Exploiting easy data in online optimization

Gergely Neu INRIA Lille, SequeL team Joint work with Amir Sani & Alessandro Lazaric

Outline

- Online optimization
- Worst-case guarantees...
- ... and beyond
- The best of both worlds: (AB)-Prod
- Applications
- (Proof, if there's time)

Online optimization

Parameters:

decision set S, set of loss functions $F \subseteq [0,1]^S$

For t = 1, 2, ... T **repeat**

- Learner picks decision $x_t \in S$
- Environment picks loss function $f_t \in F$
- Learner suffers loss $f_t(x_t)$
- Learner observes f_t

Online optimization – examples

Prediction with expert advice: • $S = [N] \stackrel{\text{def}}{=} \{1, 2, ..., N\}$

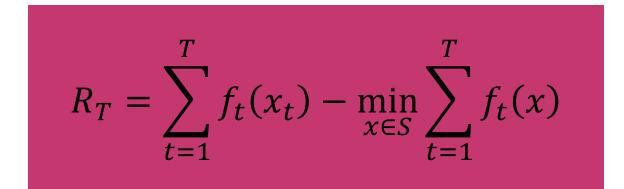
- $5 [N] = \{1, 2, ..., N\}$
- $F = [0,1]^N$

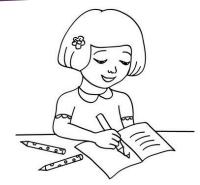
Online convex optimization:

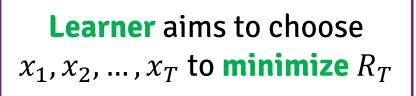
- S: a convex subset of R^d
- *F*: the set of bounded convex functions on *R*^d

Online combinatorial optimization:

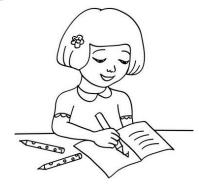
- $S \subseteq \{0,1\}^d$
- $F = [0,1]^S$
- e.g., set of paths, spanning trees, matchings on a graph

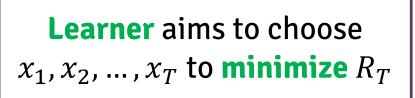


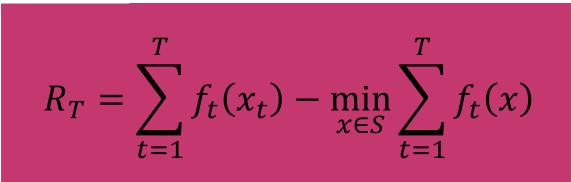




$$R_T = \sum_{t=1}^T f_t(x_t) - \min_{x \in S} \sum_{t=1}^T f_t(x)$$







Environment aims to choose f_1, f_2, \dots, f_T to **maximize** R_T

Learner aims to choose x_1, x_2, \dots, x_T to minimize R_T

 $R_{T} \quad \begin{array}{c} \text{A typical guarantee:} \\ R_{T} = \Theta(C\sqrt{T}) \end{array}$

Environment aims to choose $f_1, f_2, ..., f_T$ to **maximize** R_T

Beyond worst-case guarantees

What if the environment is not that bad?

Beyond worst-case guarantees

- What if the environment is not that bad?
- Some known easy cases:
 - i.i.d. losses in the experts setting: $R_T = O(\log N)$
 - Strongly convex losses in OCO: $R_T = O(\log T)$
 - i.i.d. losses in bandits:

 $R_T = O(\log T)$

Beyond worst-case guarantees

- What if the environment is not that bad?
- Some known easy cases:
 - i.i.d. losses in the ex

ng:

– Strons

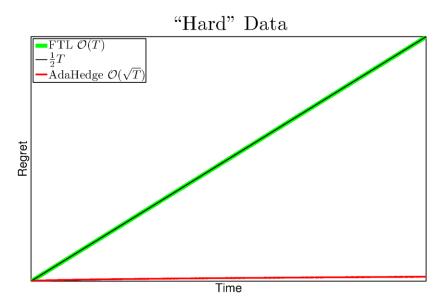
- i.i.d. 10-

But you need to be aggressive to get these!

