

REINFORCEMENT LEARNING

Gergely Neu Univ. Pompeu Fabra

A PRIMAL-DUAL VIEW OF REINFORCEMENT LEARNING
 Gergely Neu Univ. Pompeu Fabra

A PRIMAL-DUAL VI $\leqslant W \diamond F$ $R \angle I N F \diamond R<\& M \leftarrow N T$ L\&ARNIN
$\ll R \ll L Y \quad N \leqslant U$
UNIV. $>\triangle M P \leqslant U$ FABRA

WHAT IS REINFORCEMENT LEARNING?

Agent
In state s, take action a

Environment

Reward r, new state s^{\prime}

- maximize reward

Learning to • in a reactive environment

- under partial feedback
(
(

(
(
(

RL EXAMPLE 0.

RL EXAMPLE 0.

WHY SHOULD I CARE?

MIT Technology Review

Reinforcement

 LEARNINC

WHY SHOULD I CARE?

MIT Technology Review

Reinforcement

 LEARNINE

1() BREAKTHROUGH TECHNOLOGIES

WHY SHOULD I CARE?

WHY SHOULD I CARE?

Breakthrough in Go

Autonomous driving

- State: road conditions, other vehicles, obstacles,...
- Actions: turn left/right, accelerate/brake,...
- State transitions: depending on state+action+randomness
- Reward: +100 for reaching destination, -100 for accidents,...

RECOMMENDED READING

-Richard Sutton and Andrew Barto
(2018): "Reinforcement Learning:

An Introduction"

- For an enjoyable (but not very rigorous) introduction
-Dimitri Bertsekas (2012):
"Dynamic Programming and
Optimal Control"
- For a rigorous treatment of the basics
- Csaba Szepesvári (2012):
"Algorithms for RL"
- For a rigorous description of basic RL algorithms

Algorithms for Reinforcement Learning

Csaba Szepesvári

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

-Markov decision processes

- Value functions and optimal policies
-Primal view: Dynamic programming
- Policy evaluation, value and policy iteration
-Value-function-based methods
- Temporal differences, Q-learning, LSTD, deep Q networks,...

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

-Markov decision processes

- Value functions and optimal policies
-Primal view: Dynamic programming
- Policy evaluation, value and policy iteration
-Value-function-based methods
- Temporal differences, Q-learning, LSTD, deep Q networks,...
-Dual view: Linear programming
-LP duality in MDPs
- Direct policy optimization methods
- Policy gradients, REPS, TRPO,...

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

- Markov decision processes
- Value functions and optimal policies
-Primal view: Dynamic programming
- Policy evaluation, value and policy iteration
-Value-function-based methods
- Temporal differences, Q-learning, LSTD, deep Q networks,...
-Dual view: Linear programming
- LP duality in MDPs
- Direct policy optimization methods
- Policy gradients, REPS, TRPO,...

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

- Markov decision processes
-Value functions and optimal policies
-Primal view: Dynamic programming
- Policy evaluation, value and policy iteration
-Value-function-based methods
- Temporal differences, Q-learning, LSTD, deep Q networks,...
-Dual view: Linear programming
- LP duality in MDPs
- Direct policy optimization methods
- Policy gradients, REPS, TRPO,...

MARKOV DECISION PROCESSES (MDPS)

A Markov Decision Process (MDP) is characterized by

- X : a set of states
- A : a set of actions, possibly different in each state
- $P: X \times A \times X \rightarrow[0,1]$: a transition function with $P(\cdot \mid x, a)$ being the distribution of the next state given previous state x and action a :

$$
\mathbf{P}\left[x_{t+1}=x^{\prime} \mid x_{t}=x, a_{t}=a\right]=P\left(x^{\prime} \mid x, a\right)
$$

- $r: X \times A \rightarrow[0,1]:$ a reward function

MARKOV DECISION PROCESSES (MDPS)

A Markov Decision Process (MDP) is characterized by (X, A, P, r)

- X : a set of states
- A : a set of actions, possibly different in each state
- $P: X \times A \times X \rightarrow[0,1]$: a transition function with $P(\cdot \mid x, a)$ being the distribution of the next state given previous state x and action a :

$$
\mathbf{P}\left[x_{t+1}=x^{\prime} \mid x_{t}=x, a_{t}=a\right]=P\left(x^{\prime} \mid x, a\right)
$$

- $r: X \times A \rightarrow[0,1]:$ a reward function

MARKOV DECISION PROCESSES (MDPs)

State x_{t}

A Markov Decision Process (MDP) is characterized by (X, A, P, r) Interaction in an MDP: in each round $t=1,2, \ldots$

- Agent observes state x_{t} and selects action a_{t}
- Environment moves to state $x_{t+1} \sim P\left(\cdot \mid x_{t}, a_{t}\right)$
- Agent receives reward r_{t} such that $\mathbf{E}\left[r_{t} \mid x_{t}, a_{t}\right]=r\left(x_{t}, a_{t}\right)$

MARKOV DECISION PROCESSES (MDPs)

A Markov Decision Process (MDP) is characterized by (X, A, P, r) Interaction in an MDP: in each round $t=1,2, \ldots$

- Agent observes state x_{t} and selects action a_{t}
- Environment moves to state $x_{t+1} \sim P\left(\cdot \mid x_{t}, a_{t}\right)$
- Agent receives reward r_{t} such that $\mathbf{E}\left[r_{t} \mid x_{t}, a_{t}\right]=r\left(x_{t}, a_{t}\right)$

GOAL:

maximize "total rewards"!

NOTIONS OF "TOTAL REWARD"

Episodic MDPs:

- There is a terminal state x^{*}
- GOAL: maximize total reward until final round T when x^{*} is reached:

$$
R^{*}=\mathbf{E}\left[\sum_{t=0}^{T} r_{t}\right]
$$

NOTIONS OF "TOTAL REWARD"

Episodic MDPs:

- There is a terminal state x^{*}
- GOAL: maximize total reward until final round T when x^{*} is reached:

$$
R^{*}=\mathbf{E}\left[\sum_{t=0}^{T} r_{t}\right]
$$

Discounted MDPs:

- No terminal state
- Discount factor $\gamma \in(0,1)$
- GOAL: maximize total discounted reward

$$
R_{\gamma}=\mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]
$$

NOTIONS OF "TOTAL REWARD"

Episodic MDPs:

- There is a terminal state x^{*}

```
+ other notions:
- long-term average reward
- total reward up to fixed horizon
```

- GOAL: maximize total reward until final round T when x^{*} is reached:

$$
R^{*}=\mathbf{E}\left[\sum_{t=0}^{T} r_{t}\right]
$$

Discounted MDPs:

- No terminal state
- Discount factor $\gamma \in(0,1)$
- GOAL: maximize total discounted reward

$$
R_{\gamma}=\mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]
$$

NOTIONS OF "TOTAL REWARD"

Episodic MDPs:

- There is a terminal state x^{*}

```
+ other notions:
```

- long-term average reward (part 2?)
- total reward up to fixed horizon
- GOAL: maximize total reward until final round T when x^{*} is reached:

$$
R^{*}=\mathbf{E}\left[\sum_{t=0}^{T} r_{t}\right]
$$

Discounted MDPs:

- No terminal state
+ we will assume that X and A are finite
- Discount factor $\gamma \in(0,1)$
- GOAL: maximize total discounted reward

$$
R_{\gamma}=\mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]
$$

POLICIES AND TRAJECTORY DISTRIBUTIONS

Policy: mapping from histories to actions

$$
\pi: x_{1}, a_{1}, x_{2}, a_{2}, \ldots, x_{t} \mapsto a_{t}
$$

POLICIES AND TRAJECTORY DISTRIBUTIONS

Policy: mapping from histories to actions

$$
\pi: x_{1}, a_{1}, x_{2}, a_{2}, \ldots, x_{t} \mapsto a_{t}
$$

Stationary policy: mapping from states to actions (no dependence on history or t)

$$
\pi: x \mapsto a
$$

POLICIES AND TRAJECTORY DISTRIBUTIONS

Policy: mapping from histories to actions

$$
\pi: x_{1}, a_{1}, x_{2}, a_{2}, \ldots, x_{t} \mapsto a_{t}
$$

Stationary policy: mapping from states to actions (no dependence on history or t)

$$
\pi: x \mapsto a
$$

Let $\tau=\left(x_{1}, a_{1}, x_{2}, a_{2}, \ldots\right)$ be a trajectory generated by running π in the MDP $\tau \sim(\pi, P)$:

- $a_{t}=\pi\left(x_{t}, a_{t-1}, x_{t-1}, \ldots, x_{1}\right)$
- $x_{t+1} \sim P\left(\cdot \mid x_{t}, a_{t}\right)$

POLICIES AND TRAJECTORY DISTRIBUTIONS

Policy: mapping from histories to actions

$$
\pi: x_{1}, a_{1}, x_{2}, a_{2}, \ldots, x_{t} \mapsto a_{t}
$$

Stationary policy: mapping from states to actions (no dependence on history or t)

$$
\pi: x \mapsto a
$$

Let $\tau=\left(x_{1}, a_{1}, x_{2}, a_{2}, \ldots\right)$ be a trajectory generated by running π in the MDP $\tau \sim(\pi, P)$:

- $a_{t}=\pi\left(x_{t}, a_{t-1}, x_{t-1}, \ldots, x_{1}\right)$
- $x_{t+1} \sim P\left(\cdot \mid x_{t}, a_{t}\right)$

Expectation under this distribution: $\mathrm{E}_{\pi}[\cdot]$

DEFINING OPTIMALITY

Optimal policy π^{*} : a policy that maximizes

$$
\mathbf{E}_{\pi}\left[R_{\gamma}\right]=\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]
$$

DEFINING OPTIMALITY

Optimal policy π^{*} : a policy that maximizes

$$
\mathbf{E}_{\pi}\left[R_{\gamma}\right]=\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]
$$

Theorem
There exists a deterministic optimal policy π^{*} such that

$$
\pi^{*}\left(x_{1}, a_{1}, \ldots, x_{t}\right)=\pi^{*}\left(x_{t}\right)
$$

DEFINING OPTIMALITY

Optimal policy π^{*} : a policy that maximizes

$$
\mathbf{E}_{\pi}\left[R_{\gamma}\right]=\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]
$$

Theorem
There exists a deterministic optimal policy π^{*} such that

$$
\pi^{*}\left(x_{1}, a_{1}, \ldots, x_{t}\right)=\pi^{*}\left(x_{t}\right)
$$

Consequence: it's enough to study stationary policies

$$
\pi: x \mapsto a
$$

DEFINING OPTIMALITY

Theorem

There exists a deterministic optimal policy π^{*} such that

$$
\pi^{*}\left(x_{1}, a_{1}, \ldots, x_{t}\right)=\pi^{*}\left(x_{t}\right)
$$

Consequence: it's enough to study stationary policies

$$
\pi: x \mapsto a
$$

Intuitive "proof": Future transitions $x_{t+1} \sim P\left(\cdot \mid x_{t}, a_{t}\right)$ do not depend on the previous states x_{1}, x_{2}, \ldots

DEFINING OPTIMALITY

Theorem

There exists a deterministic optimal policy π^{*} such that

$$
\pi^{*}\left(x_{1}, a_{1}, \ldots, x_{t}\right)=\pi^{*}\left(x_{t}\right)
$$

Consequence: it's enough to study stationary policies

$$
\pi: x \mapsto a
$$

Intuitive "proof": Future transitions $x_{t+1} \sim P\left(\cdot \mid x_{t}, a_{t}\right)$ do not depend on the previous states x_{1}, x_{2}, \ldots
="Markov property"

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

- Markov decision processes
- Value functions and optimal policies
-Primal view: Dynamic programming
- Policy evaluation, value and policy iteration
-Value-function-based methods
- Temporal differences, Q-learning, LSTD, deep Q networks,...
-Dual view: Linear programming
- LP duality in MDPs
- Direct policy optimization methods
- Policy gradients, REPS, TRPO,...

