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Near-optimal guarantees
on both

“Easy” and “Hard” data!

What is "Easy" Data?

Examples:
•Highly predictable sequences
• IID losses with large gaps between means
•Strongly convex losses
•See Settings 2, 3 and 4 in Figure 1.
Algorithms:
•Variants of Follow-the-leader (FTL)
•Typical regret guarantees: O(log T )
Problems:
•Horrible performance on "Hard" data!
•See Setting 1 in Figure 1.

What is "Hard" Data?

Examples:
•Non-IID Adversarial Losses
•Non-Stationary distributions
•Small gaps between means
•Non-strongly convex losses
•See Setting 1 in Figure 1.
Algorithms:
•Variants of Follow-the-regularized-leader (FTRL)
•Typical regret guarantees: O(

√
T )

Problems:
•Horrible performance on "Easy" data.
•See Settings 2 and 3 in Figure 1.

Online Optimization (OO) [3]

Parameters:
•Decision set S
•Number of rounds T
•Family of loss functions F ⊆ S [0,1]

For all t = 1, 2, . . . , T , repeat
1 Environment chooses loss function ft ∈ F .
2 Learner chooses a decision xt ∈ S.
3 Environment reveals ft.
4 Learner suffers loss ft(xt).

Competing against a Benchmark

Our method guarantees a constant regret w.r.t. any
existing benchmark strategy together with small
regret against the best strategy in hindsight. This
is particularly useful in domains where the learning
algorithm should be safe and never worsen the
performance of an existing strategy (e.g., portfolio
optimization with benchmark reference).

(AB)-Prod

Parameters:
• Learning rate η ∈ (0, 1/2]
• Initial weights w1,A = η and
w1,B = 1− η

•Rounds T
For all t = 1, 2, . . . , T , repeat
1 Let

st = wt,A
wt,A + w1,B

.

2 Observe at from Algorithm A

3 Observe bt from Benchmark B

4 Predict

xt =

at with probability st,
bt otherwise.

5 Observe ft and suffer loss ft(xt).

6 Feed ft to A and B.

7 Compute δt = ft(bt)− ft(at) and set
wt+1,A = wt,A · (1 + ηδt) .

Anytime (AB)-Prod

Parameters:
• Learning rate η1 = 1/2
• Initial weights w1,A = w1,B = 1/2
•Rounds T
For all t = 1, 2, . . . , T , repeat
1 Let

ηt =
√√√√ 1

1 + ∑t−1
s=1(fs(bs)− fs(as))2

and
st = ηtwt,A

ηtwt,A + w1,B/2
.

2 Observe at from Algorithm A
3 Observe bt from Benchmark B
4 Predict

xt =

at with probability st,
bt with probability 1− st.

5 Observe ft and suffer loss ft(xt).
6 Feed ft to A and B.
7 Compute δt = ft(bt)− ft(at) and set

wt+1,A = wt,A · (1 + ηt−1δt)ηt/ηt−1 .

Theoretical Results

Theorem 1 (cf. Lemma 1 in [2])

For any assignment of the loss sequence, the total expected loss of (AB)-Prod initialized with
weights w1,B ∈ (0, 1) and w1,B = 1− w1,A simultaneously satisfies

L̂T
(
(AB)-Prod

)
≤ L̂T (A) + η

T∑
t=1

(
ft(bt)− ft(at)

)2 − logw1,A

η

and
L̂T

(
(AB)-Prod

)
≤ L̂T (B)− logw1,B

η
.

Corollary 1
Let C ≥ 1 be an upper bound on the total benchmark loss L̂T (B). Then setting η =
1/2 ·

√
(logC)/C < 1/2 and w1,B = 1− w1,A = 1− η simultaneously guarantees

RT

(
(AB)-Prod

)
≤ RT (A) + 2

√
C logC

for any x ∈ S and
RT

(
(AB)-Prod

)
≤ RT (A) + 2 log 2

against any assignment of the loss sequence.

