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Outline

• Online optimization
• Worst-case guarantees…
• … and beyond
• The best of both worlds: 

(AB)-Prod
• Applications
• (Proof, if there’s time)



Online optimization

Parameters: 
decision set 𝑆, set of loss functions 𝐹 ⊆ 0,1 𝑆

For 𝑡 = 1,2, …𝑇 repeat
• Learner picks decision 𝑥𝑡 ∈ 𝑆

• Environment picks loss function 𝑓𝑡 ∈ 𝐹

• Learner suffers loss 𝑓𝑡 𝑥𝑡

• Learner observes 𝑓𝑡



Online optimization – examples

Prediction with expert advice:
• 𝑆 = 𝑁 ≝ 1,2, … , 𝑁
• 𝐹 = 0,1 𝑁

Online convex optimization:
• 𝑆: a convex subset of 𝑅𝑑

• 𝐹: the set of bounded convex 
functions on 𝑅𝑑

Online combinatorial optimization:
• 𝑆 ⊆ 0,1 𝑑

• 𝐹 = 0,1 𝑆

• e.g., set of paths, spanning trees,
matchings on a graph
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A central concept: Regret

𝑅𝑇 =  

𝑡=1

𝑇

𝑓𝑡 𝑥𝑡 − min
𝑥∈𝑆

 

𝑡=1

𝑇
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Learner aims to choose 
𝑥1, 𝑥2, … , 𝑥𝑇 to minimize 𝑅𝑇

Environment aims to choose 
𝑓1, 𝑓2, … , 𝑓𝑇 to maximize 𝑅𝑇

A typical guarantee:
𝑅𝑇 = Θ 𝐶 𝑇
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Beyond worst-case guarantees

• What if the environment is not that bad?
• Some known easy cases:

– i.i.d. losses in the experts setting: 
𝑅𝑇 = 𝑂 log𝑁

– Strongly convex losses in OCO:
𝑅𝑇 = 𝑂 log 𝑇

– i.i.d. losses in bandits:
𝑅𝑇 = 𝑂 log 𝑇

–…

But you need to 
be aggressive to 

get these!
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How bad can it be?

Classical counterexample:
• Two experts with losses

1/2
0

0 1 0 1 …
1 0 1 0 …

• FTL suffers

Add a little twist:
• Two experts with losses

0
1
0 1 0 1 …
1 0 1 0 …

and a few more 0 1 𝑇 later
• FTL beats everything else



The best of both worlds

Easy data Hard data
Experts
(De Rooij, Van Erven, 
Grünwald and Koolen, 2014)

log𝑁
(for i.i.d.)

𝑇 log𝑁
(standard worst-case)

OCO
(Bartlett, Hazan and Rakhlin, 
2007)

log 𝑇
(for strongly convex)

𝑇
(standard worst-case)

Bandits
(Seldin and Slivkins, 2014)

log3 𝑇
(for i.i.d.)

𝑁𝑇 log𝑁
(standard worst-case)

Some previous results:
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Our setup

Worst-case 
algorithm 𝐴

Opportunistic 
benchmark 𝐵



Hedging strategy
𝑥𝑡 = 𝐶𝑡 𝑎𝑡 , 𝑏𝑡

Our setup

Worst-case 
algorithm 𝐴

Opportunistic 
benchmark 𝐵

𝑎𝑡 𝑏𝑡



Hedging strategy
𝑥𝑡 = 𝐶𝑡 𝑎𝑡 , 𝑏𝑡

Our setup

Worst-case 
algorithm 𝐴

Opportunistic 
benchmark 𝐵

𝑎𝑡 𝑏𝑡



Our setup

𝐶𝑡 𝑎𝑡 , 𝑏𝑡

𝐴 𝐵

𝑎𝑡 𝑏𝑡

𝑥𝑡

Environment



Our setup

𝐶𝑡 𝑎𝑡 , 𝑏𝑡

𝐴 𝐵

𝑎𝑡 𝑏𝑡

𝑥𝑡

Environment

𝑓𝑡



A naïve approach

Let’s treat 𝐴 and 𝐵 as experts and use 
Hedge* on top of them!

* Vovk(1990), Littlestone and Warmuth (1994), Freund and Schapire (1997)



A naïve approach

Let’s treat 𝐴 and 𝐵 as experts and use 
Hedge* on top of them!

