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Online optimization

Parameters:
decision set S, set of loss functions F € [0,1]

Fort =1,2,...T repeat

* Learner picks decision x; € S

* Environment picks loss function f; € F
 Learner suffers loss f; (x;)

* Learner observes f;

S



Online optimization - examples

Online convex optimization:
 S:aconvex subset of R?
* F:the set of bounded convex
functions on R¢

Online combinatorial optimization:

- Sc{0,1}4 o
- F=[01]° N 00
* e.g., set of paths, spanning trees, ,&\) ((\\)'C ;(0(((\6
matchings on a graph (3‘ \s A\ \f
x 9 \\&0 8030
W ge®
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A central concept: Regret

Learner aims to choose
X1, Xy, ..., X7 to minimize Ry

A typical guarantee:

Ry = 0(CVT)

Environment aims to choose
fl; fZ; )fT tO maXimize RT




Beyond worst-case guarantees

What if the environment is not that bad?
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Beyond worst-case guarantees

What if the environment is not that bad? § a
Some known easy cases: .

—1i.i.d. losses in the experts setting:

R; = O(logN)
— Strongly convex losses in OCO:
Ry = 0(logT)

—1i.i.d. losses in bandits:
Ry = 0(logT)



Beyond worst-case guarantees

What if the environment is not that bad? §
Some known easy cases:

—i.i.d. losses.in the ex/ »ts« ng:
— Strony. But you need to

be aggressive to
—iid oo get these!

Sy



How bad can it be?

Classical counterexample:
* Two experts with losses
[1 /20101 ..

0 1010 ...
 FTL suffers

Regret

“Hard” Data

== FTL O(T)
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How bad can it be?

Classical counterexample:
* Two experts with losses
[1 /20101 ..

0 1010 ...
 FTL suffers

“Easy” Data

—FTL O(logT)
—1T
— AdaHedge O(VT)

Regret

Time

“Hard” Data

== TL O(T)
— %T
— Adalledge O(VT)

Regret

Time

Add a little twist:

« Two experts with losses
[0 0101 ..
11010 ...

and a few more [0 1]7 later

« FTL beats everything else



The best of both worlds

Some previous results:

T Ry data | Harddata

Experts log N JTlogN

(De Rooij, Van Erven, fori.i.d.

Griinwald and Koolen, 2014) ( T ) (Standard WorSt-Case)
0CO log T VT
(Bart)lett, Hazan and Rakhlin, (for strongly convex) (Standard Worst-case)
2007

Bandits log> T JNT log N

(Seldin and Slivkins, 2014) (fori.i.d.) (standard worst-case)



Is there a generic
way to combine two
guarantees?



Is there a generic
way to combine two
guarantees?

YES!!H]



Worst-case Opportunistic
algorithm A4 benchmark B



Hedging strategy
x¢ = Ce(ag, be)




Worst-case Opportunistic
algorithm A4 benchmark B

At b;

Hedging strategy

x¢ = Ci(ayg, by)



Environment




Environment




A naive approach

Let’s treat A and B as experts and use
Hedge™ on top of them!

* Vovk(1990), Littlestone and Warmuth (1994), Freund and Schapire (1997)



A naive approach

Let’s treat A and B as experts and use
Hedge™ on top of them!

Initializen > 0, w4 = w;5 = 1/2
Fort =1,2,..,T repeat

Wt A
Wit AtWt B

* Predict x; = a; w.p. s; and x; = b;otherwise
* Observe f; and suffer loss f;(x;)

* Compute 6; = fi(a;) — f:(be)

» Update w;,q 4 = w; g7

o St=

* Vovk(1990), Littlestone and Warmuth (1994), Freund and Schapire (1997)



A naive approach

Let’s treat A and B as experts and use
Hedge™ on top of thgm!

Initiali? 2

Fort = 1,28

0, wy

1,5

This only guarantees
0(\/7) regret against

* Predicig both A and B!!
° () Ve |+ A/ ’
 Compute 67, (

» Update wy 14 = =119

€

* Vovk(1990), Littlestone and Warmuth (1994), Freund and Schapire (1997)



Our algorithm: (AB)-Prod

Let’s replace Hedge by Prod*!

Initializen > 0, w4 = w;5 = 1/2
Fort =1,2,..,T repeat

Wt A
Wit AtWt B

* Predict x; = a; w.p. s; and x; = b;otherwise
* Observe f; and suffer loss f;(x;)

* Compute 6; = fi(a;) — f:(bt)

* Update wiyq 4 = we 4(1 —16¢)

* Cesa-Bianchi, Mansour and Stoltz (2007), Even-Dar, Kearns, Mansour, Wortman (2008)

o St=



Our algorithm: (AB)-Prod

Let’s replace Hedge by Prod*!
... and put a large weight on B!