VALUE FUNCTIONS

Value function: evaluates policy π starting from state x :

$$
V^{\pi}(x)=\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid x_{0}=x\right]
$$

Value functions

Value function: evaluates policy π starting from state x :

$$
V^{\pi}(x)=\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid x_{0}=x\right]
$$

Action-value function: evaluates policy π starting from state x and action a :

$$
Q^{\pi}(x, a)=\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid x_{0}=x, a_{0}=a\right]
$$

Value functions

Value function: evaluates policy π starting from state x :

$$
V^{\pi}(x)=\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid x_{0}=x\right]
$$

Action-value function: evaluates policy π starting from state x and action a :

$$
Q^{\pi}(x, a)=\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid x_{0}=x, a_{0}=a\right]
$$

"Optimal policy π^{*}
 $=\arg \max V^{\pi}\left(x_{0}\right)^{\prime \prime}$

VALUE FUNCTIONS AND THE OPTIMAL POLICY

Theorem

There exists a policy π^{*} that satisfies

$$
V^{\pi^{*}}(x)=\max _{\pi} V^{\pi}(x) \quad(\forall x)
$$

VALUE FUNCTIONS AND THE OPTIMAL POLICY

Theorem

There exists a policy π^{*} that satisfies

$$
V^{\pi^{*}}(x)=\max _{\pi} V^{\pi}(x) \quad(\forall x)
$$

VALUE FUNCTIONS AND THE OPTIMAL POLICY

Theorem

There exists a policy π^{*} that satisfies

$$
V^{\pi^{*}}(x)=\max _{\pi} V^{\pi}(x) \quad(\forall x)
$$

Optimal policy: a policy π^{*} that satisfies the above

VALUE FUNCTIONS AND THE OPTIMAL POLICY

Theorem

There exists a policy π^{*} that satisfies

$$
V^{\pi^{*}}(x)=\max _{\pi} V^{\pi}(x) \quad(\forall x)
$$

Optimal policy: a policy π^{*} that satisfies the above

The optimal value function:

$$
V^{*}=V^{\pi^{*}}
$$

THE BELLMAN EQUATIONS

Theorem

The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$)

$$
V^{\pi}(x)=r(x, \pi(x))+\gamma \sum_{y} P(y \mid x, \pi(x)) V^{\pi}(y)
$$

THE BELLMAN EQUATIONS

Theorem

The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$)
$V^{\pi}(x)=r(x, \pi(x))+\gamma \sum_{y} P(y \mid x, \pi(x)) V^{\pi}(y)$

Proof:
$V^{\pi}(x)=\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right) \mid x_{0}=x\right]$

THE BELLMAN EQUATIONS

Theorem
The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$)
$V^{\pi}(x)=r(x, \pi(x))+\gamma \sum_{y} P(y \mid x, \pi(x)) V^{\pi}(y)$

Proof:

$$
\begin{aligned}
V^{\pi}(x) & =\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right) \mid x_{0}=x\right] \\
& =r(x, \pi(x))+\mathbf{E}_{\pi}\left[\sum_{t=1}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right) \mid x_{0}=x\right]
\end{aligned}
$$

THE BELLMAN EQUATIONS

Theorem

The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$)

$$
V^{\pi}(x)=r(x, \pi(x))+\gamma \sum_{y} P(y \mid x, \pi(x)) V^{\pi}(y)
$$

Proof:

$$
\begin{aligned}
& V^{\pi}(x)=\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right) \mid x_{0}=x\right] \\
&=r(x, \pi(x))+\mathbf{E}_{\pi}\left[\sum_{t=1}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right) \mid x_{0}=x\right] \\
&=r(x, \pi(x))+\gamma \sum_{y} P(y \mid x, \pi(x)) \mathbf{E}_{\pi}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r\left(x_{t}, a_{t}\right) \mid x_{1}=y\right]
\end{aligned}
$$

THE BELLMAN EQUATIONS

Theorem

The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$)
$V^{\pi}(x)=r(x, \pi(x))+\gamma \sum_{y} P(y \mid x, \pi(x)) V^{\pi}(y)$

Proof:

$$
\begin{aligned}
V^{\pi}(x) & =\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right) \mid x_{0}=x\right] \\
& =r(x, \pi(x))+\mathbf{E}_{\pi}\left[\sum_{t=1}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right) \mid x_{0}=x\right] \\
=r(x, & \pi(x))+\gamma \sum_{y} P(y \mid x, \pi(x)) \mathbf{E}_{\pi}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r\left(x_{t}, a_{t}\right) \mid x_{1}=y\right] \\
& =r(x, \pi(x))+\gamma \sum_{y} P(y \mid x, \pi(x)) V^{\pi}(y)
\end{aligned}
$$

THE BELLMAN OPTIMALITY EQUATIONS

Theorem
The optimal value function satisfies the system of equations

$$
V^{*}(x)=\max _{a}\left\{r(x, a)+\gamma \sum_{y} P(y \mid x, a) V^{*}(y)\right\}
$$

THE BELLMAN OPTIMALITY EQUATIONS

Theorem
The optimal value function satisfies the system of equations

$$
V^{*}(x)=\max _{a}\left\{r(x, a)+\gamma \sum_{y} P(y \mid x, a) V^{*}(y)\right\}
$$

Theorem
An optimal policy π^{*} satisfies

$$
\pi^{*}(x) \in \arg \max _{a}\left\{r(x, a)+\gamma \sum_{y} P(y \mid x, a) V^{*}(y)\right\}
$$

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem
The optimal action-value function satisfies

$$
Q^{*}(x, a)=r(x, a)+\gamma \sum_{y} P(y \mid x, a) \max _{b} Q^{*}(y, b)
$$

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem

The optimal action-value function satisfies

$$
Q^{*}(x, a)=r(x, a)+\gamma \sum_{y} P(y \mid x, a) \max _{b} Q^{*}(y, b)
$$

Theorem

An optimal policy π^{*} satisfies

$$
\pi^{*}(x) \in \arg \max _{a} Q^{*}(x, a)
$$

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem

The optimal action-value function satisfies

$$
Q^{*}(x, a)=r(x, a)+\gamma \sum_{y} P(y \mid x, a) \max _{b} Q^{*}(y, b)
$$

Theorem

An optimal policy π^{*} satisfies

$$
\pi^{*}(x) \in \arg \max _{a} Q^{*}(x, a)
$$

= greedy with respect to Q^{*}

SHORT SUMMARY SO FAR

So far, we have characterized

- The value functions of a given policy
- The optimal policy through value functions
- The optimal value functions
- The optimal policy through the optimal value functions

SHORT SUMMARY SO FAR

So far, we have characterized

- The value functions of a given policy
- The optimal policy through value functions
- The optimal value functions
- The optimal policy through the optimal value functions

BUT HOW DO WE FIND THE OPTIMAL VALUE FUNCTION??

... also, is there a way to clean up this mess? See part 2!

EASY ANSWER FOR FINITE-HORIZON PROBLEMS

Bae: Come over
Dijkstra: But there are so many routes to take and I don't know which one's the fastest
Bae: My parents aren't home Dijkstra:

Dijkstra's algorithm

Graph search algorithm

Not to be confused with Dykstra's projection algorithm.

Dijkstra's algorithm is an algorithm for finding the shortest paths between nodes in a graph, which may represent, for example, road networks. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later. ${ }^{[1][2]}$

The algorithm exists in many variants; Dijkstra's original variant found the shortest path between two nodes, ${ }^{[2]}$ but a more common variant fixes a single node as the "source" node and finds shortest paths from the source to all other nodes in the graph, producing a shortest-path tree.

Dijkstra's algorithm

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

- Markov decision processes
- Value functions and optimal policies
-Primal view: Dynamic programming
- Policy evaluation, value and policy iteration
-Value-function-based methods
- Temporal differences, Q-learning, LSTD, deep Q networks,...
-Dual view: Linear programming
-LP duality in MDPs
- Direct policy optimization methods
- Policy gradients, REPS, TRPO,...

DYNAMIC PROGRAMMING

Dynamic programming

computing value functions through repeated use of the "Bellman operators"

THE BELLMAN OPERATOR

Bellman operator T^{π} :
maps a function $V \in \mathbb{R}^{X}$ to another function $T^{\pi} V \in \mathbb{R}^{X}$:

$$
\left(T^{\pi} V\right)(x)=r(x, \pi(x))+\gamma \sum_{y} P(y \mid x, \pi(x)) V(y)
$$

THE BELLMAN OPERATOR

Bellman operator T^{π} :
maps a function $V \in \mathbb{R}^{X}$ to another function $T^{\pi} V \in$
r.h.s. of BE

$$
\left(T^{\pi} V\right)(x)=r(x, \pi(x))+\gamma \sum_{y} P(y \mid x, \pi(x)) V(y)
$$

THE BELLMAN OPERATOR

Bellman operator T^{π} :
maps a function $V \in \mathbb{R}^{X}$ to another function $T^{\pi} V \in$ r.h.s. of $B E$

$$
\left(T^{\pi} V\right)(x)=r(x, \pi(x))+\gamma \sum_{y} P(y \mid x, \pi(x)) V(y)
$$

The Bellman Equations:

$$
V^{\pi}(x)=r(x, \pi(x))+\gamma \sum_{y} P(y \mid x, \pi(x)) V^{\pi}(y)
$$

THE BELLMAN OPERATOR

Bellman operator T^{π} :
maps a function $V \in \mathbb{R}^{X}$ to another function $T^{\pi} V \in$ r.h.s. of BE

$$
\left(T^{\pi} V\right)(x)=r(x, \pi(x))+\gamma \sum_{y} P(y \mid x, \pi(x)) V(y)^{-}
$$

The Bellman Equations:

$$
V^{\pi}=T^{\pi} V^{\pi}
$$

THE BELLMAN OPERATOR

Bellman operator T^{π} :
maps a function $V \in \mathbb{R}^{X}$ to another function $T^{\pi} V \in$ r.h.s. of BE

$$
\left(T^{\pi} V\right)(x)=r(x, \pi(x))+\gamma \sum_{y} P(y \mid x, \pi(x)) V(y)
$$

V^{π} is the fixed point of T^{π}

The Bellman Equations:

$$
V^{\pi}=T^{\pi} V^{\pi}
$$

POLICY EVALUATION USING THE BELLMAN OPERATOR

' ${ }^{\prime}$ ') Idea: repeated application of T^{π} on any function V_{0} should converge to $V^{\pi} \ldots$

POLICY EVALUATION USING THE BELLMAN OPERATOR

-' ${ }^{\prime}$ ' Idea: repeated application of T^{π} on any function V_{0} should converge to $V^{\pi} \ldots$
...and it works!!

Power iteration
 Input: arbitrary $V_{0}: X \rightarrow \mathbf{R}$ and π
 For $k=1,2, \ldots$, compute
 $$
V_{k+1}=T^{\pi} V_{k}
$$

POLICY EVALUATION USING THE BELLMAN OPERATOR

-' ${ }^{\prime}$ Idea: repeated application of T^{π} on any function V_{0} should converge to $V^{\pi} \ldots$
...and it works!!

Power iteration

Input: arbitrary $V_{0}: X \rightarrow \mathbf{R}$ and π
For $k=1,2, \ldots$, compute

$$
V_{k+1}=T^{\pi} V_{k}
$$

Theorem: $\lim _{k \rightarrow \infty} V_{k}=V^{\pi}$

CONVERGENCE OF POWER ITERATION: PROOF SKETCH

- Power iteration can be written as the linear recursion

$$
V_{k+1}=r+\gamma P^{\pi} V_{k}
$$

CONVERGENCE OF POWER ITERATION: PROOF SKETCH

- Power iteration can be written as the linear recursion

$$
V_{k+1}=r+\gamma P^{\pi} V_{k}=r+\gamma P^{\pi}\left(r+\gamma P^{\pi} V_{k-1}\right)
$$

CONVERGENCE OF POWER ITERATION: PROOF SKETCH

- Power iteration can be written as the linear recursion

$$
\begin{aligned}
V_{k+1} & =r+\gamma P^{\pi} V_{k}=r+\gamma P^{\pi}\left(r+\gamma P^{\pi} V_{k-1}\right) \\
& =r+\gamma P^{\pi} r+\left(\gamma P^{\pi}\right)^{2} r+\cdots+\left(\gamma P^{\pi}\right)^{k} r
\end{aligned}
$$

CONVERGENCE OF POWER ITERATION: PROOF SKETCH

- Power iteration can be written as the linear recursion

$$
\begin{aligned}
V_{k+1} & =r+\gamma P^{\pi} V_{k}=r+\gamma P^{\pi}\left(r+\gamma P^{\pi} V_{k-1}\right) \\
& =r+\gamma P^{\pi} r+\left(\gamma P^{\pi}\right)^{2} r+\cdots+\left(\gamma P^{\pi}\right)^{k} r \\
& =\sum_{t=0}^{k}\left(\gamma P^{\pi}\right)^{k} r
\end{aligned}
$$

CONVERGENCE OF POWER ITERATION: PROOF SKETCH

- Power iteration can be written as the linear recursion

$$
\begin{aligned}
V_{k+1} & =r+\gamma P^{\pi} V_{k}=r+\gamma P^{\pi}\left(r+\gamma P^{\pi} V_{k-1}\right) \\
& =r+\gamma P^{\pi} r+\left(\gamma P^{\pi}\right)^{2} r+\cdots+\left(\gamma P^{\pi}\right)^{k} r \\
& =\sum_{t=0}^{k}\left(\gamma P^{\pi}\right)^{k} r \quad \begin{array}{r}
\text { Geometric sum! } \\
\text { (von Neumann series) }
\end{array} \\
& =\left(I-\gamma P^{\pi}\right)^{-1} \cdot\left(I-\left(\gamma P^{\pi}\right)^{k}\right) r
\end{aligned}
$$

CONVERGENCE OF POWER ITERATION: PROOF SKETCH

- Power iteration can be written as the linear recursion

$$
\begin{aligned}
& V_{k+1}=r+\gamma P^{\pi} V_{k}=r+\gamma P^{\pi}\left(r+\gamma P^{\pi} V_{k-1}\right) \\
& =r+\gamma P^{\pi} r+\left(\gamma P^{\pi}\right)^{2} r+\cdots+\left(\gamma P^{\pi}\right)^{k} r \\
& =\sum^{k}\left(\gamma P^{\pi}\right)^{k} r \quad \text { Geometric sum! } \\
& =
\end{aligned}
$$