Initialize 𝜂 > 0, 𝑤1,𝐴 = 𝑤1,𝐵 = 1/2
For 𝑡 = 1,2, … , 𝑇 repeat
• 𝑠𝑡 =

𝑤𝑡,𝐴

𝑤𝑡,𝐴+𝑤𝑡,𝐵

• Predict 𝑥𝑡 = 𝑎𝑡 w.p. 𝑠𝑡 and 𝑥𝑡 = 𝑏𝑡otherwise
• Observe 𝑓𝑡 and suffer loss 𝑓𝑡 𝑥𝑡

• Compute 𝛿𝑡 = 𝑓𝑡 𝑎𝑡 − 𝑓𝑡 𝑏𝑡

• Update 𝑤𝑡+1,𝐴 = 𝑤𝑡,𝐴𝑒
−𝜂𝛿𝑡

* Vovk(1990), Littlestone and Warmuth (1994), Freund and Schapire (1997)



Initialize 𝜂 > 0, 𝑤1,𝐴 = 𝑤1,𝐵 = 1/2
For 𝑡 = 1,2, … , 𝑇 repeat
• 𝑠𝑡 =

𝑤𝑡,𝐴

𝑤𝑡,𝐴+𝑤𝑡,𝐵

• Predict 𝑥𝑡 = 𝑎𝑡 w.p. 𝑠𝑡 and 𝑥𝑡 = 𝑏𝑡otherwise
• Observe 𝑓𝑡 and suffer loss 𝑓𝑡 𝑥𝑡

• Compute 𝛿𝑡 = 𝑓𝑡 𝑎𝑡 − 𝑓𝑡 𝑏𝑡

• Update 𝑤𝑡+1,𝐴 = 𝑤𝑡,𝐴𝑒
−𝜂𝛿𝑡

A naïve approach

Let’s treat 𝐴 and 𝐵 as experts and use 
Hedge* on top of them!

* Vovk(1990), Littlestone and Warmuth (1994), Freund and Schapire (1997)

This only guarantees 
𝑂 𝑇 regret against 

both 𝐴 and 𝐵!!
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Let’s replace Hedge by Prod*!
… and put a large weight on 𝐵!

Initialize 𝜂 > 0, 𝑤1,𝐴 = 𝜂, 𝑤1,𝐵 = 1 − 𝜂
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Online convex optimization:

• 𝐴 = OGD* with 𝜂 =
1

𝑡
, 𝐵 = OGD with 𝜂 =

1

𝑡

• Regret: 𝑂 log 𝑇 against strongly convex losses, 
𝑂 𝑇 log 𝑇 in worst case

Matches Bartlett et 
al. (2007) up to 

log 𝑇

* Zinkevich (2003), Hazan, Agarwal and Kale (2007)
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• 𝐴 = Fixed Share*, 𝐵 = windowed FTL
• Regret measured against best sequence 𝑥1:𝑇 with 𝐾

switches: 𝑂 𝐾 log 𝑇/𝐾 for piecewise i.i.d., 
𝑂 𝐾𝑇 log𝑁 + 𝑇 log 𝑇 in worst case

Solves COLT 2014 open problem by 
Koolen and Warmuth

* Herbster and Warmuth (1998)



Applications

Two-points bandit feedback:
• Observing 𝑓𝑡 𝑎𝑡 and 𝑓𝑡 𝑏𝑡 is enough!
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Applications

Two-points bandit feedback:
• Observing 𝑓𝑡 𝑎𝑡 and 𝑓𝑡 𝑏𝑡 is enough!
• 𝐴 = EXP3*, 𝐵 = UCB*
• Regret: 𝑂 log 𝑇 against i.i.d. losses, 

𝑂 𝑁𝑇 log𝑁 + 𝑇 log 𝑇 in worst case

Much better than the log3 𝑇 of 
Seldin and Slivkins (2014), 

although much less general
* Auer, Cesa-Bianchi, Freund and Schapire (2002), Auer, Cesa-Bianchi and Fischer (2002)



Conclusions

• A generic scheme to combine aggressive
and principled algorithms

• Also guarantees that your new solution is 
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Conclusions

• A generic scheme to combine aggressive
and principled algorithms

• Also guarantees that your new solution is 
essentially always better than your old one

• Open problems:
– extending to real partial information?
– reinforcement learning?
– optimality in every single time window?



Thanks!



Proof

• Directly follows from the Prod analysis:
– Let 𝑆 = 1,2, … ,𝑁 , 𝑤1,𝑖 = 𝜇𝑖 for all 𝑖
– In every round 𝑡, choose 𝑖 w.p. 𝑝𝑡,𝑖 ∝ 𝑤𝑡,𝑖

– Loss of expert 𝑖 in round 𝑡: ℓ𝑡,𝑖

– 𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖 ⋅ 1 − 𝜂ℓ𝑡,𝑖



Proof

• Directly follows from the Prod analysis:
– Let 𝑆 = 1,2, … ,𝑁 , 𝑤1,𝑖 = 𝜇𝑖 for all 𝑖
– In every round 𝑡, choose 𝑖 w.p. 𝑝𝑡,𝑖 ∝ 𝑤𝑡,𝑖

– Loss of expert 𝑖 in round 𝑡: ℓ𝑡,𝑖

– 𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖 ⋅ 1 − 𝜂ℓ𝑡,𝑖

Theorem (Cesa-Bianchi, Mansour and Stoltz, 2007):
If  𝑖=1

𝑁 𝜇𝑖 = 1, then for all 𝑖

𝑅𝑇,𝑖 ≤
log 𝜇𝑖

𝜂
+ 𝜂 

𝑡=1

𝑇

ℓ𝑡,𝑖
2



Proof

• Idea (Even-Dar, Kearns, Mansour and Wortman, 2008): 
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≤ 2 log 2