Initializen >0, w4, =0, wyp=1-—7
Fort =1,2,..,T repeat

Wt A
Wit AtWt B

* Predict x; = a; w.p. s; and x; = b;otherwise
* Observe f; and suffer loss f;(x;)

* Compute 6; = fi(a;) — f:(bt)

* Update wiyq 4 = we 4(1 —16¢)

* Cesa-Bianchi, Mansour and Stoltz (2007), Even-Dar, Kearns, Mansour, Wortman (2008)

o St=



Our main result

Define

—RT(C,x) —_ E:

ST (fi ) — fila)
— Ry (C,A) = E]

— RT(A, X) — E

Z:l(ft(xt) — ft(x))]

Z=1(ft(xt) — ft(at)):



Our main result

Define

- Ry (C,%) = E[ZTL, (i) — £ (0)]
—Rr(4,x) = E[XT_1(fi (xp) — fe(an)
—R;+(C,A) = E Z=1(ft(xt) — ft(at)):

Theorem:

RT((AB)—Prod, x) <R;(A,x)+2TlogT
RT((AB)—Prod, x) < R;(B,x) + 2log?2
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The asymmetry of (1 — nx) is key, e.g., n = %
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fe(ap) =1 _ _ 1
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Why does it work?

The asymmetry of (1 — nx) is key, e.g., n = 1

2
fe(ay) =1 _ _ 1
fe(b) =0 = 6 =1 "™ wia=wa )

fe(a) =0 _ _ 3
fe(be) =1 =0 =1 " w0 =wg )

Hedge:

_ 1
Wir1,4 = Wga - €



Why does it work?

—h

O
e,

©
~

Weight on Expert 1

-

O
(o

O
N

Impact of Asymmetric Update
Expert 1 Losses = {0,1,0,1,0,...,1}
Expert 2 Losses = {1,0,1,0,1,...,0}

_—AB—Hedge
|—AB-Prod

20 40 60 80 100



Applications

Prediction with expert advice:
A =Hedge, B = Follow the Leader
* Regret: O(log N) against i.i.d. losses,

0(y/TlogN + /T logT) in worst case
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« A =Hedge, B = Follow the Leader
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0(y/TlogN + /T logT) in worst case

Online convex optimization:
+ A =0GD*withy = —, B = 0GD with7 = -

* Regret: O(log T) against strongly convex losses,
0(4/TlogT) in worst case

* Zinkevich (2003), Hazan, Agarwal and Kale (2007)




Applications

Prediction with expert advice:

« A =Hedge, B = Follow the Leader
* Regret: O(log N) against i.i.d. losses,
0(y/TlogN + /T logT) in worst case

Online convex optimization:
° — * W1 p— i — 3 — l
A = 0GD* withn —ﬁ,B = 0GD withn = -

* Regret: O(log T) against strongly convex losses,
0(4/TlogT) in worst case

* Zinkevich (2003), Hazan, Agarwal and Kale (2007)




Applications

Tracking the best expert:

« A = Fixed Share*, B = windowed FTL

* Regret measured against best sequence x;.; with K
switches: O(K log(T /K)) for piecewisei.i.d.,

O(y/KTlogN + /T logT)in worst case

* Herbster and Warmuth (1998)



Applications

Tracking the best expert:

« A = Fixed Share*, B = windowed FTL

* Regret measured against best sequence x;.; with K
switches: O(K log(T /K)) for piecewisei.i.d.,

O(y/KTlogN + /T logT)in worst case

Solves COLT 2014 open problem by
Koolen and Warmuth

* Herbster and Warmuth (1998)



Applications

Two-points bandit feedback:
* Observing f;(a;) and f;(b;) is enough!
« A =EXP3*, B =UCB*

* Regret: O(logT) against i.i.d. losses,
O(y/NTlogN + /T logT) in worst case

* Auer, Cesa-Bianchi, Freund and Schapire (2002), Auer, Cesa-Bianchi and Fischer (2002)



Applications

Two-points bandit feedback:
* Observing f;(a;) and f;(b;) is enough!
« A =EXP3*, B =UCB*

* Regret: O(logT) against i.i.d. losses,
O(y/NTlogN + /T logT) in worst case

Much better than the log3 T of
Seldin and Slivkins (2014),
although much less general

* Auer, Cesa-Bianchi, Freund and Schapire (2002), Auer, Cesa-Bianchi and Fischer (2002)



A generic scheme to combine aggressive
and principled algorithms

Also guarantees that your new solution is
essentially always better than your old one



A generic scheme to combine aggressive
and principled algorithms

Also guarantees that your new solution is
essentially always better than your old one

* Open problems:

— extending to real partial information?
— reinforcement learning?

— optimality in every single time window?






Directly follows from the Prod analysis:
— Let S = {1,2, ...,N}, Wii = Ui forall i
— In every round ¢, choose i w.p. py; o wy;

— Loss of expert i in round t: £, ;

—Wei1,i = Wei- (1 — ﬂft,i)



Directly follows from the Prod analysis:
— Let S = {1,2, ...,N}, Wii = Ui foralli
— In every round ¢, choose i w.p. py; o wy;

— Loss of expert i in round t: £, ;
—Wti1,i = Wei- (1 — nft,i)

Theorem (Cesa-Bianchi, Mansour and Stoltz, 2007):
If YN, u; = 1, thenforalli

T
log u;
Rp; < gﬂl+nzf§i
t=1

n



ldea (Even-Dar, Kearns, Mansour and Wortman, 2008):
_Set’?tl — ’gtl — ft,l

—,ul—l—nand,ul— forl>1

log u; 2
Rp; < ” -+ Uz(ft,i — et,l)
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