CONVERGENCE OF POWER ITERATION: PROOF SKETCH

- Power iteration can be written as the linear recursion

$$
\begin{aligned}
V_{k+1} & =r+\gamma P^{\pi} V_{k}=r+\gamma P^{\pi}\left(r+\gamma P^{\pi} V_{k-1}\right) \\
& =r+\gamma P^{\pi} r+\left(\gamma P^{\pi}\right)^{2} r+\cdots+\left(\gamma P^{\pi}\right)^{k} r \\
& =\sum_{t=0}^{k}\left(\gamma P^{\pi}\right)^{k} r \quad \text { Geometric sum! } \\
& =\left(I-\gamma P^{\pi}\right)^{-1} \cdot\left(I-\left(\gamma P^{\pi}\right)^{k}\right) r \text { (von Neumann series) }
\end{aligned}
$$

- The value function V^{π} satisfies

$$
V^{\pi}=r+\gamma P^{\pi} V^{\pi} \Leftrightarrow V^{\pi}=\left(I-\gamma P^{\pi}\right)^{-1} r
$$

POWER ITERATION IN ACTION

Gridworld MDP

POWER ITERATION IN ACTION

Gridworld MDP

- State: location on the grid
- Actions: try to move in one of 8 directions or stay put
- Transition probabilities:
- move successfully w.p. $p=0.5$
- otherwise move in neighboring direction

POWER ITERATION IN ACTION

Gridworld MDP

- State: location on the grid
- Actions: try to move in one of 8 directions or stay put
- Transition probabilities:
- move successfully w.p. $p=0.5$
- otherwise move in neighboring direction

POWER ITERATION IN ACTION

Vhat ${ }_{\text {unif }}$, iteration 0

Uniform policy:

$$
\pi(a \mid x)=\frac{1}{9}
$$

for all actions $a \in\{1,2, \ldots, 9\}$

POWER ITERATION IN ACTION

Vhat $_{\text {unif }}$, iteration 1

Uniform policy:

$$
\pi(a \mid x)=\frac{1}{9}
$$

for all actions $a \in\{1,2, \ldots, 9\}$

POWER ITERATION IN ACTION

Vhat ${ }_{\text {unif }}$, iteration 5

Uniform policy:

$$
\pi(a \mid x)=\frac{1}{9}
$$

for all actions $a \in\{1,2, \ldots, 9\}$

POWER ITERATION IN ACTION

Vhat $_{\text {unif }}$, iteration 10

Uniform policy:

$$
\pi(a \mid x)=\frac{1}{9}
$$

for all actions $a \in\{1,2, \ldots, 9\}$

POWER ITERATION IN ACTION

Vhat ${ }_{\text {unif }}$, iteration 100

Uniform policy:

$$
\pi(a \mid x)=\frac{1}{9}
$$

for all actions $a \in\{1,2, \ldots, 9\}$

POWER ITERATION IN ACTION

Vhat ${ }_{\text {un }}$, iteration 0

"Upwards" policy:

$$
\pi(\operatorname{up} \mid x)=1
$$

POWER ITERATION IN ACTION

Vhat ${ }_{\text {up }}$, iteration 1
"Upwards" policy:

$$
\pi(\operatorname{up} \mid x)=1
$$

POWER ITERATION IN ACTION

Vhat ${ }_{\text {up }}$, iteration 5
"Upwards" policy:

$$
\pi(\operatorname{up} \mid x)=1
$$

POWER ITERATION IN ACTION

Vhat , iteration 10

"Upwards" policy:

$$
\pi(\operatorname{up} \mid x)=1
$$

the bellman Optimality Operator

Bellman optimality operator T^{*} :
maps a function $V \in \mathbb{R}^{X}$ to another function $T^{*} V \in \mathbb{R}^{X}$:

$$
\left(T^{*} V\right)(x)=\max _{a}\left\{r(x, a)+\gamma \sum_{y} P(y \mid x, a) V(y)\right\}
$$

the bellman Optimality Operator

r.h.s. of BOE

Bellman optimality operator T^{*} :
maps a function $V \in \mathbb{R}^{X}$ to another function $T^{*} V \in \mathbb{R}^{X}$:

$$
\left(T^{*} V\right)(x)=\max _{a}\left\{r(x, a)+\gamma \sum_{y} P(y \mid x, a) V(y)\right\}
$$

THE BELLMAN OPTIMALITY OPERATOR

Bellman optimality operator T^{*} :
maps a function $V \in \mathbb{R}^{X}$ to another function $T^{*} V \in \mathbb{R}^{X}$:

$$
\left(T^{*} V\right)(x)=\max _{a}\left\{r(x, a)+\gamma \sum_{y} P(y \mid x, a) V(y)\right\}
$$

The Bellman Optimality Equations: $V^{*}(x)=\max _{a}\left\{r(x, a)+\gamma \sum_{y} P(y \mid x, a) V^{*}(y)\right\}$

THE BELLMAN OPTIMALITY OPERATOR

Bellman optimality operator T^{*} :
maps a function $V \in \mathbb{R}^{X}$ to another function $T^{*} V \in \mathbb{R}^{X}$:

$$
\left(T^{*} V\right)(x)=\max _{a}\left\{r(x, a)+\gamma \sum_{y} P(y \mid x, a) V(y)\right\}
$$

V^{*} is the fixed point of T^{*}

The Bellman Optimality Equations:

$$
V^{*}=T^{*} V^{*}
$$

VALUE ITERATION

- Idea: repeated application of T^{*} on any function V_{0} should converge to $V^{*} \ldots$
...and it works!!

VALUE ITERATION

Idea: repeated application of T^{*} on any function V_{0} should converge to $V^{*} \ldots$
...and it works!!

Value iteration

Input: arbitrary function $V_{0}: X \rightarrow \mathbf{R}$
For $k=1,2, \ldots$, compute

$$
V_{k+1}=T^{*} V_{k}
$$

VALUE ITERATION

Idea: repeated application of T^{*} on any function V_{0} should converge to $V^{*} \ldots$
...and it works!!

Value iteration

Input: arbitrary function $V_{0}: X \rightarrow \mathbf{R}$
For $k=1,2, \ldots$, compute

$$
V_{k+1}=T^{*} V_{k}
$$

Theorem: $\lim _{k \rightarrow \infty} V_{k}=V^{*}$

THE CONVERGENCE OF VALUE ITERATION: PROOF SKETCH

Key idea: T^{*} is a contraction

- for any two functions V and V^{\prime}, we have

$$
\left\|T^{*} V-T^{*} V^{\prime}\right\|_{\infty} \leq \gamma\left\|V-V^{\prime}\right\|_{\infty}
$$

THE CONVERGENCE OF VALUE ITERATION: PROOF SKETCH

Key idea: T^{*} is a contraction

- for any two functions V and V^{\prime}, we have

$$
\left\|T^{*} V-T^{*} V^{\prime}\right\|_{\infty} \leq \gamma\left\|V-V^{\prime}\right\|_{\infty}
$$

- repeated application gives

$$
\left\|V_{k+1}-V^{*}\right\|_{\infty}=\left\|T^{*} V_{k}-T^{*} V^{*}\right\|_{\infty}
$$

THE CONVERGENCE OF VALUE ITERATION: PROOF SKETCH

Key idea: T^{*} is a contraction

- for any two functions V and V^{\prime}, we have

$$
\left\|T^{*} V-T^{*} V^{\prime}\right\|_{\infty} \leq \gamma\left\|V-V^{\prime}\right\|_{\infty}
$$

- repeated application gives

$$
\begin{aligned}
\left\|V_{k+1}-V^{*}\right\|_{\infty} & =\left\|T^{*} V_{k}-T^{*} V^{*}\right\|_{\infty} \\
& \leq \gamma\left\|V_{k}-V^{*}\right\|_{\infty}
\end{aligned}
$$

THE CONVERGENCE OF VALUE ITERATION: PROOF SKETCH

Key idea: T^{*} is a contraction

- for any two functions V and V^{\prime}, we have

$$
\left\|T^{*} V-T^{*} V^{\prime}\right\|_{\infty} \leq \gamma\left\|V-V^{\prime}\right\|_{\infty}
$$

- repeated application gives

$$
\begin{aligned}
\left\|V_{k+1}-V^{*}\right\|_{\infty} & =\left\|T^{*} V_{k}-T^{*} V^{*}\right\|_{\infty} \\
& \leq \gamma\left\|V_{k}-V^{*}\right\|_{\infty} \\
& \leq \gamma^{2}\left\|V_{k-1}-V^{*}\right\|_{\infty}
\end{aligned}
$$

THE CONVERGENCE OF VALUE ITERATION: PROOF SKETCH

Key idea: T^{*} is a contraction

- for any two functions V and V^{\prime}, we have

$$
\left\|T^{*} V-T^{*} V^{\prime}\right\|_{\infty} \leq \gamma\left\|V-V^{\prime}\right\|_{\infty}
$$

- repeated application gives

$$
\begin{aligned}
\left\|V_{k+1}-V^{*}\right\|_{\infty} & =\left\|T^{*} V_{k}-T^{*} V^{*}\right\|_{\infty} \\
& \leq \gamma\left\|V_{k}-V^{*}\right\|_{\infty} \\
& \leq \gamma^{2}\left\|V_{k-1}-V^{*}\right\|_{\infty} \\
& \leq \cdots \leq \gamma^{k}\left\|V_{0}-V^{*}\right\|_{\infty}
\end{aligned}
$$

THE CONVERGENCE OF VALUE ITERATION: PROOF SKETCH

Key idea: T^{*} is a contraction

- for any two functions V and V^{\prime}, we have

$$
\left\|T^{*} V-T^{*} V^{\prime}\right\|_{\infty} \leq \gamma\left\|V-V^{\prime}\right\|_{\infty}
$$

- repeated application gives

$$
\begin{aligned}
\left\|V_{k+1}-V^{*}\right\|_{\infty} & =\left\|T^{*} V_{k}-T^{*} V^{*}\right\|_{\infty} \\
& \leq \gamma\left\|V_{k}-V^{*}\right\|_{\infty} \\
& \leq \gamma^{2}\left\|V_{k-1}-V^{*}\right\|_{\infty} \\
& \leq \cdots \leq \gamma^{k}\left\|V_{0}-V^{*}\right\|_{\infty}
\end{aligned}
$$

- thus

$$
\lim _{k \rightarrow \infty}\left\|V_{k+1}-V^{*}\right\|_{\infty}=0
$$

VALUE ITERATION IN ACTION

Gridworld MDP

- State: location on the grid
- Actions: try to move in one of 8 directions or stay put
- Transition probabilities:
- move successfully w.p. $p=0.5$
- otherwise move in neighboring direction

VALUE ITERATION IN ACTION

Vhat $_{\text {opt }}$, iteration 0

VALUE ITERATION IN ACTION

Vhat ${ }_{\text {ont }}$, iteration 1

VALUE ITERATION IN ACTION

Vhat ${ }_{\text {opt }}$, iteration 5

VALUE ITERATION IN ACTION

Vhat ${ }_{\text {opt }}$, iteration 10

VALUE ITERATION IN ACTION

Vhat ${ }_{\text {opt }}$, iteration 20

VALUE ITERATION IN ACTION

Vhat ${ }_{\text {ont }}$, iteration 50

VALUE ITERATION IN ACTION

Vhat ${ }_{\text {ont }}$, iteration 100

VALUE ITERATION IN ACTION

Vhat ${ }_{\text {ont }}$, iteration 500

VALUE ITERATION IN ACTION

Optimal Policy

POLICY ITERATION

Greedy policy with respect to V :

$$
(G V)(x)=\arg \max _{a}\left\{r(x, a)+\sum_{y} P(y \mid x, a) V(x)\right\}
$$

POLICY ITERATION

Recall: $\pi^{*}=G V^{*}$

Greedy policy with respect to V : $(G V)(x)=\arg \max _{a}\left\{r(x, a)+\sum_{y} P(y \mid x, a) V(x)\right\}$

POLICY ITERATION

Recall: $\pi^{*}=G V^{*}$

Greedy policy with respect to V :

$$
(G V)(x)=\arg \max _{a}\left\{r(x, a)+\sum_{y} P(y \mid x, a) V(x)\right\}
$$

Policy Iteration

Input: arbitrary function $V_{0}: X \rightarrow \mathbf{R}$
For $k=0,1, \ldots$, compute

$$
\pi_{k}=G\left(V_{k}\right), \quad V_{k+1}=V^{\pi_{k}}
$$

POLICY ITERATION

$$
\text { Recall: } \pi^{*}=G V^{*}
$$

Greedy policy with respect to V :

$$
(G V)(x)=\arg \max _{a}\left\{r(x, a)+\sum_{y} P(y \mid x, a) V(x)\right\}
$$

Policy Iteration

Input: arbitrary function $V_{0}: X \rightarrow \mathbf{R}$ For $k=0,1, \ldots$, compute

$$
\pi_{k}=G\left(V_{k}\right), \quad V_{k+1}=V^{\pi_{k}}
$$

Theorem: $\lim _{k \rightarrow \infty} V_{k}=V^{*}$

THE CONVERGENCE OF VALUE ITERATION: PROOF SKETCH

Key idea: T^{*} is a contraction

- for any two functions V and V^{\prime}, we have

$$
\left\|T^{*} V-T^{*} V^{\prime}\right\|_{\infty} \leq \gamma\left\|V-V^{\prime}\right\|_{\infty}
$$

