Ψ̂+
t )

F
∥∥
op

∥∥(XtA
⊤
t )

F
∥∥
2

≤ m2σ2β(M + 1)

≤ m(M + 1).

Using the fact that η ≤ 2
m(M+1) allows us to conclude that η|X⊤Θ̃tA| ≤ 1 which finishes the proof
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Lemma 12. Fix a t ∈ [T ] and let A0 ∼ πt(·|X0). Then

E
[
(X⊤

0 Θ̃tA0)
2
∣∣Ft−1

]
≤ 2m2Kd

Proof. Most of this proof will be technical calculations, starting from the beginning by plugging in the definition of Θ̃t

and upper bounding (X⊤
t ΘtAt)

2 by m2

E
[
(X⊤

0 Θ̃tA0)
2|Ft−1

]
= E

[
(X⊤

0 Ψ̂+
t (XtX

⊤
t ΘtAtA

⊤
t )A0)

2|Ft−1

]
= E

[
(X⊤

t ΘtAt)
2(X⊤

0 Ψ̂+
t (XtA

⊤
t )A0)

2|Ft−1

]
≤ m2E

[
(X⊤

0 Ψ̂+
t (XtA

⊤
t )A0)

2|Ft−1

]

Next we simplify (X⊤
0 Ψ̂+

t (XtA
⊤
t )A0)

2 in isolation. We do so by first expanding the square and then using the fact that
x⊤y = tr(xy⊤). Then we use the fact that DCB⊤ = (D ⊗B)(C) by Lemma 7 to obtain

(X⊤
0 Ψ̂+

t (XtA
⊤
t )A0)

2 = X⊤
0 Ψ̂+

t (XtA
⊤
t )A0A

⊤
0 (Ψ̂

+
t (XtA

⊤
t ))

⊤X0

= tr
(
X0X

⊤
0 Ψ̂+

t (XtA
⊤
t )A0A

⊤
0 (Ψ̂

+
t (XtA

⊤
t ))

⊤)
= tr

(
(X0X

⊤
0 ⊗A0A

⊤
0 )(Ψ̂

+
t (XtA

⊤
t )) · (Ψ̂+

t (XtA
⊤
t ))

⊤).
Here · denotes the classic matrix multiplication and is used to emphasis that the tensor (X0X

⊤
0 ⊗ A0A

⊤
0 ) is acting on

Ψ̂+
t (XtA

⊤
t ).

We now use this result together with the fact that Xt, At and X0, A0 are independent alongside the definition of Ψt as
follows

E
[
(X⊤

0 Ψ̂+
t (XtA

⊤
t )A0)

2|Ft−1

]
= E

[
tr
(
(X0X

⊤
0 ⊗A0A

⊤
0 )(Ψ̂

+
t (XtA

⊤
t )) · (Ψ̂+

t (XtA
⊤
t ))

⊤)|Ft−1

]
= E

[
tr
(
EX0,A0

[
(X0X

⊤
0 ⊗A0A

⊤
0 )
]
(Ψ̂+

t (XtA
⊤
t )) · (Ψ̂+

t (XtA
⊤
t ))

⊤)|Ft−1

]
= E

[
tr
(
Ψt(Ψ̂

+
t (XtA

⊤
t )) · (Ψ̂+

t (XtA
⊤
t ))

⊤)|Ft−1

]
.

This is only possible as X0 ∼ D and A0 ∼ πt(·|X0), as per assumption on A0.

We isolate the term inside the expectation again, tr
(
Ψt(Ψ̂

+
t (XtA

⊤
t )) · (Ψ̂+

t (XtA
⊤
t ))

⊤), and use the fact that tr(BC⊤) =
tr(B⊤C) (Lemma 38). We then use tr(Ψ(B) · C) = ⟨B⊤,Ψ⊤(C⊤)⟩ (Lemma 39). We finish by applying the fact that
⟨wx⊤,Ψ(yv⊤)⟩ = ⟨Ψ, (yx⊤ ⊗ vw⊤)⟩ (Lemma 25) alongside the fact that tensors are associative (Lemma 20)

tr
(
Ψt(Ψ̂

+
t (XtA

⊤
t )) · (Ψ̂+

t (XtA
⊤
t ))

⊤) = tr
(
(Ψt(Ψ̂

+
t (XtA

⊤
t )))

⊤ · Ψ̂+
t (XtA

⊤
t )
)

= ⟨(AtX
⊤
t ), Ψ̂+

t
⊤(Ψt(Ψ̂

+
t (XtA

⊤
t )))⟩

= ⟨Ψ̂+
t
⊤(Ψt(Ψ̂

+
t )), (XtX

⊤
t ⊗AtA

⊤
t )⟩.

