

Near-optimal guarantees on both "Easy" and "Hard" data!

What is "Easy" Data?

Examples:

- Highly predictable sequences
- IID losses with large gaps between means
- Strongly convex losses
- See Settings 2, 3 and 4 in Figure 1.

Algorithms:

- Variants of Follow-the-leader (FTL)
- Typical regret guarantees: $\mathcal{O}(\log T)$

Problems:

- Horrible performance on "Hard" data!
- See Setting 1 in Figure 1.

What is "Hard" Data?

Examples:

- Non-IID Adversarial Losses
- Non-Stationary distributions
- Small gaps between means
- Non-strongly convex losses
- See Setting 1 in Figure 1.

Algorithms:

- Variants of Follow-the-regularized-leader (FTRL)
- Typical regret guarantees: $\mathcal{O}(\sqrt{T})$

Problems:

- Horrible performance on "Easy" data.
- See Settings 2 and 3 in Figure 1.

Online Optimization (OO) [3]

Parameters:

- Decision set ${\cal S}$
- Number of rounds T
- Family of loss functions $\mathcal{F} \subseteq \mathcal{S}^{[0,1]}$

For all $t = 1, 2, \ldots, T$, repeat • Environment chooses loss function $f_t \in \mathcal{F}$. **2** Learner chooses a decision $x_t \in \mathcal{S}$. Servironment reveals f_t . 4 Learner suffers loss $f_t(x_t)$.

Competing against a Benchmark

Our method guarantees a constant regret w.r.t. any existing **benchmark** strategy together with small regret against the **best strategy** in hindsight. This is particularly useful in domains where the learning algorithm should be **safe** and **never worsen** the performance of an existing strategy (e.g., portfolio optimization with benchmark reference).

Parameters: • Learning rate $\eta \in (0, 1/2]$ • Initial weights $w_{1,\mathcal{A}} = \eta$ and $w_{1,\mathcal{B}} = 1 - \eta$ • Rounds TFor all $t = 1, 2, \ldots, T$, repeat Let $s_t = ----$ **Observe** a_t from Algorithm \mathcal{A} **③Observe** b_t from Benchmark \mathcal{B} 4 Predict $x_t =$ **5** Observe f_t and suffer loss $f_t(x_t)$. **6** Feed f_t to \mathcal{A} and \mathcal{B} . $w_{t+1,\mathcal{A}} = w_{t,\mathcal{A}} \cdot (1 + \eta \delta_t).$

Theorem 1 (cf. Lemma 1 in [2])

 $L_T(($

and

Corollary 1

Let $C \geq 1$ be an upper bound on the total benchmark loss $\widehat{L}_T(\mathcal{B})$. Then setting $\eta =$ $1/2 \cdot \sqrt{(\log C)/C} < 1/2$ and $w_{1,\mathcal{B}} = 1 - w_{1,\mathcal{A}} = 1 - \eta$ simultaneously guarantees $\Re_T((\mathcal{AB})-\mathsf{Prod}) \leq \Re_T(\mathcal{A}) + 2\sqrt{C\log C}$

for any $x \in \mathcal{S}$ and

against any assignment of the loss sequence.

Setting	S	${\cal F}$	A	В	"Hard" Regret	"Easy" Regret	"Easy" Data
Prediction with Expert Advice	Δ_N	$[0, 1]^N$	FTL	Hedge	$\mathcal{O}\left(\sqrt{T\log(NT)}\right)$	$\mathcal{O}(\log T)$	IID
Tracking the Best Expert ^a	Δ_N	$[0, 1]^N$	FTL(w)	FixedShare	$\mathcal{O}\left(\sqrt{KT\log(NT)}\right)$	$\mathcal{O}(K\log T)$	Piecewise IID
Online Convex Optimization	Convex Closed Subset of \mathbb{R}^d	SCF ^b	FTL	OGD	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\log T)^{c}$	Strongly Convex
Two-Point Bandit	$\{1, 2, \ldots, T\}$	$[0, 1]^N$	EXP3	UCB	$\mathcal{O}\left(\sqrt{NT\log(NT)}\right)$	$\mathcal{O}(\log T)$	IID

Lemma 1

Assume a partition of [1, T] into K intervals exists such that the losses are generated i.i.d. within each interval. Furthermore, assume the expectation of losses on the best expert within each interval is at least δ away from the expected loss of all other experts. Then, setting $w = \lfloor 4 \log(NT/K)/\delta^2 \rfloor$, the regret of FTL(w) is upper bounded for any $y_{1:T}$ as