- repeated application gives

$$
\begin{aligned}
\left\|V_{k+1}-V^{*}\right\|_{\infty} & =\left\|T^{*} V_{k}-T^{*} V^{*}\right\|_{\infty} \\
& \leq \gamma\left\|V_{k}-V^{*}\right\|_{\infty} \\
& \leq \gamma^{2}\left\|V_{k-1}-V^{*}\right\|_{\infty} \\
& \leq \cdots \leq \gamma^{k}\left\|V_{0}-V^{*}\right\|_{\infty}
\end{aligned}
$$

- thus

$$
\lim _{k \rightarrow \infty}\left\|V_{k+1}-V^{*}\right\|_{\infty}=0
$$

Key idea: T^{*} is a contraction
 Just replace T^{*} with the operator
 $B^{*}: V \mapsto\left(T^{G(V)}\right)^{\infty}$

- for any two functions V and V^{\prime}, we have

$$
\left\|T^{*} V-T^{*} V^{\prime}\right\|_{\infty} \leq \gamma\left\|V-V^{\prime}\right\|_{\infty}
$$

- repeated application gives

$$
\begin{aligned}
\left\|V_{k+1}-V^{*}\right\|_{\infty} & =\left\|T^{*} V_{k}-T^{*} V^{*}\right\|_{\infty} \\
& \leq \gamma\left\|V_{k}-V^{*}\right\|_{\infty} \\
& \leq \gamma^{2}\left\|V_{k-1}-V^{*}\right\|_{\infty} \\
& \leq \cdots \leq \gamma^{k}\left\|V_{0}-V^{*}\right\|_{\infty}
\end{aligned}
$$

- thus

$$
\lim _{k \rightarrow \infty}\left\|V_{k+1}-V^{*}\right\|_{\infty}=0
$$

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

-Markov decision processes

- Value functions and optimal policies
-Primal view: Dynamic programming
- Policy evaluation, value and policy iteration
- Value-function-based methods
- Temporal differences, Q-learning, LSTD, deep Q networks,...
-Dual view: Linear programming
- LP duality in MDPs
- Direct policy optimization methods
- Policy gradients, REPS, TRPO,...

FROM DYNAMIC PROGRAMMING TO VALUE-BASED REINFORCEMENT LEARNING

Policy iteration:

V_{k}

FROM DYNAMIC PROGRAMMING TO VALUE-BASED REINFORCEMENT LEARNING

Policy iteration:

FROM DYNAMIC PROGRAMMING TO VALUE-BASED REINFORCEMENT LEARNING

Policy iteration:

FROM DYNAMIC PROGRAMMING TO VALUE-BASED REINFORCEMENT LEARNING

Policy iteration:

π_{k}
evaluate policy

$$
V_{k+1}=V^{\pi_{k}}
$$

Approximate policy iteration:

evaluate policy

$$
\hat{V}_{k+1} \approx V^{\pi_{k}}
$$

FROM DYNAMIC PROGRAMMING TO VALUE-BASED REINFORCEMENT LEARNING

Fundamental RL tasks:

- Policy evaluation
- Policy improvement
V_{k}

$$
\pi_{k}=G V_{k}
$$

$$
\pi_{k}
$$

evaluate policy

$$
V_{k+1}=V^{\pi_{k}}
$$

Approximate policy iteration:

evaluate policy

$$
\hat{V}_{k+1} \approx V^{\pi_{k}}
$$

FROM DYNAMIC PROGRAMMING TO VALUE-BASED REINFORCEMENT LEARNING

Fundamental RL tasks:

- Policy evaluation
- Policy improvement

Challenges in RL:

- Unknown transition and reward functions \Rightarrow have to learn from sample access only
- State/action space can be large $\Rightarrow V^{*}$ and π^{*} cannot be stored in memory

Approximate policy iteration:

FROM DYNAMIC PROGRAMMING TO VALUE-BASED REINFORCEMENT LEARNING

Fundamental RL tasks:

- Policy evaluation
- Policy improvement

Challenges in RL:

- Unknown transition and reward functions \Rightarrow have to learn from sample access only
- State/action space can be large $\Rightarrow V^{*}$ and π^{*} cannot be stored in memory

Approximate policy iteration:

Unknown transition and reward functions \Rightarrow have to learn from sample access only LEVELS OF SAMPLE ACCESS

Full knowledge of P \Rightarrow Planning (not RL)

Unknown transition and reward functions \Rightarrow have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Generative model:
Full sample access to $P(\cdot \mid x, a)$ for any (x, a)
Full knowledge of P
\Rightarrow Planning (not RL)

Unknown transition and reward functions \Rightarrow have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Samples from full trajectories + reset action or save states

Generative model:
Full sample access to $P(\cdot \mid x, a)$ for any (x, a)
Full knowledge of P
\Rightarrow Planning (not RL)

Unknown transition and reward functions \Rightarrow have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Samples from a single trajectory \Rightarrow online RL

Samples from full trajectories + reset action or save states

Generative model:
Full sample access to $P(\cdot \mid x, a)$ for any (x, a)
Full knowledge of P
\Rightarrow Planning (not RL)

Unknown transition and reward functions \Rightarrow have to learn from sample access only LEVELS OF SAMPLE ACCESS

Samples from a single trajectory \Rightarrow online RL

Samples from full trajectories + reset action or save states

Generative model:
Full sample access to $P(\cdot \mid x, a)$ for any (x, a)
Full knowledge of P
\Rightarrow Planning (not RL)

State/action space can be large $\Rightarrow V^{*}$ and π^{*} cannot be stored in memory DEALING WITH LARGE STATE SPACES

Idea: approximate V^{*} and/or π^{*} in a computationally tractable way!

State/action space can be large $\Rightarrow V^{*}$ and π^{*} cannot be stored in memory DEALING WITH LARGE STATE SPACES

Idea: approximate V^{*} and/or π^{*} in a computationally tractable way!

Approximating V^{*} :
linear function approximation

- Define a set of d features:

$$
\phi_{i}: X \rightarrow \mathbf{R}
$$

- Parametrize value functions as

$$
V_{\theta}(x)=\theta^{\top} \phi(x)
$$

- Learning $V^{*} \Leftrightarrow$ Learning a good θ_{*} $V_{\theta^{*}} \approx V^{*}$

State/action space can be large $\Rightarrow V^{*}$ and π^{*} cannot be stored in memory
 DEALING WITH LARGE STATE SPACES

Idea: approximate V^{*} and/or π^{*} in a computationally tractable way!

Approximating V^{*} :
linear function approximation

- Define a set of d features:

$$
\phi_{i}: X \rightarrow \mathbf{R}
$$

- Parametrize value functions as

$$
V_{\theta}(x)=\theta^{\top} \phi(x)
$$

- Learning $V^{*} \Leftrightarrow$ Learning a good θ_{*} $V_{\theta^{*}} \approx V^{*}$

Approximating π^{*} :
parametrized policies

- Define a set of d features:

$$
\phi_{i}: X \times A \rightarrow \mathbf{R}
$$

- Parametrize (stochastic) policies as

$$
\pi_{\theta}(a \mid x) \propto \exp \left(\theta^{\top} \phi(x)\right)
$$

- Learning $\pi^{*} \Leftrightarrow$ Learning a good θ_{*} $\pi_{\theta^{*}} \approx \pi^{*}$

State/action space can be large $\Rightarrow V^{*}$ and π^{*} cannot be stored in memory
 DEALING WITH LARGE STATE SPACES

Idea: approximate V^{*} and/or π^{*} in a computationally tractable way!

Approximating V^{*} :
linear function approximation Define a set of d features:

$$
\phi_{i}: X \rightarrow \mathbf{R}
$$

Parametrize value functions as

$$
V_{\theta}(x)=\theta^{\top} \phi(x)
$$

Learning $V^{*} \Leftrightarrow$ Learning a good θ_{*} $V_{\theta^{*}} \approx V^{*}$

Approximating π^{*} :
parametrized policies

- Define a set of d features:

$$
\phi_{i}: X \times A \rightarrow \mathbf{R}
$$

- Parametrize (stochastic) policies as

$$
\pi_{\theta}(a \mid x) \propto \exp \left(\theta^{\top} \phi(x)\right)
$$

- Learning $\pi^{*} \Leftrightarrow$ Learning a good θ_{*}

$$
\pi_{\theta^{*}} \approx \pi^{*}
$$

R

FEATURE MAP EXAMPLE

FEATURE MAP EXAMPLE

"PROST" FEATURES FOR ATARI GAMES

High-dimensional observations: 192×160 pixels

"PROST" FEATURES FOR ATARI GAMES

High-dimensional observations:
192×160 pixels

"PROST" FEATURES FOR ATARI GAMES

High-dimensional observations:
192×160 pixels

 Low-dimensional observations: 14×16 patches

METHODS FOR POLICY EVALUATION

A GENTLE START: MONTE CARLO

$$
\begin{aligned}
& \text { Observe: } \\
& \text { Policy evaluation = estimating } V^{\pi} \text { : } \\
& V^{\pi}(x)=\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right) \mid x_{0}=x\right]
\end{aligned}
$$

A GENTLE START: MONTE CARLO

Observe:
 Policy evaluation $=$ estimating V^{π} :
 $V^{\pi}(x)=\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right) \mid x_{0}=x\right]$

Idea:
approximate $\mathbf{E}_{\pi}[\cdot]$ by sample averages!

- Simulate N trajectories using policy π
- For every state x that appears in the trajectories, let

$$
\hat{V}_{N}(x)=\operatorname{avg}\left(R_{1: N}(x)\right)
$$

A GENTLE START: MONTE CARLO

Idea: approximate $\mathbf{E}_{\pi}[\cdot]$ by sample averages!

- Simulate N trajectories using policy π
- For every state x that appears in the trajectories, let

$$
\hat{V}_{N}(x)=\operatorname{avg}\left(R_{1: N}(x)\right)
$$

A GENTLE START: MONTE CARLO

Idea:
 approximate $\mathbf{E}_{\pi}[\cdot]$ by sample averages!

- Simulate N trajectories using policy π
- For every state x that appears in the trajectories, let

$$
\hat{V}_{N}(x)=\operatorname{avg}\left(R_{1: N}(x)\right)
$$

A GENTLE START: MONTE CARLO

Idea:

approximate $\mathbf{E}_{\pi}[\cdot]$ by sample averages!

- Simulate N trajectories using policy π
- For every state x that appears in the trajectories, let

$$
\hat{V}_{N}(x)=\operatorname{avg}\left(R_{1: N}(x)\right)
$$

Average of i.i.d. random variables:

$$
\lim _{N \rightarrow \infty} \widehat{\widehat{V}}_{N}=V^{\pi}
$$

mONTE CARLO WITH FEATURES

Monte Carlo policy evaluation

Input:
N trajectories $\sim \pi$, feature $\operatorname{map} \phi: X \rightarrow \mathbb{R}^{d}$
Output:

$$
\widehat{V}_{N}=\arg \min _{\theta \in \mathbb{R}^{d}} \mathbf{E}_{x}\left[\left(\theta^{\top} \phi(x)-R_{1: N}(x)\right)^{2}\right]
$$

MONTE CARLO WITH FEATURES

Monte Carlo policy evaluation

Input:
N trajectories $\sim \pi$, feature map $\phi: X \rightarrow \mathbb{R}^{d}$
Output:

$$
\widehat{V}_{N}=\arg \min _{\theta \in \mathbb{R}^{d}} \mathbf{E}_{x}\left[\left(\theta^{\top} \phi(x)-R_{1: N}(x)\right)^{2}\right]
$$

Least-squares fit of discounted returns

PROPERTIES OF MONTE CARLO

(:) Value estimates converge to true values ()
(:) Doesn't need prior knowledge of P or r ()

PROPERTIES OF MONTE CARLO

(:) Value estimates converge to true values ()
() Doesn't need prior knowledge of P or r;
© Doesn't make use of the Bellman equations $: *$

A BETTER OBJECTIVE?

(風) Idea: construct an objective that uses the Bellman equations

$$
V^{\pi} \approx T^{\pi} V^{\pi}
$$

A BETTER OBJECTIVE?