By using the above equality we can thus see that

E
[
tr
(
Ψt(Ψ̂

+
t
⊤(XtA

⊤
t )) · (Ψ̂+

t (XtA
⊤
t ))

⊤)|Ft−1

]
= E

[
⟨Ψ̂+

t
⊤(Ψt(Ψ̂

+
t )), (XtX

⊤
t ⊗AtA

⊤
t )⟩|Ft−1

]
= EMGRt

[〈
Ψ̂+

t
⊤(Ψt(Ψ̂

+
t )),Ψt

〉 ∣∣∣Ft−1

]
,
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where in the last equality we used the linearity of the inner product. Observe that by Lemma 23 Ψt is symmetric and
thus Ψt = Ψ⊤

t . Now, using that tr(Ψ(Φ)) = ⟨Ψ,Φ⟩ for any tensors of appropriate dimension Φ,Ψ by Lemma 37 and by
Lemma 30 we have that

EMGRt

[〈
Ψ̂+

t
⊤(Ψt(Ψ̂

+
t )),Ψt

〉 ∣∣∣Ft−1

]
= EMGRt

[
tr(Ψ⊤

t (Ψ̂
+
t
⊤(Ψt(Ψ̂

+
t ))))

∣∣∣Ft−1

]
= EMGRt

[
tr(Ψ⊤F

t Ψ̂+⊤F
t ΨF

t Ψ̂
+F
t )

∣∣∣Ft−1

]
= EMGRt

[
tr(ΨF⊤

t Ψ̂+F⊤
t ΨF

t Ψ̂
+F
t )

∣∣∣Ft−1

]
≤ 2Kd

where the last equality is due to Lemma 30, which states that we may switch flattening and transpose operations, and the
inequality is due to Lemma 1.

By collecting the results we can bound

E
[
(X⊤

0 Θ̃tA0)
2|Ft−1

]
≤ m2E

[
(X⊤

0 Ψ̂+
t (XtA

⊤
t )A0)

2|Ft−1

]
≤ 2m2Kd,

which concludes the proof.

Theorem 43. For any positive η ≤ 2
m(M+1) , β ≤ 1

σ2m and any γ ∈ (0, 1) the expected regret of the algorithm satisfies

RT ≤ 2γTm+ ηTm2dK +
ln(|A|)

η
+ 3Tσ

√
mG exp

(
−Mβ

γλmin(Σ)

K

)
.

Furthermore, let β = 1
σ2m , γ = min

{
1,
√
K ln(T ) ln(|A|)

Tβλmin(Σ)

}
, M = max

{
K ln(T )

βmλmin(Σ) ,
√

TK ln(T )
ln(|A|)βλmin(Σ)

}
, and η =

min
{

1
m(M+1) ,

√
ln(|A|)
Tm2Kd

}
. Then

RT ≤ 2
√
ln (eK)Tm3Kd+ 2

√
m4TK

σ2 ln (eK) ln(T )

λmin(Σ)
+

√
m4σ2

TK ln(T ) ln (eK)

λmin(Σ)

+ 3σ
√
mG+m2 ln (eK) +

m32σ2K ln(T ) ln (eK)

λmin(Σ)
.

