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Near-optimal guarantees
on both
"Easy’ and "Hard" datal

What is "Easy" Data?”

Examples:

« Highly predictable sequences

« 11D losses with large gaps between means
« Strongly convex losses
= See dettings 2, 3 and 4 in Figure 1.

Algorithms:
= Variants of Follow-the-leader (FTL)

= Typical regret guarantees: O(logT)

Problems:

« Horrible performance on "Hard" data!

« See detting 1 in Figure 1.

What is "Hard" Data”

Examples:

= Non-IID Adversarial Losses

« Non-Stationary distributions
« bmall gaps between means

« Non-strongly convex losses

« See detting 1 in Figure 1.

Algorithms:

« Variants of Follow-the-regularized-leader (FTRL)
- Typical regret guarantees: O(v/T)

Problems:

« Horrible performance on "Easy' data.
« See dettings 2 and 3 in Figure 1.

Online Optimization (OO) [3]

Parameters:

« Decision set S

« Number of rounds 1T’

- Family of loss functions F C S

Forall t=1,2,....7, repeat

® Environment chooses loss function f; € F.
® Learner chooses a decision z; € §S.

® Environment reveals f;.

o Learner suffers loss fi(x).

Competing against a Benchmark

Our method guarantees a constant regret w.r.t. any
existing benchmark strategy together with small
regret against the best strategy in hindsight. This
is particularly useful in domains where the learning
algorithm should be safe and never worsen the
performance of an existing strategy (e.g., portfolio
optimization with benchmark reference).

Parameters:

« Learning rate n € (0,1/2]

« Initial weights w; 4 = 71 and
wip=1—n

= Rounds I’

Forall t=1,2,...,7, repeat

Let
o Wt A

Wt A T W1 B

St —

® Observe a; from Algorithm A
© Observe b; from Benchmark B
o Predict

b; otherwise.

Exploiting Easy Data in Online Optimization

{at with probability s;,
Lt —

®Observe f; and suffer loss fi(x;).
oFeed f; to A and B.

OCompute 575 — ft(bt) — ft(at) and set

Wty1,4 = Wt A - (1 + 77515) -
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Parameters:

= Learning rate n; = 1/2

= Initial weights w; 4 = w1 g =1/2
= Rounds I’

Forall t=1.2,...,7, repeat
oLet

1
1+ Zé;%(fs<bs> IR f8<as>)2

NtWe. A
St — :
MW, A + W1 5/2
® Observe a; from Algorithm A
© Observe b; from Benchmark BB
o Predict

{at with probability s;,
Lt —

b; with probability 1 — s;.

®Observe f; and suffer loss fi(x;).
oFeed f; to A and B.
@ Compute 6; = fi(b;) — fi(ay) and set

Wt1,4 — Wt A - (1 + 77t—15t)m/m_1 -

Theoretical Results

Theorem 1 (cf. Lemma 1 in [2])

and

For any assignment of the loss sequence, the total expected loss of (AB)-Prod initialized with
weights wy g € (0,1) and w; g = 1 — wy 4 simultaneously satisfies

ET((AB)—Prod) < L7(A) + né(ft(bt) — ft(at))

L1((AB)-Prod) < Ly(B)

> log w1,.A
N

log w1 B
_—

Corollary 1

Let C' > 1 be an upper bound on the total benchmark loss Ly (B). Then setting n =

for any x € § and

1/2-/(logC)/C < 1/2 and w1 g =1 — w; 4 = 1 — 1 simultaneously guarantees
Ry ((AB)-Prod) < Ry (A) + 2¢/Clog C

%T((AB)—PFOCI) < %T(.A) + 2 10g 2

against any assignment of the loss sequence.
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Assume a partition of [1,7T] into K intervals exists such that the losses are generated i.i.d. within each interval. Furthermore, assume
the expectation of losses on the best expert within each interval is at least 0 away from the expected loss of all other experts. Then,
setting w = [4log(NT/K)/§%], the regret of FTL(w) is upper bounded for any ;.7 as

E|R(FTL(w), y17)]

where the expectation is taken with respect to the distribution of the losses.

1K

?Solves the open problem of learning on “Easy” and “Hard"” loss sequences in the tracking the best expert setting proposed by [4].

bsmooth convex functions
“Matching the performance of AOGD [5]

Regret

(AB)-Prod Proof

Let

= Wi = w4 +wy s,

: {t,A = filay), bg = fi(by),

n ém — gm — étﬁ for 1 € {A, B}
For ¢ € { A, B},

W L 2
10g MT/H > 1og W41, = 10% W1, T Z 105’;(1 _ 77515,2)
1 t=1

N\

L5 ) o= 2
>\logwi; —m ) bii—n ) Zt,z’?
t=1 t=1

where we used that log(l — 1) > —x — x* holds for all 7 < > Further-

more, forany t = 1,2, ...,T we have
Wi wyi(1 — 77215 i)
| =1 ’ ’
w8 (? W

= log (1 -7 Z pt,z‘&,i) < =) Zpt,igt,ip

by log(l — x) < —x. Summing up for all ¢, combining the above

inequalities and using the definition of lﬁm-, we get for ¢ = A that

(AB)-Hedge Proof

Let w1 4 = w4 - et and

« Wi = wy 4 +wy s,

- {t,A — ft(at); gt,B — ft(bt)a
by =L, — b gfori e {A B}
For ¢ € { A, B},

Wiy
lo > log w i
g W, = g W41,

I .
= logwy; —n > i,
t=1

where we used the definition of the update rule. Furthermore, for any
t=1,2,...,T we have

W ; —77275,@'
log t+1 log (Z Wy ;€ )

Wt 1 Wt

2

5 Ul ) Ul
< log (1 — 12 pribei + 8) < —n 2 pribei + s
by Hoeftding’s lemma. Summing up for all ¢, combining the above
inequalities and using the definition of ¢;;, we get for ¢« = { A, B} that
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Figure : Hand tuned loss sequences from [1]

R . I log w1 ~ ~ . nl  logw;
L1((AB)-Prod) — Ly(A) <lnp S (bya— byp)’ — —otA Ly ((AB)-Hedge) — Ly (i) < —
t=1 Ui
Similarly, for ¢+ = B, we obtain
- - log wq g
L1((AB)-Prod) — Ly(B) < 518
n
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