- Idea: construct an objective that uses the Bellman equations

$$
V^{\pi} \approx T^{\pi} V^{\pi}
$$

The Bellman error

$$
L(V)=\mathbf{E}_{x \sim \mu}\left[\left(T^{\pi} V(x)-V(x)\right)^{2}\right]
$$

TEMPORAL DIFFERENCE LEARNING

-(1)- Idea: use stochastic approximation to reduce instantaneous Bellman error

$$
\Delta_{t}=\left(T^{\pi} \hat{V}_{t}\left(x_{t}\right)-\hat{V}_{t}\left(x_{t}\right)\right)^{2}
$$

TEMPORAL DIFFERENCE LEARNING

密
Idea: use stochastic approximation to reduce instantaneous Bellman error

$$
\Delta_{t}=\left(T^{\pi} \hat{V}_{t}\left(x_{t}\right)-\hat{V}_{t}\left(x_{t}\right)\right)^{2}
$$

TD(0)
Input: arbitrary function $\widehat{V}_{0}: X \rightarrow \mathbf{R}$
For $t=0,1, \ldots$,

$$
\begin{gathered}
\delta_{t}=r_{t}+\gamma \widehat{V}_{t}\left(x_{t+1}\right)-\widehat{V}_{t}\left(x_{t}\right) \\
\widehat{V}_{t+1}\left(x_{t}\right)=\widehat{V}_{t}\left(x_{t}\right)+\alpha_{t} \delta_{t}
\end{gathered}
$$

TEMPORAL DIFFERENCE LEARNING

```
TD(0)
Input: arbitrary function \(\hat{V}_{0}: X \rightarrow \mathbf{R}\)
For \(t=0,1, \ldots\),
\[
\begin{gathered}
\delta_{t}=r_{t}+\gamma \widehat{v}_{t}\left(x_{t+1}\right)-\widehat{V}_{t}\left(x_{t}\right) \\
\widehat{V}_{t+1}\left(x_{t}\right)=\widehat{V}_{t}\left(x_{t}\right)+\alpha_{t} \delta_{t}
\end{gathered}
\]
```

Converges if step-sizes satisfy
$\sum_{t=0}^{\infty} \alpha_{t}=\infty \quad$ and $\quad \sum_{t=0}^{\infty} \alpha_{t}^{2}<\infty$
(e.g., $\alpha_{t}=c / t$ does the job)

TEMPORAL DIFFERENCE LEARNING

TD(0)

Input: arbitrary function $\widehat{V}_{0}: X \rightarrow \mathbf{R}$
For $t=0,1, \ldots$,

$$
\begin{gathered}
\delta_{t}=r_{t}+\gamma \widehat{v}_{t}\left(x_{t+1}\right)-\widehat{V}_{t}\left(x_{t}\right) \\
\widehat{V}_{t+1}\left(x_{t}\right)=\widehat{V}_{t}\left(x_{t}\right)+\alpha_{t} \delta_{t}
\end{gathered}
$$

Converges if step-sizes satisfy
$\sum_{t=0}^{\infty} \alpha_{t}=\infty \quad$ and $\sum_{t=0}^{\infty} \alpha_{t}^{2}<\infty$
(e.g., $\alpha_{t}=c / t$ does the job)

In equilibrium,

$$
\mathbf{E}\left[r_{t}+\gamma \hat{V}_{t}\left(x_{t+1}\right)-\hat{V}_{t}\left(x_{t}\right)\right]=0
$$

TD(0) WITH LINEAR FUNCTION APPROXIMATION

Let $\phi: X \rightarrow \mathbf{R}^{d}$ be a feature vector

TD(0) WITH LINEAR FUNCTION APPROXIMATION

Let $\phi: X \rightarrow \mathbf{R}^{d}$ be a feature vector Approximating $V^{\pi}(x) \approx \theta^{\top} \phi(x)$ by $\mathrm{TD}(0)$:

TD(0) with LFA

Input: arbitrary param. vector $\theta_{0} \in \mathbf{R}^{d}$
For $t=0,1, \ldots$,

$$
\begin{gathered}
\delta_{t}=r_{t}+\gamma \theta_{t}^{\top} \phi\left(x_{t+1}\right)-\theta_{t}^{\top} \phi\left(x_{t}\right) \\
\theta_{t+1}=\theta_{t}+\alpha_{t} \delta_{t} \phi\left(x_{t}\right)
\end{gathered}
$$

TD(0) WITH LINEAR FUNCTION APPROXIMATION

Let $\phi: X \rightarrow \mathbf{R}^{d}$ be a feature vector Approximating $V^{\pi}(x) \approx \theta^{\top} \phi(x)$ by $\mathrm{TD}(0)$:

TD(0) with LFA

Input: arbitrary param. vector $\theta_{0} \in \mathbf{R}^{d}$
For $t=0,1, \ldots$,

$$
\begin{gathered}
\delta_{t}=r_{t}+\gamma \theta_{t}^{\top} \phi\left(x_{t+1}\right)-\theta_{t}^{\top} \phi\left(x_{t}\right) \\
\theta_{t+1}=\theta_{t}+\alpha_{t} \delta_{t} \phi\left(x_{t}\right)
\end{gathered}
$$

This still converges to $V^{\pi}!!!$
OK, well, somewhere nearby...

TD(0) WITH NONLINEAR FUNCTION APPROXIMATION

Let $V_{\theta}: X \rightarrow R$ be a parametric class of functions (e.g., deep neural network) Approximating $V^{\pi}(x) \approx V_{\theta}(x)$ by TD(0):

TD(0) with general FA

Input: arbitrary param. vector $\theta_{0} \in \mathbf{R}^{d}$
For $t=0,1, \ldots$,

$$
\begin{gathered}
\delta_{t}=r_{t}+\gamma V_{\theta_{t}}\left(x_{t+1}\right)-V_{\theta_{t}}\left(x_{t}\right) \\
\theta_{t+1}=\theta_{t}+\alpha_{t} \delta_{t} \nabla_{\theta} V_{\theta_{t}}\left(x_{t}\right)
\end{gathered}
$$

TD(0) WITH NONLINEAR FUNCTION APPROXIMATION

Let $V_{\theta}: X \rightarrow R$ be a p

Not much is known about

 convergence : $:$ functions (e.g., deepApproximating $V^{\pi}(x) \approx V_{\theta}(x)$ by $\mathrm{TD}(0)$:
TD(0) with general FA
Input: arbitrary param. vector $\theta_{0} \in \mathbf{R}^{d}$
For $t=0,1, \ldots$,

$$
\begin{gathered}
\delta_{t}=r_{t}+\gamma V_{\theta_{t}}\left(x_{t+1}\right)-V_{\theta_{t}}\left(x_{t}\right) \\
\theta_{t+1}=\theta_{t}+\alpha_{t} \delta_{t} \nabla_{\theta} V_{\theta_{t}}\left(x_{t}\right)
\end{gathered}
$$

PROPERTIES OF TD(0)

(:) Value estimates converge to true values ©
(:) Doesn't need prior knowledge of P or r ()
() Based on the concept of Bellman error ()

PROPERTIES OF TD(0)

(:) Value estimates converge to true values ©
(:) Doesn't need prior knowledge of P or r;
() Based on the concept of Bellman error ©

= "bootstrapping"

WHERE DOES TD(0) CONVERGE TO?

TD(0) with LFA

Input: arbitrary param. vector $\theta_{0} \in \mathbf{R}^{d}$
For $t=0,1, \ldots$,

$$
\begin{gathered}
\delta_{t}(\theta)=r_{t}+\gamma \theta^{\top} \phi\left(x_{t+1}\right)-\theta^{\top} \phi\left(x_{t}\right) \\
\theta_{t+1}=\theta_{t}+\alpha_{t} \delta_{t}\left(\theta_{t}\right) \phi\left(x_{t}\right)
\end{gathered}
$$

WHERE DOES TD(0) CONVERGE TO?

TD(0) with LFA

Input: arbitrary param. vector $\theta_{0} \in \mathbf{R}^{d}$
For $t=0,1, \ldots$,

$$
\begin{gathered}
\delta_{t}(\theta)=r_{t}+\gamma \theta^{\top} \phi\left(x_{t+1}\right)-\theta^{\top} \phi\left(x_{t}\right) \\
\theta_{t+1}=\theta_{t}+\alpha_{t} \delta_{t}\left(\theta_{t}\right) \phi\left(x_{t}\right)
\end{gathered}
$$

In the limit, $\mathrm{TD}(0)$ finds a θ^{*} such that

$$
\mathbf{E}\left[\delta_{t}\left(\theta^{*}\right) \phi\left(x_{t}\right)\right]=0
$$

WHERE DOES TD(0) CONVERGE TO?

滈:
Idea: given a finite trajectory, approximate the TD fixed point by solving

$$
\mathbf{E}\left[\delta_{t}(\theta) \phi\left(x_{t}\right)\right] \approx \frac{1}{T} \sum_{t=1}^{T} \delta_{t}(\theta) \phi\left(x_{t}\right)=0
$$

WHERE DOES TD(0) CONVERGE TO?

- Idea: given a finite trajectory, approximate the TD fixed point by solving

$$
\mathbf{E}\left[\delta_{t}(\theta) \phi\left(x_{t}\right)\right] \approx \frac{1}{T} \sum_{t=1}^{T} \delta_{t}(\theta) \phi\left(x_{t}\right)=0
$$

Equivalently:

$$
\frac{1}{T} \sum_{t=1}^{T} \phi\left(x_{t}\right)\left(\phi\left(x_{t}\right)-\gamma \phi\left(x_{t+1}\right)\right)^{\top} \theta=\frac{1}{T} \sum_{t=1}^{T} r_{t} \phi\left(x_{t}\right)
$$

WHERE DOES TD(0) CONVERGE TO?

$$
\begin{aligned}
& \text { This is a linear system } \\
& \qquad A_{T} \theta=b_{T}
\end{aligned}
$$

Solution:

Equivalently:

$$
\underbrace{\frac{1}{T} \sum_{t=1}^{T} \phi\left(x_{t}\right)\left(\phi\left(x_{t}\right)-\gamma \phi\left(x_{t+1}\right)\right)}_{A_{T}} \theta=\underbrace{\frac{1}{T} \sum_{t=1}^{T} r_{t} \phi\left(x_{t}\right)}_{b_{T}}
$$

WHERE DOES TD(0) CONVERGE TO?

$$
\begin{aligned}
& \text { This is a linear system } \\
& \qquad A_{T} \theta=b_{T} \\
& \text { Solution: } \theta_{T}=A_{T}^{-1} b_{T}
\end{aligned}
$$

Equivalently:

$$
\underbrace{\frac{1}{T} \sum_{t=1}^{1} \phi\left(x_{t}\right)\left(\phi\left(x_{t}\right)-\gamma \phi\left(x_{t+1}\right)\right)}_{A_{T}} \theta=\underbrace{\frac{1}{T} \sum_{t=1}^{T} r_{t} \phi\left(x_{t}\right)}_{b_{T}}
$$

LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING (LSTD)

LSTD(0)
 Input: trajectory $\left(x_{t}, a_{t}, r_{t}\right)_{t=1}^{T}$
 $$
\begin{aligned} & \theta_{T}=A_{T}^{-1} b_{T} \\ & \widehat{V}_{T}=\theta_{T}^{\top} \phi \end{aligned}
$$

LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING (LSTD)

LSTD(0)

Input: trajectory $\left(x_{t}, a_{t}, r_{t}\right)_{t=1}^{T}$

$$
\begin{aligned}
& \theta_{T}=A_{T}^{-1} b_{T} \\
& \widehat{V}_{T}=\theta_{T}^{T} \phi
\end{aligned}
$$

(:) converges to same θ^{*} as $\operatorname{TD}(0)$)
(;) no need to set step sizes $\alpha_{t}()$

LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING (LSTD)

LSTD(0)

Input: trajectory $\left(x_{t}, a_{t}, r_{t}\right)_{t=1}^{T}$

$$
\begin{aligned}
& \theta_{T}=A_{T}^{-1} b_{T} \\
& \widehat{V}_{T}=\theta_{T}^{T} \phi
\end{aligned}
$$

(:) converges to same θ^{*} as $\operatorname{TD}(0)$ (:) $T D(0):$
$O(T d)$ (:) no need to set step sizes $\alpha_{t}()$
© computational complexity: $O\left(T d^{2}+d^{3}\right) *$
© A_{T}^{-1} may not exist for small T ©

THE CONVERGENCE OF TD(0) AND LSTD(0)

Theorem

In the limit $T \rightarrow \infty$, LSTD(0) and TD(0) both minimize the projected Bellman error

$$
L(V)=\mathbf{E}_{x \sim \mu}\left[\left(\Pi_{\phi}\left[T^{\pi} V(x)\right]-V(x)\right)^{2}\right]
$$

THE CONVERGENCE OF TD(0) AND LSTD(0)

Theorem

In the limit $T \rightarrow \infty$, $\operatorname{LSTD}(0)$ and TD(0) both minimize the projected Bellman error

$$
L(V)=\mathbf{E}_{x \sim \mu}\left[\left(\Pi_{\phi}\left[T^{\pi} V(x)\right]-V(x)\right)^{2}\right]
$$

Projection onto span of features

FROM POLICY EVALUATION POLICY IMPROVEMENT

FROM POLICY EVALUATION POLICY IMPROVEMENT

OFF-POLICY CONTROL: Q-LEARNING

-') Idea: Let's try to

- directly learn about Q^{*}, and
- improve the policy on the fly!