Proof. Most of the work has been done in the previous lemmas already, now we only need to assemble them correctly,
control the bias and check the conditions on the hyperparameters. Starting from Lemma 2

RT = EFT ,X0

[
R̂T (X0)

]
+ 2

T∑
t=1

max
A∈A

∣∣EX0,Xt,At [X0BtA|Ft−1]
∣∣

Lemma 9. Suppose that β ≤ 1
λmax(ΨF

t )
. Then for Θ̃t defined in equation (8)

E
[
X⊤

0 (Θt − Θ̃t)A | Ft−1

]
≤ σG

√
me−

Mβγm
K λmin(Σ)

Proof. We will need to find the exact expectation of Ψ̂+
t and we will do that here

EFt
[Θ̃t|Ft−1] = EFt

[Ψ̂+
t

(
XtX

⊤
t ΘtAtA

⊤
t

)
|Ft−1]

= EMGRt [Ψ̂
+
t (Ψt(Θt))|Ft−1]

= (EMGRt [Ψ̂
+
t
F |Ft−1]Ψ

F
t Θ

F
t )

U

= (ΘF
t − (I − βΨF

t )
MΘF

t )
U
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Next we plug in the definition of Bt, use the above equation, use Lemma 33 and finally use
∥∥(X0A

⊤)F
∥∥
2
≤ σ

√
m

(equation (18)) alongside
∥∥Θt

∥∥
F
≤ G.

max
A∈A

∣∣E[X⊤
0 BtA|Ft−1]| = max

A∈A

∣∣E[X⊤
0 (Θt − Θ̃t)A|Ft−1]

∣∣
= max

A∈A

∣∣E[X⊤
0 (Θt − (ΘF

t − (I − βΨF
t )

MΘF
t )

U )A]
∣∣

= max
A∈A

∣∣E[X⊤
0 ((I − βΨF

t )
MΘF

t )
UA]

∣∣
= max

A∈A

∣∣E[(X0A
⊤)F⊤(I − βΨF

t )
MΘF

t ]
∣∣

≤ max
A∈A

∣∣E [∥∥(X0A
⊤)F

∥∥
2

∥∥(I − βΨF
t )

M
∥∥
op

∥∥ΘF
t

∥∥
2

] ∣∣
≤ σ

√
mG

∥∥(I − βΨF
t )

M
∥∥
op

Next we need to bound
∥∥(I − βΨF

t )
M
∥∥
op

for which we will first use λmin(Ψ
F
t ) ≥

γKλmin(Σ)
m (Lemma 11) alongside the

fact that ΨF
t is positive semi-definite. Then we apply 1− z ≤ e−z (which holds for all z ∈ R).

∥∥(I − βΨF
t )

M
∥∥
op

≤
(
1− β

γKλmin(Σ)

m

)M

≤ exp

(
−Mβ

γKλmin(Σ)

m

)

Thus we can now follow that

max
A∈A

∣∣E[X0BtA|Ft−1]
∣∣ ≤ σ

√
mG exp

(
−Mβ

γKλmin(Σ)

m

)
(19)

Next we need to bound UT (x) =
∑T

t=1

∑
A∈A µAx

⊤Θ̃t (A− π∗
T (x)) in expectation. First we will use the definition of

the bias Bt = Θt− Θ̃t, then multiply out and use the triangle inequality and finally upper bound x⊤ΘtA ≤ m which holds
for all A and apply equation (19).

E[UT (X0)] = EFT ,X0

[
T∑

t=1

∑
A∈A

µAX
⊤
0 Θ̃t (A− π∗

T (X0))

]

= E

[
T∑

t=1

∑
A∈A

µAX
⊤
0 (Θt −Bt) (A− π∗

T (X0))

]

≤ E

[
T∑

t=1

∑
A∈A

µA

(∣∣X⊤
0 ΘtA

∣∣+ ∣∣X⊤
0 Θtπ

∗
T (X0)

∣∣+ ∣∣X⊤
0 BtA

∣∣+ ∣∣X⊤
0 Btπ

∗
T (X0)

∣∣)]

≤
T∑

t=1

∑
A∈A

µA

(
2m+ σ

√
mG exp

(
−Mβ

γKλmin(Σ)

m

))
= 2Tm+ Tσ

√
mG exp

(
−Mβ

γKλmin(Σ)

m

)

Now we are in a position to apply Lemma 10 as |ηx⊤Θ̃tA| < 1 by Lemma 11 since η ≤ 1
m(M+1) per assumption. Next
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we apply Lemma 12 and then use the upper bound we found for EFT ,X0 [UT (X0)] above as well as use the fact that γ ≤ 1:

RT = EX0

[
R̂T (X0)

]
+ 2E

[ T∑
t=1

max
A∈A

∣∣E[X0BtA|Ft−1]
∣∣]