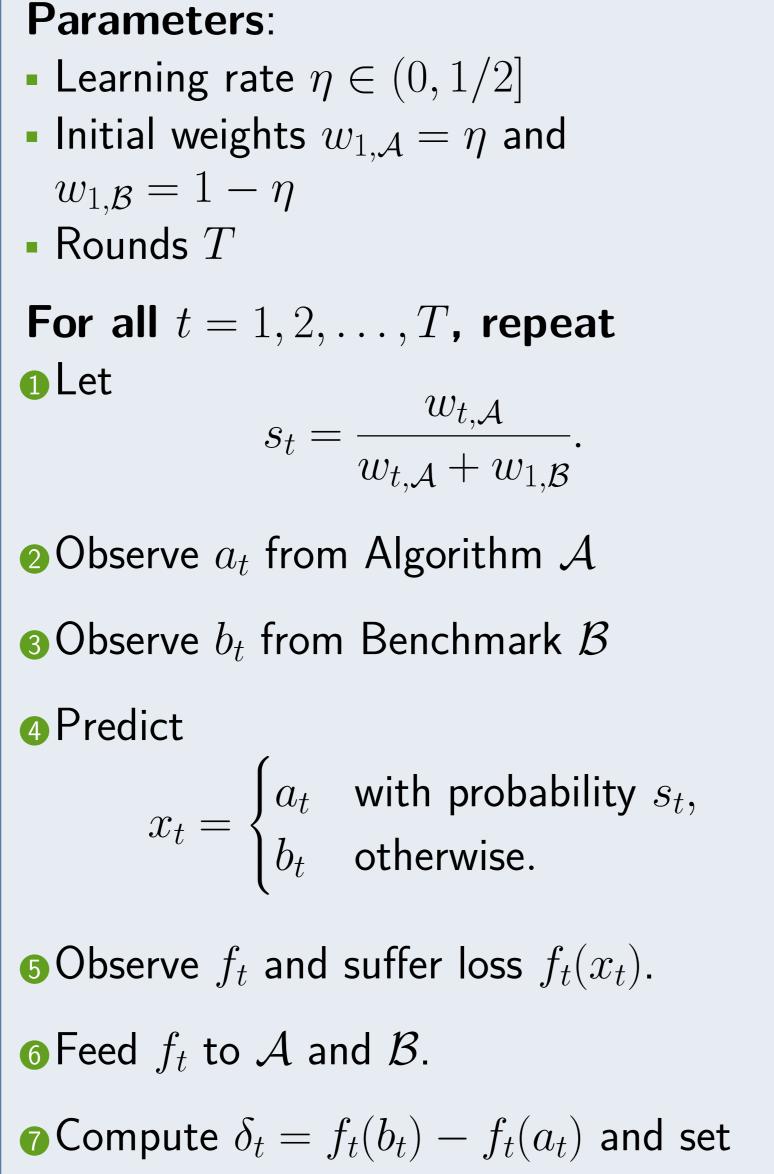
^aSolves the open problem of learning on "Easy" and "Hard" loss sequences in the tracking the best expert setting proposed by [4]. ^bsmooth convex functions ^cMatching the performance of AOGD [5]

Exploiting Easy Data in Online Optimization

Amir SaniGergely NeuAlessandro Lazaric{amir.sani,gergely.neu,alessandro.lazaric}@inria.fr

SequeL team, INRIA Lille – Nord Europe, France

Simila



Anytime (AB)-Prod

Parameters: • Learning rate $\eta_1 = 1/2$ • Initial weights $w_{1,\mathcal{A}} = w_{1,\mathcal{B}} = 1/2$ • Rounds TFor all $t = 1, 2, \ldots, T$, repeat Let $\eta_t = \sqrt{\frac{1 + \sum_{s=1}^{t-1} (f_s(b_s) - f_s(a_s))^2}{1 + \sum_{s=1}^{t-1} (f_s(b_s) - f_s(a_s))^2}}$ and $\eta_t w_{t,\mathcal{A}}$ $S_{t} = --- \eta_t w_{t,\mathcal{A}} + w_{1,\mathcal{B}}/2$ **Observe** a_t from Algorithm \mathcal{A} **Observe** b_t from Benchmark \mathcal{B} Our Predict with probability s_t , $x_t =$ with probability $1 - s_t$. **6** Observe f_t and suffer loss $f_t(x_t)$. **6** Feed f_t to \mathcal{A} and \mathcal{B} . **OCOMPUTE** $\delta_t = f_t(b_t) - f_t(a_t)$ and set $w_{t+1,\mathcal{A}} = w_{t,\mathcal{A}} \cdot (1 + \eta_{t-1}\delta_t)^{\eta_t/\eta_{t-1}}.$