OFF-POLICY CONTROL: Q-LEARNING

- Idea: Let's try to
- directly learn about Q^{*}, and
- improve the policy on the fly!
- Compute ε-greedy policy w.r.t. \widehat{Q}_{t} :

$$
\pi_{t}(x)=\left\{\begin{array}{lll}
\arg \max Q_{t}(x, a), & \text { w. p. } 1-\varepsilon \\
\text { uniform random action, } & \text { w. p. } \varepsilon
\end{array}\right.
$$

- Improve estimated \hat{Q}_{t+1} by reducing Bellman error

$$
\Delta_{t}=\left(\mathbf{E}\left[r_{t}+\gamma \max _{a} \hat{Q}_{t}\left(x_{t+1}, a\right)\right]-\hat{Q}_{t}\left(x_{t}, a_{t}\right)\right)^{2}
$$

OFF-POLICY CONTROL: Q-LEARNING

-(風) Idea: Let's try to
Off-policy learning: evaluating π^{*} while

- directly learn about Q^{*}, and
- improve the policy on the fly!
- Compute ε-greedy policy w.r.t. \widehat{Q}_{t} :

$$
\pi_{t}(x)=\left\{\begin{array}{lll}
\arg \max Q_{t}(x, a), & \text { w. p. } 1-\varepsilon \\
\text { uniform random action, } & \text { w. p. } \varepsilon
\end{array}\right.
$$

- Improve estimated \hat{Q}_{t+1} by reducing Bellman error

$$
\Delta_{t}=\left(\mathbf{E}\left[r_{t}+\gamma \max _{a} \hat{Q}_{t}\left(x_{t+1}, a\right)\right]-\hat{Q}_{t}\left(x_{t}, a_{t}\right)\right)^{2}
$$

OFF-POLICY CONTROL: Q-LEARNING

Q-learning

Input: arbitrary $\hat{Q}_{0}: X \times A \rightarrow \mathbf{R}$
For $t=0,1, \ldots$,

- Choose action $a_{t} \sim \varepsilon$-greedy w.r.t. Q_{t}
- Observe r_{t}, x_{t+1}
- Compute

$$
\begin{aligned}
& \delta_{t}=r_{t}+\gamma \max \hat{Q}_{t}\left(x_{t+1}, a\right)-\widehat{Q}_{t}\left(x_{t}, a_{t}\right) \\
& \hat{Q}_{t+1}\left(x_{t}, a_{t}\right) \stackrel{a}{=} \widehat{Q}_{t}\left(x_{t}, a_{t}\right)+\alpha_{t} \delta_{t}
\end{aligned}
$$

ON-POLICY CONTROL: SARSA

SARSA

Input: arbitrary $\widehat{Q}_{0}: X \times A \rightarrow \mathbf{R}$
For $t=0,1, \ldots$,

- Choose action $a_{t} \sim \varepsilon$-greedy w.r.t. Q_{t}
- Observe $r_{t}, x_{t+1}, a_{t+1}^{\prime}$
- Compute

$$
\begin{aligned}
& \delta_{t}=r_{t}+\gamma \widehat{Q}_{t}\left(x_{t+1}, a_{t+1}^{\prime}\right)-\hat{Q}_{t}\left(x_{t}, a_{t}\right) \\
& \hat{Q}_{t+1}\left(x_{t}, a_{t}\right)=\widehat{Q}_{t}\left(x_{t}, a_{t}\right)+\alpha_{t} \delta_{t}
\end{aligned}
$$

ON-POLICY CONTROL: SARSA

SARSA

Input: arbitrary $\hat{Q}_{0}: X \times A \rightarrow \mathbf{R}$
For $t=0,1, \ldots$,

- Choose action $a_{t} \sim \varepsilon$-greedy w.r.t. \hat{Q}_{t}
- Observe $r_{t}, x_{t+1}, a_{t+1}^{\prime} \longrightarrow a_{t+1}^{\prime} \sim \varepsilon$-greedy:
- Compute on-policy

$$
\begin{aligned}
& \delta_{t}=r_{t}+\gamma \hat{Q}_{t}\left(x_{t+1}, a_{t+1}^{\prime}\right)-\hat{Q}_{t}\left(x_{t}, a_{t}\right) \\
& \widehat{Q}_{t+1}\left(x_{t}, a_{t}\right)=\widehat{Q}_{t}\left(x_{t}, a_{t}\right)+\alpha_{t} \delta_{t}
\end{aligned}
$$

ON-POLICY CONTROL: SARSA

SARSA

Input: arbitrary $\widehat{Q}_{0}: X \times A \rightarrow \mathbf{R}$
For $t=0,1, \ldots$,

- Choose action $a_{t} \sim \varepsilon$-greedy w.r.t. \hat{Q}_{t}
- Observe $r_{t}, x_{t+1}, a_{t+1}^{\prime} \longrightarrow a_{t+1}^{\prime} \sim \varepsilon-$ greedy:
- Compute on-policy
$\delta_{t}=r_{t}+\gamma \hat{Q}_{t}\left(x_{t+1}, a_{t+1}^{\prime}\right)-\hat{Q}_{t}\left(x_{t}, a_{t}\right)$
$\hat{Q}_{t+1}\left(x_{t}, a_{t}\right)=\hat{Q}_{t}\left(x_{t}, a_{t}\right)+\alpha_{t} \delta_{t}$
$\mathrm{SARSA}=\left(s_{t}, a_{t}, r_{t}, s_{t+1}, a_{t+1}^{\prime}\right)$

ON-POLICY CONTROL: SARSA

SARSA ~ XARXA

Input: arbitrary $\widehat{Q}_{0}: X \times A \rightarrow \mathbf{R}$
For $t=0,1, \ldots$,

- Choose action $a_{t} \sim \varepsilon$-greedy w.r.t. \hat{Q}_{t}
- Observe $r_{t}, x_{t+1}, a_{t+1}^{\prime} \longrightarrow a_{t+1}^{\prime} \sim \varepsilon$-greedy:
- Compute on-policy
$\delta_{t}=r_{t}+\gamma \hat{Q}_{t}\left(x_{t+1}, a_{t+1}^{\prime}\right)-\hat{Q}_{t}\left(x_{t}, a_{t}\right)$
$\hat{Q}_{t+1}\left(x_{t}, a_{t}\right)=\hat{Q}_{t}\left(x_{t}, a_{t}\right)+\alpha_{t} \delta_{t}$
$\mathrm{SARSA}=\left(s_{t}, a_{t}, r_{t}, s_{t+1}, a_{t+1}^{\prime}\right)$

Q-LEARNING VS. SARSA WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and non-linear FA by using the update rule

$$
\theta_{t+1}=\theta_{t}+\alpha_{t} \delta_{t} \nabla_{\theta} Q_{\theta}\left(x_{t}, a_{t}\right)
$$

Q-LEARNING VS. SARSA WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and non-linear FA by using the update rule

$$
\theta_{t+1}=\theta_{t}+\alpha_{t} \delta_{t} \nabla_{\theta} Q_{\theta}\left(x_{t}, a_{t}\right)
$$

- SARSA guarantees bounded error and tends to behave well in practice (may not find optimal policy though)

Q-LEARNING VS. SARSA WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and non-linear FA by using the update rule

$$
\theta_{t+1}=\theta_{t}+\alpha_{t} \delta_{t} \nabla_{\theta} Q_{\theta}\left(x_{t}, a_{t}\right)
$$

- SARSA guarantees bounded error and tends to behave well in practice (may not find optimal policy though)
- Q-learning may diverge catastrophically

Q-LEARNING VS. SARSA WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and non-linear FA by using the update rule

$$
\theta_{t+1}=\theta_{t}+\alpha_{t} \delta_{t} \nabla_{\theta} Q_{\theta}\left(x_{t}, a_{t}\right)
$$

- SARSA guarantees bounded error and tends to behave well in practice (may not find optimal policy though)
- Q-learning may diverge catastrophically
- Proposed fixes: gradient TD algorithms, emphatic TD algorithms, double Q-learning, soft Q-learning, G-learning,...

Q-LEARNING VS. SARSA WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and non-linear $F A$ by using the update rule

$$
\theta_{t+1}=\theta_{t}+\alpha_{t} \delta_{t} \nabla_{\theta} Q_{\theta}\left(x_{t}, a_{t}\right)
$$

- SARSA guarantees bounded error and tends to behave well in practice (may not find optimal policy though)
- Q-learning may diverge catastrophically
- Proposed fixes: gradient TD algorithms, emphatic TD algorithms, double Q-learning, soft Q-learning, G-learning,...
- Practical solution: tune it until it works

DIVERGENCE OF OFF-POLICY TD LEARNING

The "deadly triad":

- Function approximation
- Bootstrapping
- Off-policy learning

DIVERGENCE OF OFF-POLICY TD LEARNING

The "deadly triad":

- Function approximation
- Bootstrapping
- Off-policy learning

BUT

Divergence is typically not too extreme when behavior policy is close to evaluation policy and FA is linear

DEEP RENNFORCEMNENT LEARNONG

THE PROMISE OF DEEP REINFORCEMENT LEARNING

Parametrize Q-function/policy by a deep net

THE PROMISE OF DEEP REINFORCEMENT LEARNING

Parametrize Q-function/policy by a deep net

THE PROMISE OF DEEP REINFORCEMENT LEARNING

Parametrize Q-function/policy by a deep net

Take advantage of representation power!

Existing RL methods difficult to generalize

LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING (LSTD)

LSTD(0)

Input: trajectory $\left(x_{t}, a_{t}, r_{t}\right)_{t=1}^{T}$

$$
\begin{aligned}
& \theta_{T}=A_{T}^{-1} b_{T} \\
& \widehat{V}_{T}=\theta_{T}^{\top} \phi
\end{aligned}
$$

Idea not directly applicable to nonlinear function approximation!

LSTD FOR NON-LINEAR FUNCTION APPROXIMATION?

> Can we optimize Bellman error $L(\theta)=\mathbf{E}_{x \sim \mu}\left[\left(T^{\pi} V_{\theta}(x)-V_{\theta}(x)\right)^{2}\right]$ by stochastic gradient descent????

LSTD FOR NON-LINEAR FUNCTION APPROXIMATION?

Can we optimize Bellman error

$$
L(\theta)=\mathbf{E}_{x \sim \mu}\left[\left(T^{\pi} V_{\theta}(x)-V_{\theta}(x)\right)^{2}\right]
$$

by stochastic gradient descent????

NO!!

Bellman error involves a double expectation:

$$
L(\theta)=\mathbf{E}_{X}\left[\ell\left(\theta ; X, \mathbf{E}_{Y}[Y \mid X]\right)\right]
$$

can't get unbiased gradients!

LSTD FOR NON-LINEAR FUNCTION APPROXIMATION?

Can we optimize Bellman error
$\left.\begin{array}{c}L(\theta)=\mathbf{E}_{x \sim \mu}\left[\begin{array}{c}\text { The infamous } \\ \text { by stochastic } \% \\ \text { "double sampling" } \\ \text { issue of } \mathrm{RL}\end{array}\right]\end{array}\right]$

NO!!

Bellman error involves a double expectation:

$$
L(\theta)=\mathbf{E}_{X}\left[\ell\left(\theta ; X, \mathbf{E}_{Y}[Y \mid X]\right)\right]
$$

can't get unbiased gradients!

TACKLING DOUBLE SAMPLING

-Saddle-point optimization:

$$
\min _{\theta} \mathbf{E}\left[f(\theta ; X, \mathbf{E}[Y \mid X])^{2}\right]
$$

tackling double sampling

-Saddle-point optimization:

$$
\min _{\theta} \mathbf{E}\left[f(\theta ; X, \mathbf{E}[Y \mid X])^{2}\right]=
$$

$\min _{\theta} \max _{Z} \mathbf{E}[z(X, Y) \cdot f(\theta ; X, \mathbf{E}[Y \mid X])]-\mathbf{E}\left[z^{2}(X, Y)\right]$

tackling double sampling

-Saddle-point optimization:

$$
\min _{\theta} \mathbf{E}\left[f(\theta ; X, \mathbf{E}[Y \mid X])^{2}\right]=
$$

$$
\min _{\theta} \max _{Z} \mathbf{E}[z(X, Y) \cdot f(\theta ; X, \mathbf{E}[Y \mid X])]-\mathbf{E}\left[z^{2}(X, Y)\right]
$$

\Rightarrow "modified Bellman residual" (Antos et al. 2008),
"Gradient TD" methods (Sutton et al. 2009),
SBEED (Dai et al., 2018)

tackling double sampling

-Saddle-point optimization:

$$
\min _{\theta} \mathbf{E}\left[f(\theta ; X, \mathbf{E}[Y \mid X])^{2}\right]=
$$

$$
\min _{\theta} \max _{Z} \mathbf{E}[z(X, Y) \cdot f(\theta ; X, \mathbf{E}[Y \mid X])]-\mathbf{E}\left[z^{2}(X, Y)\right]
$$

\Rightarrow "modified Bellman residual" (Antos et al. 2008),
"Gradient TD" methods (Sutton et al. 2009),
SBEED (Dai et al., 2018)
-Iterative optimization schemes

tackling double sampling

-Saddle-point optimization:

$$
\min _{\theta} \mathbf{E}\left[f(\theta ; X, \mathbf{E}[Y \mid X])^{2}\right]=
$$

$$
\min _{\theta} \max _{z} \mathbf{E}[z(X, Y) \cdot f(\theta ; X, \mathbf{E}[Y \mid X])]-\mathbf{E}\left[z^{2}(X, Y)\right]
$$

\Rightarrow "modified Bellman residual" (Antos et al. 2008),
"Gradient TD" methods (Sutton et al. 2009),
SBEED (Dai et al., 2018)

- Iterative optimization schemes

FITTED POLICY EVALUATION

Idea: compute sequence of value functions by minimizing

$$
L_{n}\left(\hat{V} ; \hat{V}_{k}\right)=\frac{1}{n} \sum_{t=1}^{n}\left(r_{t}+\hat{V}_{k}\left(x_{t+1}\right)-\hat{V}\left(x_{t}\right)\right)^{2}
$$

FITTED POLICY EVALUATION

Target Free variable

This can be finally treated as a regression problem \& solved by SGD!