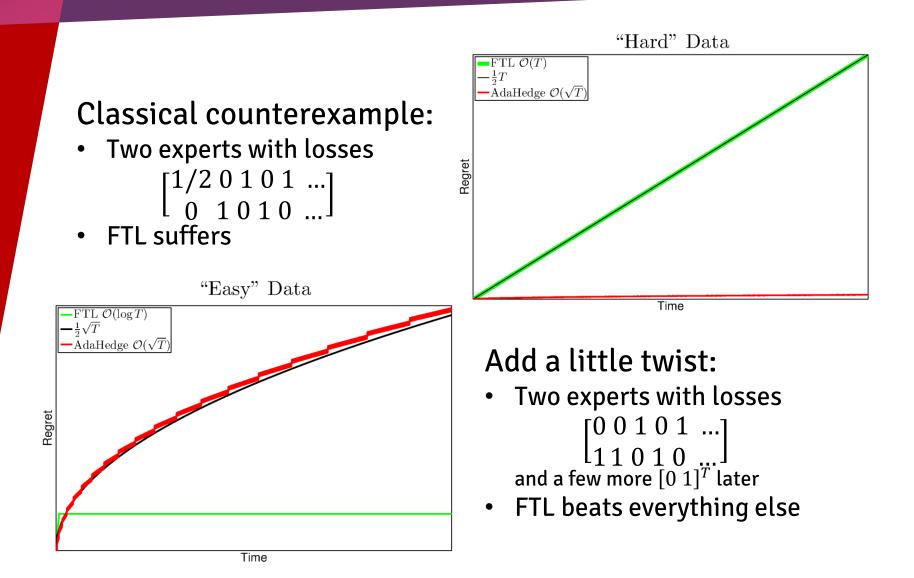
How bad can it be?

Classical counterexample:

- Two experts with losses $\begin{bmatrix} 1/2 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & ... \end{bmatrix}$
- FTL suffers



How bad can it be?



The best of both worlds

Some previous results:

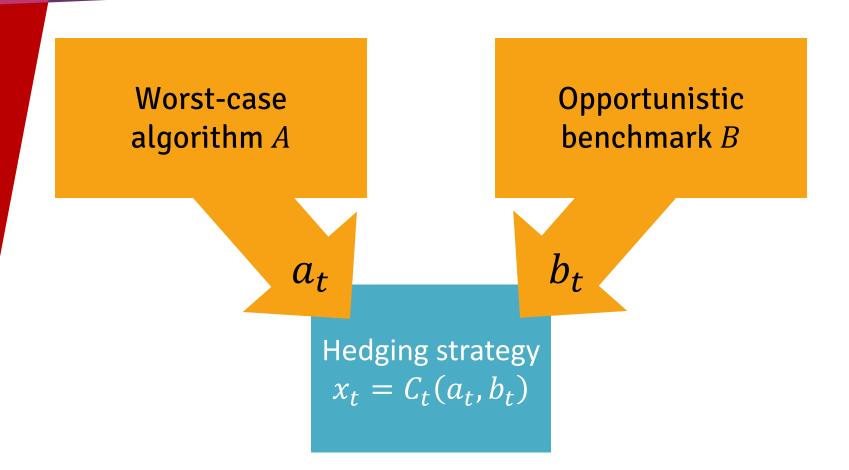
	Easy data	Hard data
Experts (De Rooij, Van Erven, Grünwald and Koolen, 2014)	log <i>N</i> (for i.i.d.)	$\sqrt{T \log N}$ (standard worst-case)
OCO (Bartlett, Hazan and Rakhlin, 2007)	log <i>T</i> (for strongly convex)	\sqrt{T} (standard worst-case)
Bandits (Seldin and Slivkins, 2014)	log ³ T (for i.i.d.)	$\sqrt{NT \log N}$ (standard worst-case)

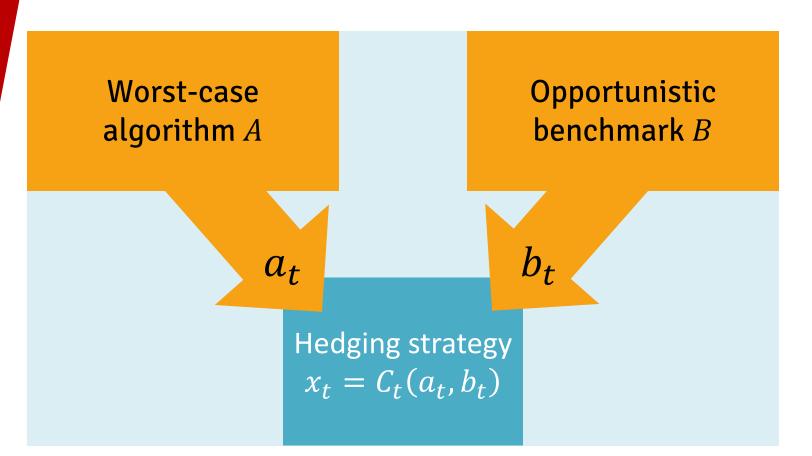
Is there a generic way to combine two guarantees? Is there a generic way to combine two guarantees?