Setting S F A B
“Hard”
Regret

“Easy”
Regret

“Easy”
Data

Prediction with
Expert Advice ∆N [0, 1]N FTL Hedge O

(√
T log(NT )

)
O(log T ) IID

Tracking the
Best Experta ∆N [0, 1]N FTL(w) FixedShare O

(√
KT log(NT )

)
O(K log T ) Piecewise

IID
Online Convex
Optimization

Convex Closed
Subset of Rd SCFb FTL OGD O(

√
T ) O(log T )c Strongly

Convex
Two-Point
Bandit

{1, 2, . . . , T} [0, 1]N EXP3 UCB O
(√

NT log(NT )
)
O(log T ) IID

Lemma 1
Assume a partition of [1, T ] into K intervals exists such that the losses are generated i.i.d. within each interval. Furthermore, assume
the expectation of losses on the best expert within each interval is at least δ away from the expected loss of all other experts. Then,
setting w = d4 log(NT/K)/δ2e, the regret of FTL(w) is upper bounded for any y1:T as

E
[
RT (FTL(w), y1:T )

]
≤ 4K

δ2 log(NT/K) + 2K,

where the expectation is taken with respect to the distribution of the losses.
aSolves the open problem of learning on “Easy” and “Hard” loss sequences in the tracking the best expert setting proposed by [4].
bsmooth convex functions
cMatching the performance of AOGD [5]

(AB)-Prod Proof

Let
•Wt = wt,A + wt,B,
• `t,A = ft(at), `t,B = ft(bt),
• ˆ̀

t,i = `t,i − `t,B for i ∈ {A,B}.
For i ∈ {A,B},

logWT+1

W1
≥ logwT+1,i = logw1,i +

T∑
t=1

log(1− η ˆ̀
t,i)

≥ logw1,i − η
T∑
t=1

ˆ̀
t,i − η2

T∑
t=1

ˆ̀2
t,i,

where we used that log(1− x) ≥ −x− x2 holds for all x ≤ 1
2. Further-

more, for any t = 1, 2, . . . , T we have

logWt+1

Wt
= log

∑
i

wt,i(1− η ˆ̀
t,i)

Wt


= log

1− η
∑
i
pt,i ˆ̀t,i

 ≤ −η∑
i
pt,i ˆ̀t,i,

by log(1 − x) ≤ −x. Summing up for all t, combining the above
inequalities and using the definition of ˆ̀

t,i, we get for i = A that

L̂T
(
(AB)-Prod

)
− L̂T (A) ≤ η

T∑
t=1

(`t,A − `t,B)2 − logw1,A

η
.

Similarly, for i = B, we obtain

L̂T
(
(AB)-Prod

)
− L̂T (B) ≤ −logw1,B

η
.

(AB)-Hedge Proof

Let wt+1,A = wt,A · eηδt and
•Wt = wt,A + wt,B,
• `t,A = ft(at), `t,B = ft(bt),
• ˆ̀

t,i = `t,i − `t,B for i ∈ {A,B}.
For i ∈ {A,B},

logWT+1

W1
≥ logwT+1,i

= logw1,i − η
T∑
t=1

ˆ̀
t,i,

where we used the definition of the update rule. Furthermore, for any
t = 1, 2, . . . , T we have

logWt+1

Wt
= log

∑
i

wt,ie
−η ˆ̀

t,i

Wt


≤ log

1− η
∑
i
pt,i ˆ̀t,i + η2

8

 ≤ −η∑
i
pt,i ˆ̀t,i + η2

8
,

by Hoeffding’s lemma. Summing up for all t, combining the above
inequalities and using the definition of ˆ̀

t,i, we get for i = {A,B} that

L̂T
(
(AB)-Hedge

)
− L̂T (i) ≤ ηT

8
− logw1,i

η
.

Secret Sauce
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Empirical Results
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Figure : Hand tuned loss sequences from [1]

Discussion

•Summary
•Given a learning algorithm A, with worst-case performance guarantees,
and an opportunistic strategy B, exploiting a specific structure within the
loss sequence, smoothly adapts to “Easy” and “Hard” problems.

•Guarantees best performance between benchmark B and a worst-case
algorithm A

•General-purpose, Interpretable, Simple
•Open Problems

•Learning with temporal constraints (e.g., switching costs, MDPs)?
•What are good benchmark strategies for easy data?
•Learning with partial feedback?
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