FITTED POLICY ITERATION

FITTED POLICY ITERATION

FITTED VALUE ITERATION

$$
\begin{aligned}
& L_{n}\left(\hat{Q} ; \hat{Q}_{k}\right)=\frac{1}{n} \sum_{t=1}^{n}(\underbrace{r_{t}+\max _{a} \hat{Q}_{k}\left(x_{t+1}, a\right)-\underbrace{\hat{Q}\left(x_{t}, a_{t}\right)}_{\text {arget }})^{2}}_{\text {Idea: compute sequence of } Q \text {-value functions by }} \text { Free variable }
\end{aligned}
$$

FITTED VALUE ITERATION

Fitted value iteration

Input: function space $F, \hat{Q}_{0} \in F$
For $k=0,1, \ldots$,

- $\pi_{k}=G_{\varepsilon} \hat{Q}_{k}$
- generate trajectory

$$
\left(x_{t}, a_{t}, r_{t}\right)_{t=1}^{n} \sim \pi_{k}
$$

- compute

$$
\hat{Q}_{k+1}=\underset{\hat{Q} \in F}{\operatorname{argmin}} L_{n}\left(\hat{Q} ; \hat{Q}_{k}\right)
$$

FITTED VALUE ITERATION

Fitted value iteration

Input: function space $F, \hat{Q}_{0} \in F$
For $k=0,1, \ldots$,

- $\pi_{k}=G_{\varepsilon} \hat{Q}_{k}$
- generate trajectory

$$
\left(x_{t}, a_{t}, r_{t}\right)_{t=1}^{n} \sim \pi_{k}
$$

- compute

$$
\hat{Q}_{k+1}=\underset{\hat{Q} \in F}{\operatorname{argmin}} L_{n}\left(\hat{Q} ; \hat{Q}_{k}\right)
$$

FITTED VALUE ITERATION

Fitted value iteration

Input: function space $F, \hat{Q}_{0} \in F$
For $k=0,1, \ldots$,

- $\pi_{k}=G_{\varepsilon} \hat{Q}_{k}$

Computing policy is trivial!

- generate trajectory

$$
\left(x_{t}, a_{t}, r_{t}\right)_{t=1}^{n} \sim \pi_{k}
$$

- compute

$$
\hat{Q}_{k+1}=\underset{\hat{Q} \in F}{\operatorname{argmin}} L_{n}\left(\hat{Q} ; \hat{Q}_{k}\right)
$$

Convergence can be guaranteed!

DEEP Q NETWORKS

Parametrize Q-function by a deep neural net

DEEP Q NETWORKS

DEEP Q NETWORKS

Minimize the loss

$$
\mathbf{E}_{\left(X, A, R, X^{\prime}\right) \sim D}\left[\left(R+\gamma \max _{b} Q_{\theta_{k}}\left(X^{\prime}, b\right)-Q_{\theta}(X, A)\right)^{2}\right]
$$

+ training tricks:
- Store transitions (x, a, r, x^{\prime}) in replay buffer D to break dependence on recent samples
- Compute small updates by mini-batch stochastic gradient descent
- Use an older parameter vector θ_{k-m} in target to avoid oscillations

DEEP Q NETWORKS FOR PLAYING ATARI

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

- Markov decision processes
- Value functions and optimal policies
-Primal view: Dynamic programming
- Policy evaluation, value and policy iteration
-Value-function-based methods
- Temporal differences, Q-learning, LSTD, deep Q networks,...
-Dual view: Linear programming
-LP duality in MDPs
- Direct policy optimization methods
- Policy gradients, REPS, TRPO,...

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

-Markov decision processes

- Value functions and optimal policies
-Primal vi
- Policy ev

But first: tion

- Value-fu some more notation ()
- Temporal
-Dual view: Linear programming
- LP duality in MDPs
- Direct policy optimization methods
- Policy gradients, REPS, TRPO,...

POLICIES AND TRAJECTORY DISTRIBUTIONS

Policy: mapping from histories to actions

$$
\pi: x_{1}, a_{1}, x_{2}, a_{2}, \ldots, x_{t} \mapsto a_{t}
$$

Stationary policy: mapping from states to actions (no dependence on history or t)

$$
\pi: x \mapsto a
$$

Let $\tau=\left(x_{1}, a_{1}, x_{2}, a_{2}, \ldots\right)$ be a trajectory generated by running π in the MDP $\tau \sim(\pi, P)$:

- $a_{t}=\pi\left(x_{t}, a_{t-1}, x_{t-1}, \ldots, x_{1}\right)$
- $x_{t+1} \sim P\left(\cdot \mid x_{t}, a_{t}\right)$

Expectation under this distribution: $\mathrm{E}_{\pi}[\cdot]$

POLICIES AND TRAJECTORY DISTRIBUTIONS

Stationary stochastic policy: mapping from states to action distributions

$$
\pi: A \times X \rightarrow[0,1]
$$

where

$$
\pi(a \mid x)=P\left[a_{t}=a \mid x_{t}=x\right]
$$

Let $\tau=\left(x_{1}, a_{1}, x_{2}, a_{2}, \ldots\right)$ be a trajectory generated by running π in the MDP $\tau \sim(\pi, P)$:

- $a_{t}=\pi\left(x_{t}, a_{t-1}, x_{t-1}, \ldots, x_{1}\right)$
- $x_{t+1} \sim P\left(\cdot \mid x_{t}, a_{t}\right)$

Expectation under this distribution: $\mathrm{E}_{\pi}[\cdot]$

POLICIES AND TRAJECTORY DISTRIBUTIONS

Stationary stochastic policy: mapping from states to action distributions

$$
\pi: A \times X \rightarrow[0,1]
$$

where

$$
\pi(a \mid x)=P\left[a_{t}=a \mid x_{t}=x\right]
$$

Let $\tau=\left(x_{1}, a_{1}, x_{2}, a_{2}, \ldots\right)$ be a trajectory generated by running π in the MDP $\tau \sim(\pi, P)$:

- $a_{t} \sim \pi\left(\cdot \mid x_{t}\right)$
- $x_{t+1} \sim P\left(\cdot \mid x_{t}, a_{t}\right)$

Expectation under this distribution: $\mathrm{E}_{\pi}[\cdot]$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state
- Discount factor $\gamma \in(0,1)$
- GOAL: maximize total discounted reward

$$
R_{\gamma}=\mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]
$$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, initial state $x_{0} \sim \mu_{0}$
- Discount factor $\gamma \in(0,1)$
- GOAL: maximize total discounted reward

$$
R_{\gamma}=\mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]
$$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, initial state $x_{0} \sim \mu_{0}$
- Discount factor $\gamma \in(0,1)$
- GOAL: maximize total discounted reward

$$
R_{\gamma}=\mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]
$$

Observe: the discounted reward of a policy is

$$
R_{\gamma}^{\pi}=\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right)\right]
$$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, initial state $x_{0} \sim \mu_{0}$
- Discount factor $\gamma \in(0,1)$
- GOAL: maximize total discounted reward

$$
R_{\gamma}=\mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]
$$

Observe: the discounted reward of a policy is

$$
\begin{aligned}
R_{\gamma}^{\pi} & =\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right)\right] \\
& =\mathbf{E}_{\pi}\left[\sum_{x, a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{1}_{\left\{x_{t}=x, a_{t}=a\right\}} r(x, a)\right]
\end{aligned}
$$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, initial state $x_{0} \sim \mu_{0}$
- Discount factor $\gamma \in(0,1)$
- GOAL: maximize total discounted reward

$$
R_{\gamma}=\mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]
$$

Observe: the discounted reward of a policy is

$$
\begin{aligned}
R_{\gamma}^{\pi} & =\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right)\right] \\
& =\mathbf{E}_{\pi}\left[\sum_{x, a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{1}_{\left\{x_{t}=x, a_{t}=a\right\}} r(x, a)\right] \\
& =\sum_{x, a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{P}_{\pi}\left[x_{t}=x, a_{t}=a\right] r(x, a)
\end{aligned}
$$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, initial state $x_{0} \sim \mu_{0}$
- Discount factor $\gamma \in(0,1)$
- GOAL: maximize total discounted reward

$$
R_{\gamma}=\mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]
$$

Observe: the discounted reward of a policy is

$$
\begin{aligned}
R_{\gamma}^{\pi} & =\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right)\right] \\
& =\mathbf{E}_{\pi}\left[\sum_{x, a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{1}_{\left\{x_{t}=x, a_{t}=a\right\}} r(x, a)\right] \\
& =\sum_{x, a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{P}_{\pi}\left[x_{t}=x, a_{t}=a\right] r(x, a) \\
& =\sum_{x, a} \mu_{\pi}(x, a) r(x, a)
\end{aligned}
$$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, initial state $x_{0} \sim \mu_{0}$
- Discount factor $\gamma \in(0,1)$
- GOAL: maximize total discounted reward

$$
R_{\gamma}=\mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]
$$

Observe: the discounted reward of a policy is

$$
\begin{aligned}
R_{\gamma}^{\pi} & =\mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right)\right] \\
& =\mathbf{E}_{\pi}\left[\sum_{x, a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{1}_{\left\{x_{t}=x, a_{t}=a\right\}} r(x, a)\right] \\
& =\sum_{x, a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{P}_{\pi}\left[x_{t}=x, a_{t}=a\right] r(x, a) \\
& =\sum_{x, a} \mu_{\pi}(x, a) r(x, a)=\left\langle\mu_{\pi}, r\right\rangle
\end{aligned}
$$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, initial state $x_{0} \sim \mu_{0}$
- Discount factor $\gamma \in(0,1)$
- GOAL: maximize total discounted reward

$$
R_{\gamma}=\mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]
$$

Observe: the discounted reward of a policy is

$$
R_{\gamma}^{\pi}=\left\langle\mu_{\pi}, r\right\rangle
$$

$\mu_{\pi}=$ the discounted occupancy measure induced by policy π :

$$
\mu_{\pi}(x, a)=\sum_{t=0}^{\infty} \gamma^{t} \mathbf{P}_{\pi}\left[x_{t}=x, a_{t}=a\right]
$$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, i
- Discount factor $\gamma \in$

A linear optimization problem?!

- GOAL: maximize tot

$$
\left.R_{\gamma}=\mathbf{E}^{\prime} \quad-v \gamma^{\imath} r_{t}\right\rfloor
$$

Observe: the discounted reward of a policy is

$$
R_{\gamma}^{\pi}=\left\langle\mu_{\pi}, r\right\rangle
$$

$\mu_{\pi}=$ the discounted occupancy measure induced by policy π :

$$
\mu_{\pi}(x, a)=\sum_{t=0}^{\infty} \gamma^{t} \mathbf{P}_{\pi}\left[x_{t}=x, a_{t}=a\right]
$$

TOWARDS A LINEAR-PROGRAM FORMULATION

Theorem

A function μ is a discounted occupancy measure of some (stationary stochastic) policy π if and only if it satisfies

$$
\begin{aligned}
\sum_{\boldsymbol{a}^{\prime}} \mu\left(x^{\prime}, a^{\prime}\right)= & (1-\gamma) \sum_{a^{\prime}} \mu_{0}\left(x^{\prime}, a^{\prime}\right)+\gamma \sum_{x, a} P\left(x^{\prime} \mid x, a\right) \mu(x, a) \\
& \text { and } \sum_{x, a} \mu(x, a)=1 /(1-\gamma) .
\end{aligned}
$$

TOWARDS A LINEAR-PROGRAM FORMULATION

Theorem

A function μ is a discounted occupancy measure of some (stationary stochastic) policy π if and only if it satisfies
$\sum_{a^{\prime}} \mu\left(x^{\prime}, a^{\prime}\right)=(1-\gamma) \sum_{a^{\prime}} \mu_{0}\left(x^{\prime}, a^{\prime}\right)+\gamma \sum_{x, a} P\left(x^{\prime} \mid x, a\right) \mu(x, a)$ and $\sum_{x, a} \mu(x, a)=1 /(1-\gamma)$.

Linear constraints!

Define $\Delta=$ the set of occupancy measures μ.