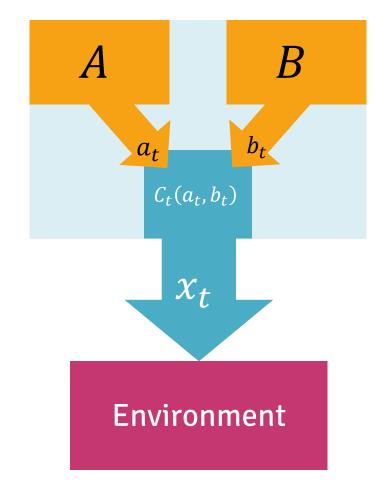
VESIII

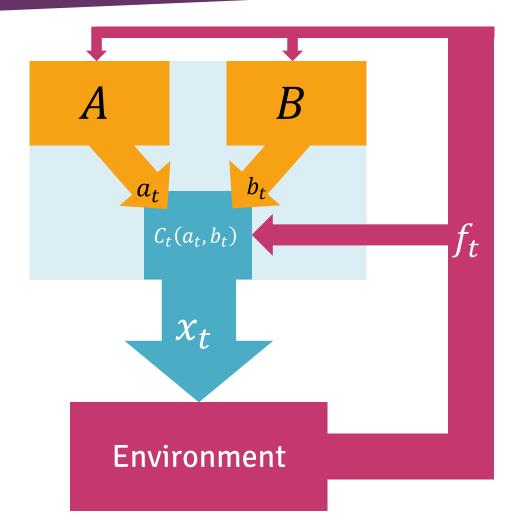
Worst-case algorithm A

Opportunistic benchmark *B*









A naïve approach

Let's treat A and B as experts and use Hedge* on top of them!

* Vovk(1990), Littlestone and Warmuth (1994), Freund and Schapire (1997)

A naïve approach

Let's treat A and B as experts and use Hedge* on top of them!

Initialize
$$\eta > 0$$
, $w_{1,A} = w_{1,B} = 1/2$
For $t = 1, 2, ..., T$ **repeat**
 $w_{t,A}$

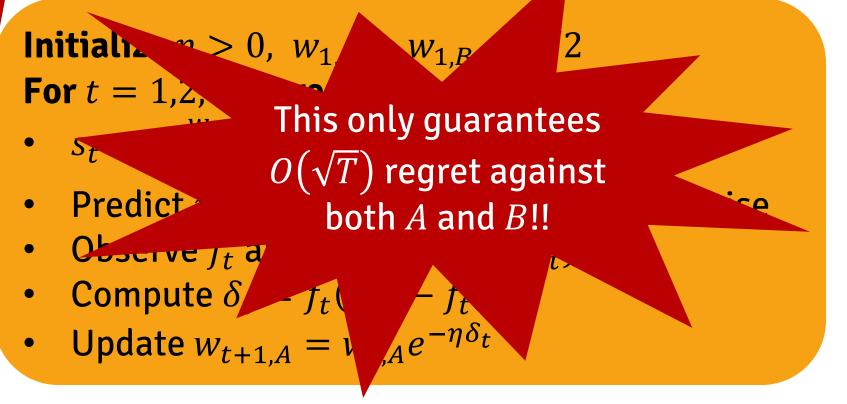
$$S_t = \frac{w_{t,A}}{w_{t,A} + w_{t,B}}$$

- Predict $x_t = a_t$ w.p. s_t and $x_t = b_t$ otherwise
- Observe f_t and suffer loss $f_t(x_t)$
- Compute $\delta_t = f_t(a_t) f_t(b_t)$
- Update $w_{t+1,A} = w_{t,A}e^{-\eta\delta_t}$

* Vovk(1990), Littlestone and Warmuth (1994), Freund and Schapire (1997)

A naïve approach

Let's treat A and B as experts and use Hedge* on top of them!