≤ EX0

[
R̂T (X0)

]
+ 2Tσ

√
mG exp

(
−Mβ

γKλmin(Σ)

m

)
≤ ln(|A|)

η
+ ηE

[
T∑

t=1

EA∼πt(·,X0)

[
(X⊤

0 Θ̃tA)2|Ft−1

]
+ γUT (X0)

]
+ 2Tσ

√
mG exp

(
−Mβ

γKλmin(Σ)

m

)
≤ ln(|A|)

η
+ 2Tηm2Kd+ 2Tγm+ 3Tσ

√
mG exp

(
−Mβ

γKλmin(Σ)

m

)
,

which proves the first result of the theorem. For the next result of the theorem, we first set M = m ln(T )
βγKλmin(Σ) to find

RT ≤ ln(|A|)
η

+ 2Tηm2Kd+ 2Tγm+ 3σ
√
mG

Next, set γ = min
{
1,
√
K ln(T ) ln(|A|)

Tβλmin(Σ)

}
to find

RT ≤ ln(|A|)
η

+ 2Tηm2Kd+ 2m

√
TK

ln(|A|) ln(T )
βλmin(Σ)

+ 3σ
√
mG.

Finally, set η = min
{

1
m(M+1) ,

√
ln(|A|)
Tm2Kd

}
to find

RT ≤ 3
√
ln(|A|)Tm2Kd+mM ln(|A|) +m ln(|A|) + 2m

√
TK

ln(|A|) ln(T )
βλmin(Σ)

+ 3σ
√
mG

≤ 3
√
ln(|A|)Tm2Kd+ 2m

√
TK

ln(|A|) ln(T )
βλmin(Σ)

+m

√
TK ln(T ) ln(|A|)

βλmin(Σ)

+ 3σ
√
mG+m ln(|A|) + mK ln(T ) ln(|A|)

βλmin(Σ)
.

We examine ln(|A|) for the final result.

ln(|A|) ≤ ln

 m∑
j=1

(
K

j

)
≤ ln

 m∑
j=1

(
eK

j

)j


≤ ln

(
mm

(
eK

m

)m)
= m ln (eK) (20)

where we used the well known fact that
(
n
k

)
≤
(
en
k

)k
(Knuth, 1997, §1.2.6 : Binomial Coefficients: Exercise 67) where e

is Euler’s number. This allows us to conclude

RT ≤ 3
√

ln (eK)Tm3Kd+ 2

√
m3TK

ln (eK) ln(T )

βλmin(Σ)
+

√
m3

TK ln(T ) ln (eK)

βλmin(Σ)

+ 3σ
√
mG+m2 ln (eK) +

m2K ln(T ) ln (eK)

βλmin(Σ)
.

which completes the proof of the second result of the theorem after using β = 1
mσ2 .
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CO2-FTRL Exp3-Tensor NC FTRL ComBand RealLinExp3
O
(
|D|d2K2 + d3K

)
O
(
|A||D|d2K2 + d3K3

)
O
(
K2
)

O
(
|A|K2 +K3

)
O
(
|A|(|D|d2 + d3)

)
Table 1: The theoretical runtime of the algorithms presented in this paper (bold) and the baselines in each timestep on the
m-set problem and without the use of MGR.

F DETAILS OF THE EXPERIMENTS

The experiments were ran using Python 3.10.7, on an Intel(R) Xeon(R) CPU E7-4870 (2.40GHz) and we considered the
full- and semi-bandit setting.

In total the runtime of the experiments on this hardware is around 80 hours. The implementation for none of the algorithms
is particularly optimised. Unsurprisingly, the algorithms proposed in this paper with their more sophisticated estimators
are somewhat more computationally demanding. A table with the theoretical runtimes of the algorithms can be found in
Table F.

We will use One-Per-Context (OPC) as suffix to denote running an algorithm independently for each context. Since we
draw uniformly from BK,m, we know that each context appears T/|BK,m| times in expectation. Thus, we tune all instances
of the sub-algorithm for length T ′ = T/|BK,m|. All other parameters are unchanged.

We ran two versions of each algorithm. The first version is the algorithm with tuning suggested by theory. The second
version is the algorithm tuned with all parameters set to 1, except for T . We refer to this last choice of tuning as 1/

√
T

tuning, as most parameters of the algorithms reduce to 1/
√
T with this tuning.