Theoretical Results

For any assignment of the loss sequence, the total expected loss of (AB)-Prod initialized with weights $w_{1,\mathcal{B}} \in (0,1)$ and $w_{1,\mathcal{B}} = 1 - w_{1,\mathcal{A}}$ simultaneously satisfies

$$(\mathcal{AB})$$
-Prod) $\leq \hat{L}_T(\mathcal{A}) + \eta \sum_{t=1}^T (f_t(b_t) - f_t(a_t))^2 - \frac{\log w_{1,\mathcal{A}}}{\eta}$

 $\widehat{L}_T((\mathcal{AB})\operatorname{-Prod}) \leq \widehat{L}_T(\mathcal{B}) - \frac{\log w_{1,\mathcal{B}}}{2}.$

 $\Re_T((\mathcal{AB})-\mathsf{Prod}) \leq \Re_T(\mathcal{A}) + 2\log 2$

$$\mathbb{E}\Big[\Re_T(\mathsf{FTL}(w), y_{1:T})\Big] \le \frac{4K}{\delta^2} \log(NT/K) + 2K$$

where the expectation is taken with respect to the distribution of the losses.

(\mathcal{AB}) -Prod Proof

Let
•
$$W_t = w_{t,\mathcal{A}} + w_{t,\mathcal{B}},$$

• $\ell_{t,\mathcal{A}} = f_t(a_t), \ \ell_{t,\mathcal{B}} = f_t(b_t),$
• $\hat{\ell}_{t,i} = \ell_{t,i} - \ell_{t,\mathcal{B}} \text{ for } i \in \{\mathcal{A}, \mathcal{B}\}.$
For $i \in \{\mathcal{A}, \mathcal{B}\},$
 $\log \frac{W_{T+1}}{W_1} \ge \log w_{T+1,i} = \log w_{1,i} + \sum_{t=1}^T \log(1 - \eta \hat{\ell}_{t,i}))$
 $\ge \log w_{1,i} - \eta \sum_{t=1}^T \hat{\ell}_{t,i} - \eta^2 \sum_{t=1}^T \hat{\ell}_{t,i}^2,$
where we used that $\log(1 - x) \ge -x - x^2$ holds for all $x \le \frac{1}{2}$. Further

er- \angle more, for any $t = 1, 2, \ldots, T$ we have ∧ \

$$\log \frac{W_{t+1}}{W_t} = \log \left(\sum_i \frac{w_{t,i}(1 - \eta \hat{\ell}_{t,i})}{W_t} \right)$$
$$= \log \left(1 - \eta \sum_i p_{t,i} \hat{\ell}_{t,i} \right) \le -\eta \sum_i p_{t,i} \hat{\ell}_{t,i},$$

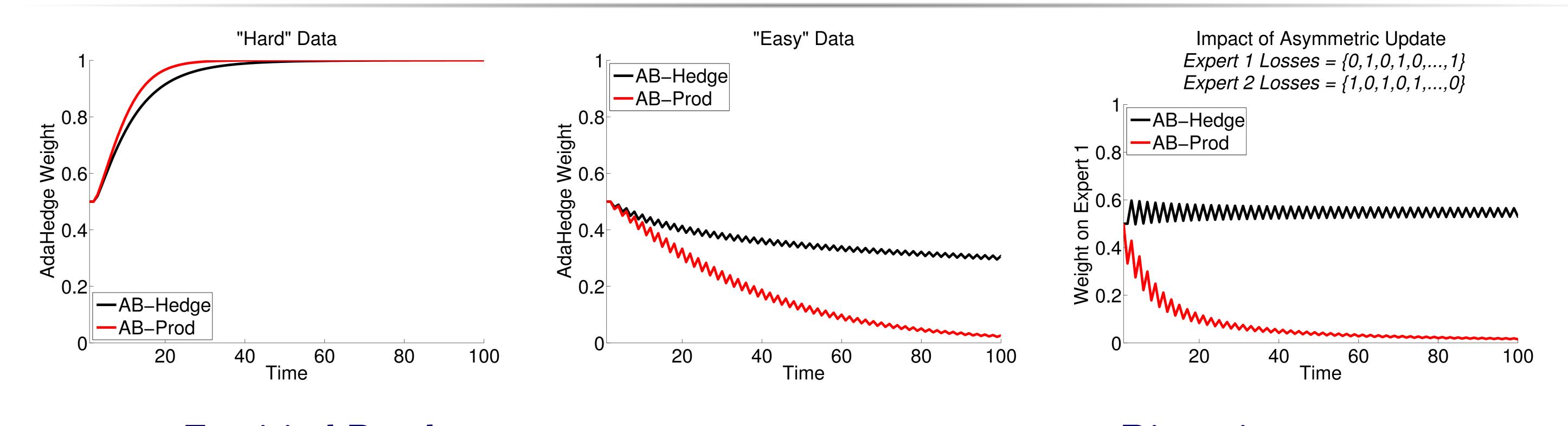
by $\log(1-x) \leq -x$. Summing up for all t, combining the above inequalities and using the definition of $\hat{\ell}_{t,i}$, we get for $i = \mathcal{A}$ that