* Vovk(1990), Littlestone and Warmuth (1994), Freund and Schapire (1997)

Our algorithm: (AB)-Prod

Let's replace Hedge by Prod*!

Initialize
$$\eta > 0$$
, $w_{1,A} = w_{1,B} = 1/2$
For $t = 1, 2, ..., T$ repeat
• $s_t = \frac{w_{t,A}}{w_{t,A} + w_{t,B}}$
• Predict $x_t = a_t$ w.p. s_t and $x_t = b_t$ otherwis
• Observe f_t and suffer loss $f_t(x_t)$
• Compute $\delta_t = f_t(a_t) - f_t(b_t)$

• Update $w_{t+1,A} = w_{t,A}(1 - \eta \delta_t)$

* Cesa-Bianchi, Mansour and Stoltz (2007), Even-Dar, Kearns, Mansour, Wortman (2008)

Our algorithm: (AB)-Prod

Let's replace Hedge by Prod*! ... and put a large weight on *B*!

Initialize $\eta > 0$, $w_{1,A} = \eta$, $w_{1,B} = 1 - \eta$ **For** t = 1, 2, ..., T **repeat**

•
$$S_t = \frac{w_{t,A}}{w_{t,A} + w_{t,B}}$$

- Predict $x_t = a_t$ w.p. s_t and $x_t = b_t$ otherwise
- Observe f_t and suffer loss $f_t(x_t)$
- Compute $\delta_t = f_t(a_t) f_t(b_t)$
- Update $w_{t+1,A} = w_{t,A}(1 \eta \delta_t)$

* Cesa-Bianchi, Mansour and Stoltz (2007), Even-Dar, Kearns, Mansour, Wortman (2008)

Our main result

- Define
 - $-R_T(C, x) = \mathbf{E}\left[\sum_{t=1}^T (f_t(x_t) f_t(x))\right]$ $-R_T(A, x) = \mathbf{E}\left[\sum_{t=1}^T (f_t(x_t) f_t(a_t))\right]$ $-R_T(C, A) = \mathbf{E}\left[\sum_{t=1}^T (f_t(x_t) f_t(a_t))\right]$

Our main result

• Define

$$-R_T(C,x) = \mathbf{E}\left[\sum_{t=1}^T (f_t(x_t) - f_t(x))\right]$$
$$-R_T(A,x) = \mathbf{E}\left[\sum_{t=1}^T (f_t(x_t) - f_t(a_t))\right]$$
$$-R_T(C,A) = \mathbf{E}\left[\sum_{t=1}^T (f_t(x_t) - f_t(a_t))\right]$$

Theorem:

 $R_T((AB)-\operatorname{Prod}, x) \le R_T(A, x) + 2\sqrt{T \log T}$ $R_T((AB)-\operatorname{Prod}, x) \le R_T(B, x) + 2\log 2$

• The asymmetry of $(1 - \eta x)$ is key, e.g., $\eta = \frac{1}{2}$

• The asymmetry of $(1 - \eta x)$ is key, e.g., $\eta = \frac{1}{2}$

$$\begin{array}{c} f_t(a_t) = 1 \\ f_t(b_t) = 0 \end{array} \longrightarrow \\ \delta_t = 1 \end{array} \longrightarrow \\ w_{t+1,A} = w_{t,A} \cdot \frac{1}{2} \end{array}$$

$$\begin{array}{c} f_t(a_t) = 0 \\ f_t(b_t) = 1 \end{array} \longrightarrow \delta_t = -1 \longrightarrow w_{t+1,A} = w_{t,A} \cdot \frac{3}{2} \end{array}$$