F.1 Full-Bandit Setting

The results for the full-bandit setting with theoretical tuning can be found in Figure 2. As expected the comparative
performance of RealLinExp3 deteriorates with a more complicated combinatorial element and improves with a more
difficult contextual element. Curiously, non-contextual ComBand sometimes outperforms ComBand OPC. It is possible
that some actions are by random chance better across multiple contexts and thus ignoring contexts can lead to better results
in the short term as the algorithm is able to exploit those better actions. This phenomenon appears most prevalent when
the number of contexts is large, i.e., in the (5, 2)- and (12, 3)-context cases. EXP3-Tensor seems to be performing on par
or somewhat worse than the other algorithms.

The results for the full-bandit setting with 1/
√
T tuning can be found in Figure 3. The results are comparable to the ones

obtained with theoretical tuning. Unfortunately, this means that the results for Exp3-Tensor are on par with or slightly
worse than the results of other the other algorithms. Interestingly, RealLinExp3 seems to be performing even better in the
settings without a combinatorial aspect but continues to struggle with a strong combinatorial aspect.

Unfortunately, with both theoretical tuning and 1/
√
T tuning Exp3-Tensor was at best on par with the other algorithms. We

conjecture that the artificial scenarios with a finite number of contexts, which we designed to accommodate our baselines,
are not sufficiently expressive for Exp3-Tensor to exploit.

F.2 Semi-Bandit Setting

To efficiently implement Line 4 of Algorithm 2 we use Warmuth and Kuzmin (2008, Algorithm 4).

One of the algorithms we compare with in the semi-bandit setting is a variant of the Online Stochastic Mirror Descent
(OSMD) algorithm presented in Audibert et al. (2014, Figure 3). Specifically, our variant uses the same estimator as

that algorithm. However, we use FTRL instead of OSMD. We use exploration parameter γ =
√

K
Tm and learning rate

η =

√
m log(K

m )

TK . From here on, we refer to this algorithm as Non-Contextual (NC) FTRL. The list of algorithms in the
semi-bandit setting is thus CO2-FTRL, RealLinExp3, NC FTRL, and NC FTRL OPC.

The results for the theoretical learning rates can be found in Figure 4. RealLinExp3 overlaps with the full-bandit case
and the results relative to the other algorithms are similar: RealLinExp3’s relative performance decreases as the problem
becomes more combinatorial. NC FTRL OPC does well in general and especially so if the number of contexts is small.
However, NC FTRL OPC is outperformed by NC FTRL in the (12, 3)-context case. CO2-FTRL is on par with the other
algorithms in most experiments, although in some experiments it is outperformed and sometimes it outperforms other
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algorithms. Similar to the high γ in the full-bandit case, CO2-FTRL uses γ = 24.11% in the most complicated case which
might contribute to regret.

The results for 1/
√
T tuning can be found in Figure 5. When using the 1/

√
T tuning CO2-FTRL is on par with the best

competitors in the simpler cases and outperforming in the more complicated problem instances. This also suggests that
CO2-FTRL is less sensitive to miss-specified tunings and perhaps performs better with more aggressive tuning.

Unlike in the full-bandit setting the algorithm we designed, CO2-FTRL, does outperform the baseline algorithms. In the
full bandit setting we conjectured that the simplified experimental setting was not sufficiently expressive. We believe the
the semi-bandit setting is a simpler setting, which is the reason why ,even though the experiments are not very expressive,
CO2-FTRL was able to outperform the baseline algorithms.
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Figure 2: Boxplots over 10 repetitions of the regret (in thousands) of the algorithms in the full-bandit setting using theo-
retical tuning (lower is better).
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Figure 3: Boxplots over 10 repetitions of the regret (in thousands) of the algorithms in the full-bandit setting using 1/
√
T

tuning (lower is better).
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Figure 4: Boxplots over 10 repetitions of the regret (in thousands) of the algorithms in the semi-bandit setting using
theoretical tuning (lower is better).
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Figure 5: Boxplots over 10 repetitions of the regret (in thousands) of the algorithms in the semi-bandit setting using 1/
√
T

(lower is better).
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