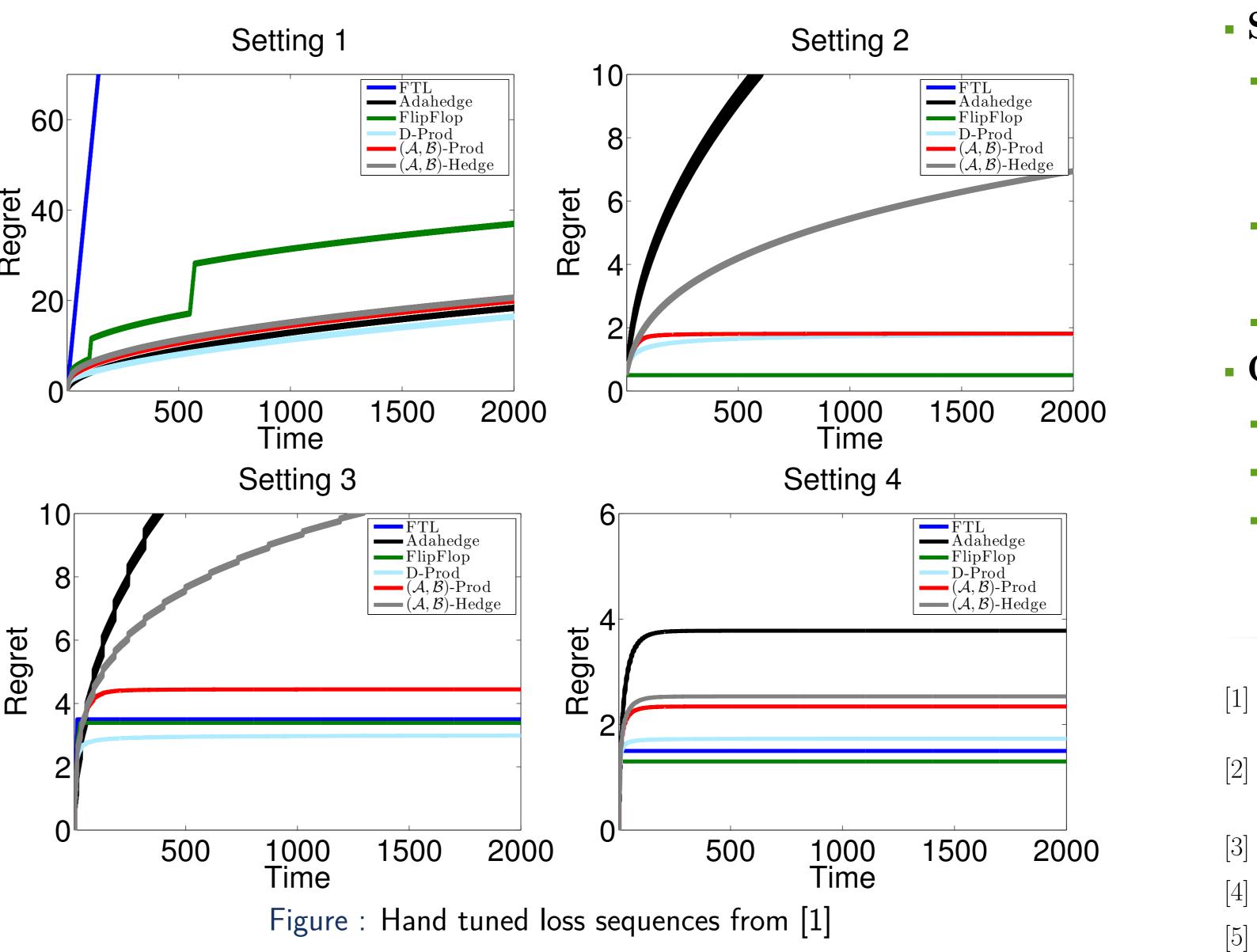
$$\widehat{L}_T((\mathcal{AB})\text{-}\mathrm{Prod}) - \widehat{L}_T(\mathcal{A}) \leq \eta \sum_{t=1}^T (\ell_{t,\mathcal{A}} - \ell_{t,\mathcal{B}})^2 - \frac{\log w_{1,\mathcal{A}}}{\eta}$$