• The asymmetry of
$$(1 - \eta x)$$
 is key, e.g., $\eta = \frac{1}{2}$

$$f_{t}(a_{t}) = 1$$

$$f_{t}(b_{t}) = 0$$

$$\delta_{t} = 1$$

$$w_{t+1,A} = w_{t,A} \cdot \frac{1}{2}$$

$$Hedge:$$

$$w_{t+1,A} = w_{t,A} \cdot e^{-1/2}$$

$$f_{t}(a_{t}) = 0$$

$$f_{t}(b_{t}) = 1$$

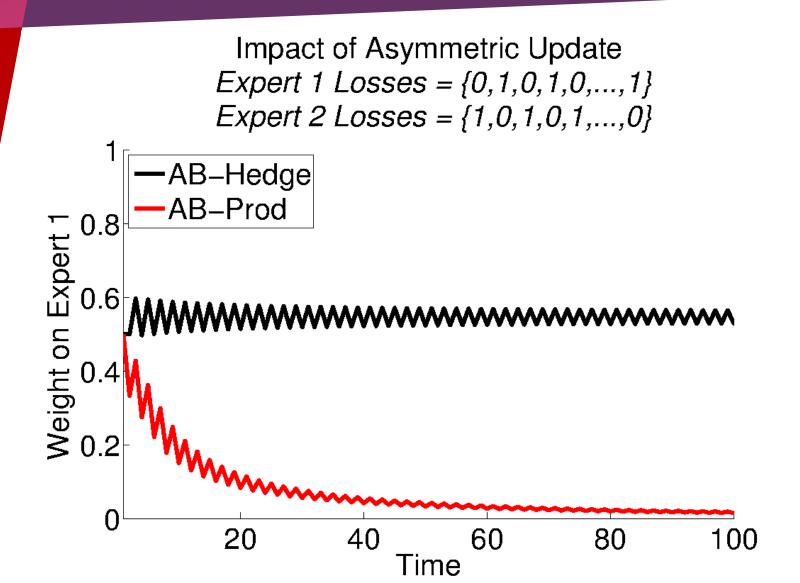
$$\delta_{t} = -1$$

$$w_{t+1,A} = w_{t,A} \cdot \frac{3}{2}$$

$$Hedge:$$

$$1/2$$

 $w_{t+1,A} = w_{t,A}$



Prediction with expert advice:

- *A* = Hedge, *B* = Follow the Leader
- **Regret:** $O(\log N)$ against i.i.d. losses, $O(\sqrt{T \log N} + \sqrt{T \log T})$ in worst case

Prediction with expert advice:

- *A* = Hedge, *B* = Follow the Leader
- **Regret:** $O(\log N)$ against i.i.d. losses, $O(\sqrt{T \log N} + \sqrt{T \log T})$ in worst case

Matches De Rooij et al. (2014) up to $\sqrt{\log T}$

Prediction with expert advice:

- A = Hedge, B = Follow the Leader
- **Regret:** $O(\log N)$ against i.i.d. losses, $O(\sqrt{T \log N} + \sqrt{T \log T})$ in worst case

Matches De Rooij et al. (2014) up to $\sqrt{\log T}$

Online convex optimization:

- $A = OGD^*$ with $\eta = \frac{1}{\sqrt{t}}$, B = OGD with $\eta = \frac{1}{t}$
- **Regret:** $O(\log T)$ against strongly convex losses, $O(\sqrt{T \log T})$ in worst case

* Zinkevich (2003), Hazan, Agarwal and Kale (2007)

Prediction with expert advice:

- A = Hedge, B = Follow the Leader
- **Regret:** $O(\log N)$ against i.i.d. losses, $O(\sqrt{T \log N} + \sqrt{T \log T})$ in worst case

Matches De Rooij et al. (2014) up to $\sqrt{\log T}$

Matches Bartlett et

al. (2007) up to

 $\sqrt{\log T}$

Online convex optimization:

- $A = OGD^*$ with $\eta = \frac{1}{\sqrt{t}}$, B = OGD with $\eta = \frac{1}{t}$
- **Regret:** $O(\log T)$ against strongly convex losses, $O(\sqrt{T \log T})$ in worst case

* Zinkevich (2003), Hazan, Agarwal and Kale (2007)

Tracking the best expert:

- *A* = Fixed Share*, *B* = windowed FTL
- **Regret** measured against best sequence $x_{1:T}$ with K switches: $O(K \log(T/K))$ for piecewise i.i.d., $O(\sqrt{KT \log N} + \sqrt{T \log T})$ in worst case

* Herbster and Warmuth (1998)

Tracking the best expert:

- *A* = Fixed Share*, *B* = windowed FTL
- **Regret** measured against best sequence $x_{1:T}$ with K switches: $O(K \log(T/K))$ for piecewise i.i.d., $O(\sqrt{KT \log N} + \sqrt{T \log T})$ in worst case

Solves COLT 2014 open problem by Koolen and Warmuth

* Herbster and Warmuth (1998)

Two-points bandit feedback:

- Observing $f_t(a_t)$ and $f_t(b_t)$ is enough!
- $A = \mathsf{EXP3*}, B = \mathsf{UCB*}$
- **Regret:** $O(\log T)$ against i.i.d. losses, $O(\sqrt{NT \log N} + \sqrt{T \log T})$ in worst case

* Auer, Cesa-Bianchi, Freund and Schapire (2002), Auer, Cesa-Bianchi and Fischer (2002)

Two-points bandit feedback:

- Observing $f_t(a_t)$ and $f_t(b_t)$ is enough!
- $A = \mathsf{EXP3}^*, B = \mathsf{UCB}^*$
- **Regret:** $O(\log T)$ against i.i.d. losses, $O(\sqrt{NT} \log N + \sqrt{T \log T})$ in worst case

Much better than the $\log^3 T$ of Seldin and Slivkins (2014), although much less general

* Auer, Cesa-Bianchi, Freund and Schapire (2002), Auer, Cesa-Bianchi and Fischer (2002)

Conclusions

- A generic scheme to combine aggressive and principled algorithms
 - Also guarantees that your **new** solution is essentially always better than your **old** one

Conclusions

- A generic scheme to combine aggressive and principled algorithms
- Also guarantees that your **new** solution is essentially always better than your **old** one
- Open problems:
 - extending to real partial information?
 - reinforcement learning?
 - optimality in every single time window?

Thanks!

- Directly follows from the Prod analysis:
 - Let $S = \{1, 2, ..., N\}$, $w_{1,i} = \mu_i$ for all i
 - In every round *t*, choose *i* w.p. $p_{t,i} \propto w_{t,i}$
 - Loss of expert *i* in round *t*: $\ell_{t,i}$

$$-w_{t+1,i} = w_{t,i} \cdot \left(1 - \eta \ell_{t,i}\right)$$

- Directly follows from the Prod analysis:
 - Let $S = \{1, 2, ..., N\}$, $w_{1,i} = \mu_i$ for all i
 - In every round *t*, choose *i* w.p. $p_{t,i} \propto w_{t,i}$
 - Loss of expert *i* in round *t*: $\ell_{t,i}$

$$-w_{t+1,i} = w_{t,i} \cdot \left(1 - \eta \ell_{t,i}\right)$$

Theorem (Cesa-Bianchi, Mansour and Stoltz, 2007): If $\sum_{i=1}^{N} \mu_i = 1$, then for all i $R_{T,i} \leq \frac{\log \mu_i}{n} + \eta \sum_{t,i}^{T} \ell_{t,i}^2$

Idea (Even-Dar, Kearns, Mansour and Wortman, 2008):

$$- \operatorname{set} \hat{\ell}_{t,i} = \ell_{t,i} - \ell_{t,1} \\ - \mu_1 = 1 - \eta \text{ and } \mu_i = \frac{\eta}{N-1} \text{ for } i > 1 \\ R_{T,i} \leq \frac{\log \mu_i}{\eta} + \eta \sum_{t=1}^T (\ell_{t,i} - \ell_{t,1})^2$$

Idea (Even-Dar, Kearns, Mansour and Wortman, 2008):

$$-\operatorname{set} \hat{\ell}_{t,i} = \ell_{t,i} - \ell_{t,1}$$
$$-\mu_1 = 1 - \eta \text{ and } \mu_i = \frac{\eta}{N-1} \text{ for } i > 1$$
$$R_{T,i} \leq \frac{\log \mu_i}{\eta} + \eta \sum_{t=1}^T (\ell_{t,i} - \ell_{t,1})^2$$
$$R_{T,1} \leq \frac{\log(1-\eta)}{\eta} + 0$$
$$R_{T,i} \leq \frac{\log\eta}{\eta} + \eta T$$

Idea (Even-Dar, Kearns, Mansour and Wortman, 2008):

$$-\operatorname{set} \hat{\ell}_{t,i} = \ell_{t,i} - \ell_{t,1}$$

$$-\mu_1 = 1 - \eta \text{ and } \mu_i = \frac{\eta}{N-1} \text{ for } i > 1$$

$$R_{T,i} \leq \frac{\log \mu_i}{\eta} + \eta \sum_{t=1}^T (\ell_{t,i} - \ell_{t,1})^2$$

$$R_{T,1} \leq \frac{\log(1-\eta)}{\eta} + 0$$

$$\leq 2\log 2$$