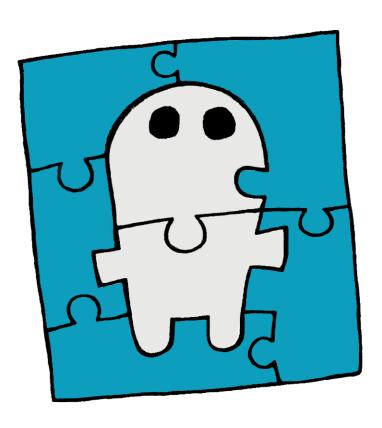
arly, for $i = \mathcal{B}$, we obtain

$$\widehat{L}_T((\mathcal{AB})\text{-}\mathrm{Prod}) - \widehat{L}_T(\mathcal{B}) \leq -\frac{\log w_{1,\mathcal{B}}}{\eta}.$$

Secret Sauce







(\mathcal{AB}) -Hedge Proof

- Let $w_{t+1,\mathcal{A}} = w_{t,\mathcal{A}} \cdot e^{\eta \delta_t}$ and
- $W_t = w_{t,\mathcal{A}} + w_{t,\mathcal{B}},$
- $\ell_{t,\mathcal{A}} = f_t(a_t), \ \ell_{t,\mathcal{B}} = f_t(b_t),$
- $\hat{\ell}_{t,i} = \ell_{t,i} \ell_{t,\mathcal{B}} \text{ for } i \in \{\mathcal{A}, \mathcal{B}\}.$
- For $i \in \{\mathcal{A}, \mathcal{B}\}$,

$$g \frac{W_{T+1}}{W_1} \ge \log w_{T+1,i} = \log w_{1,i} - \eta \sum_{t=1}^T \hat{\ell}_{t,i}$$

where we used the definition of the update rule. Furthermore, for any $t = 1, 2, \ldots, T$ we have

$$\log \frac{W_{t+1}}{W_t} = \log \left(\sum_i \frac{w_{t,i} e^{-\eta \hat{\ell}_{t,i}}}{W_t} \right)$$
$$\leq \log \left(1 - \eta \sum_i p_{t,i} \hat{\ell}_{t,i} + \frac{\eta^2}{8} \right) \leq -\eta \sum_i p_{t,i} \hat{\ell}_{t,i} + \frac{\eta^2}{8},$$

by Hoeffding's lemma. Summing up for all t, combining the above inequalities and using the definition of $\hat{\ell}_{t,i}$, we get for $i = \{\mathcal{A}, \mathcal{B}\}$ that

$$\widehat{L}_T((\mathcal{AB})\text{-Hedge}) - \widehat{L}_T(i) \le \frac{\eta T}{8} - \frac{\log w_{1,1}}{\eta}$$

Discussion

Summary

- Given a learning algorithm \mathcal{A} , with worst-case performance guarantees, and an opportunistic strategy \mathcal{B} , exploiting a specific structure within the loss sequence, smoothly adapts to "Easy" and "Hard" problems.
- Guarantees best performance between benchmark ${\cal B}$ and a worst-case algorithm \mathcal{A}
- General-purpose, Interpretable, Simple

• Open Problems

- Learning with temporal constraints (e.g., switching costs, MDPs)?
- What are good benchmark strategies for easy data?
- Learning with partial feedback?

References

- [3] Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent.
- [4] Koolen, W. M., & Warmuth, M. K. Shifting Experts on Easy Data.
- [5] Bartlett, P. L., Hazan, E., & Rakhlin, A. (2008). Adaptive online gradient descent.

^[1] de Rooij, S., Van Erven, T., Grunwald, P.D., & Koolen, W.M. (2013). Follow the leader if you can, hedge if you

^[2] Even-Dar, E., Kearns, M., Mansour, Y., & Wortman, J. (2008). Regret to the best vs. regret to the average. Machine Learning, 72(1-2), 21-37.