OPTIMIZATION IN MDPS as a LINEAR PROGRAM

$$
R_{\gamma}^{*}=\max _{\mu \in \Delta}^{\mathrm{LP}}\langle\mu, r\rangle
$$

OPTIMIZATION IN MDPS as a LINEAR PROGRAM

$$
R_{\gamma}^{*}=\max _{\mu \in \Delta}^{\mathrm{LP}}\langle\mu, r\rangle
$$

$$
\begin{gathered}
\mathrm{LP}^{\prime} \\
R_{\gamma}^{*}=\min _{V \in \mathbb{R}^{X}}\left\langle\mu_{0}, V\right\rangle \\
\text { s.t. } V(x) \geq r(x, a)+\gamma \sum_{y} P(y \mid x, a) V(y)(\forall x, a)
\end{gathered}
$$

OPTIMIZATION IN MDPS as a LINEAR PROGRAM

$$
\begin{gathered}
\text { Dual LP } \\
R_{\gamma}^{*}=\max _{\mu \in \Delta}\langle\mu, r\rangle
\end{gathered}
$$

$$
\begin{gathered}
\text { Primal LP } \\
R_{\gamma}^{*}=\min _{V \in \mathbb{R}^{X}}\left\langle\mu_{0}, V\right\rangle \\
\text { s.t. } V(x) \geq r(x, a)+\gamma \sum_{y} P(y \mid x, a) V(y) \quad(\forall x, a)
\end{gathered}
$$

*names are due to tradition

OPTIMIZATION IN MDPS as a LINEAR PROGRAM

$$
\begin{gathered}
\text { Dual LP } \\
R_{\gamma}^{*}=\max _{\mu \in \Delta}\langle\mu, r\rangle
\end{gathered}
$$

Primal LP \equiv The Bellman opt. equations $V^{*}(x)=\max _{a}\left\{r(x, a)+\gamma \sum_{y} P(y \mid x, a) V^{*}(y)\right\}$

Assuming $\mu_{0}>0$
*names are due to tradition

OPTIMIZATION IN MDPS as a LINEAR PROGRAM

A single numerical objective to optimize!

$$
\begin{gathered}
\text { Dual LP } \\
R_{\gamma}^{*}=\max _{\mu \in \Delta}\langle\mu, r\rangle
\end{gathered}
$$

Primal LP \equiv The Bellman opt. equations $V^{*}(x)=\max _{a}\left\{r(x, a)+\gamma \sum_{y} P(y \mid x, a) V^{*}(y)\right\}$

Assuming $\mu_{0}>0$
*names are due to tradition

OPTIMAL SOLUTIONS OF THE LP

Theorem
There exists a basic solution $\mu^{*} \in \Delta$ to the dual LP.

OPTIMAL SOLUTIONS OF THE LP

Theorem

There exists a basic solution $\mu^{*} \in \Delta$ to the dual LP.
"Proof":
objective $\langle\mu, r\rangle$ is bounded on nonempty Δ

there exists optimal solution $\mu^{*} \in \Delta$

there exists basic solution $\mu^{*} \in \Delta$

OPTIMAL SOLUTIONS OF THE LP

Theorem

There exists a basic solution $\mu^{*} \in \Delta$ to the dual LP.
"Proof":
objective $\langle\mu, r\rangle$ is bounded on nonempty Δ

there exists optimal solution $\mu^{*} \in \Delta$

there exists basic solution $\mu^{*} \in \Delta$

EXTRACTING A POLICY

? Question: how do we extract a policy from a feasible $\mu \in \Delta$?

EXTRACTING A POLICY

? Question: how do we extract a policy from a feasible $\mu \in \Delta$?

Corollary

Assume that $\mu_{0}(x)>0$ for all $x \in X$. Then, for any occupancy measure $\mu \in \Delta$, there exists a unique policy π such that $\mu=\mu_{\pi}$, given by

$$
\pi(a \mid x)=\frac{\mu(x, a)}{\sum_{b} \mu(x, b)}
$$

EXTRACTING A POLICY

?

Question: how do we extract a policy from a feasible $\mu \in \Delta$?

Corollary

Assume that $\mu_{0}(x)>0$ for all $x \in X$. Then, for any occupancy measure $\mu \in \Delta$, there exists a unique policy π such that $\mu=\mu_{\pi}$, given by

$$
\pi(a \mid x)=\frac{\mu(x, a)}{\sum_{b} \mu(x, b)} .
$$

Well-defined since

$$
\sum_{b} \mu(x, b)>0 \text { by assumption }
$$

EXTRACTING A POLICY

Question: how do we extract a policy from a feasible $\mu \in \Delta$?

Corollary

Assume that $\mu_{0}(x)>0$ for all $x \in X$. Then, for any occupancy measure $\mu \in \Delta$, there exists a unique policy π
such that $\mu=\mu_{\pi}$, given by

$$
\pi(a \mid x)=\frac{\mu(x, a)}{\sum_{b} \mu(x, b)} .
$$

Basic solutions \Leftrightarrow
Deterministic policies
Well-defined since
$\sum_{b} \mu(x, b)>0$ by assumption

LINEAR PROGRAMMING FOR MDPS

"Why don't they teach this in school?!?"

- Needs some strange conditions that DP theory does not ($\mu_{0}>0$ for existence results and for optimal policy)
- Temporal aspect is rather abstract
- Less intuitive for control theorists and computational neuroscience folks (classic RL crowd)

LINEAR PROGRAMMING FOR MDPS

"Why don't they teach this in school?!?"

- Needs some strange conditions that DP theory does not ($\mu_{0}>0$ for existence results and for optimal policy)
- Temporal aspect is rather abstract
- Less intuitive for control theorists and computational neuroscience folks (classic RL crowd)

Advantages

- Defining optimality is very simple (no value functions, no fixed points, etc.)
- Easily comprehensible with an optimization background (single numerical objective)
- Powerful tool for developing algorithms

LINEAR PROGRAMMING FOR MDPS

"Why don't they teach this in school?!?"

- Needs some strange conditions that DP theory does not ($\mu_{0}>0$ for existence results and for optimal policy)
- Temporal aspect is rather abstract
- Less intuitive for control theorists and computational neuroscience folks (classic RL crowd)

Advantages

- Defining optimality is very simple (no value functions, no fixed points, etc.)
- Easily comprehensible with an optimization background (single numerical objective)
- Powerful tool for developing algorithms

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

- Markov decision processes
- Value functions and optimal policies
-Primal view: Dynamic programming
- Policy evaluation, value and policy iteration
-Value-function-based methods
- Temporal differences, Q-learning, LSTD, deep Q networks,...
-Dual view: Linear programming
-LP duality in MDPs
- Direct policy optimization methods
- Policy gradients, REPS, TRPO,...

DIRECT POLICY OPTIMIZATION

- Idea: derive algorithms by thinking of $\mu \in \Delta$ as the decision variable!

DIRECT POLICY OPTIMIZATION

Idea: derive algorithms by thinking of $\mu \in \Delta$ as the decision variable!

Examples

- Policy gradient methods
$=$ gradient descent on $-R_{\gamma}^{\pi}$
- Relative Entropy Policy Search (REPS)
$=$ mirror descent on $-R_{\gamma}^{\pi}$
- Trust-region policy optimization (TRPO)
$=$ mirror descent on (a surrogate of) $-R_{\gamma}^{\pi}$

DIRECT POLICY OPTIMIZATION

- Idea: derive algorithms by thinking of $\mu \in \Delta$ as the decision variable!

Examples

- Policy gradient methods
$=$ gradient descent on $-R_{\gamma}^{\pi}$
- Relative Entropy Policy Search (REPS)
$=$ mirror descent on $-R_{\gamma}^{\pi}$
- Trust-region policy optimization (TRPO)
$=$ mirror descent on (a surrogate of) $-R_{\gamma}^{\pi}$

POLICY GRADIENT METHODS

Parameter space Θ

- Construct mapping

$$
\theta \mapsto \pi_{\theta}
$$

POLICY GRADIENT METHODS

Parameter space Θ

- Construct mapping

$$
\theta \mapsto \pi_{\theta}
$$

POLICY GRADIENT METHODS

Parameter space Θ

- Construct mapping

$$
\theta \mapsto \pi_{\theta}
$$

- Define objective function:

$$
\rho(\theta)=R_{\gamma}^{\pi_{\theta}}
$$

POLICY GRADIENT METHODS

Parameter space Θ

- Construct mapping

$$
\theta \mapsto \pi_{\theta}
$$

- Define objective function:

$$
\rho(\theta)=R_{\gamma}^{\pi_{\theta}}
$$

- Update parameters by gradient ascent:

$$
\theta_{k+1}=\theta_{k}+\alpha_{k} \nabla_{\theta} \rho\left(\theta_{k}\right)
$$

POLICY GRADIENT METHODS

Parameter space Θ

- Construct mapping

$$
\theta \mapsto \pi_{\theta}
$$

- Define objective function:

$$
\rho(\theta)=R_{\gamma}^{\pi_{\theta}}
$$

- Update parameters by gradient ascent:

$$
\theta_{k+1}=\theta_{k}+\alpha_{k} \nabla_{\theta} \rho\left(\theta_{k}\right)
$$

POLICY GRADIENT METHODS

Parameter space Θ

How can we estimate the gradients?

- Construct mapping

$$
\theta \mapsto \pi_{\theta}
$$

- Define objective function:

$$
\rho(\theta)=R_{\gamma}^{\pi_{\theta}}
$$

- Update parameters by gradient ascent:

$$
\theta_{k+1}=\theta_{k}+\alpha_{k} \nabla_{\theta} \rho\left(\theta_{k}\right)
$$

THE POLICY GRADIENT THEOREM

Theorem

$$
\nabla_{\theta} \rho(\theta)=\sum_{x} \mu_{\theta}(x) \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid x) Q^{\pi_{\theta}}(x, a)
$$

THE POLICY GRADIENT THEOREM

Theorem

$$
\nabla_{\theta} \rho(\theta)=\sum_{x} \mu_{\theta}(x) \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid x) Q^{\pi_{\theta}}(x, a)
$$

Corollary

Assuming that $\pi_{\theta}(a \mid x)>0$ for all x, a,

$$
\nabla_{\theta} \rho(\theta)=\sum_{x, a} \mu_{\theta}(x) \pi_{\theta}(a \mid x)\left(\nabla_{\theta} \log \pi_{\theta}(a \mid x) Q^{\pi_{\theta}}(x, a)\right)
$$

THE POLICY GRADIENT THEOREM

Theorem

$$
\nabla_{\theta} \rho(\theta)=\sum_{x} \mu_{\theta}(x) \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid x) Q^{\pi_{\theta}}(x, a)
$$

Corollary

Assuming that $\pi_{\theta}(a \mid x)>0$ for all x, a, $\nabla_{\theta} \rho(\theta)=\mathbf{E}_{(\tilde{x}, \tilde{a}) \sim \mu_{\theta} \pi_{\theta}}\left[\nabla_{\theta} \log \pi_{\theta}(\tilde{a} \mid \tilde{x}) Q^{\pi_{\theta}}(\tilde{x}, \tilde{a})\right]$

THE POLICY GRADIENT THEOREM

Theorem

$$
\nabla_{\theta} \rho(\Delta)-\Gamma_{n}, \ldots(n) \Gamma_{\square}(n \ln)^{\pi_{\theta}}(x, a)
$$

Gradient can be written as an expectation!!!!

Corollary

Assuming that $\pi_{\theta}(a \mid x)>0$ for all x, a, $\nabla_{\theta} \rho(\theta)=\mathbf{E}_{(\tilde{x}, \tilde{a}) \sim \mu_{\theta} \pi_{\theta}}\left[\nabla_{\theta} \log \pi_{\theta}(\tilde{a} \mid \tilde{x}) Q^{\pi_{\theta}}(\tilde{x}, \tilde{a})\right]$

REINFORCE: A STOCHASTIC POLICY GRADIENT ALGORITHM

- Idea: replace expectation by a sample mean \Rightarrow stochastic gradient algorithm

REINFORCE: A STOCHASTIC POLICY GRADIENT ALGORITHM

感
Idea: replace expectation by a sample mean \Rightarrow stochastic gradient algorithm

REINFORCE

Input: arbitrary initial θ_{0}
For $k=0,1, \ldots$

- Obtain sample trajectory $\left(x_{t}, a_{t}, r_{t}\right)_{t=1}^{T} \sim \pi_{\theta_{k}}$
- Estimate $\hat{Q}_{k} \approx Q^{\pi_{\theta_{k}}}$ by Monte Carlo
- Estimate $g_{k} \approx \nabla_{\theta} \rho\left(\theta_{k}\right)$ by the average of

$$
g_{k, t}=\nabla_{\theta} \log \pi_{\theta_{k}}\left(a_{t} \mid x_{t}\right) \hat{Q}_{k}\left(x_{t}, a_{t}\right)
$$

- Update $\theta_{k+1}=\theta_{k}+\alpha_{k} g_{k}$

REINFORCE: A STOCHASTIC POLICY GRADIENT ALGORITHM

察
Idea: replace expectation by a sample mean \Rightarrow stochastic gradient algorithm

REINFORCE

Input: arbitrary initial θ_{0}
For $k=0,1, \ldots$

- Obtain sample trajectory $\left(x_{t}, a_{t}, r_{t}\right)_{t=1}^{T} \sim \pi_{\theta_{k}}$
- Estimate $\hat{Q}_{k} \approx Q^{\pi \theta_{k}}$ by Monte Carlo
- Estimate $g_{k} \approx \nabla_{\theta} \rho\left(\theta_{k}\right)$ by the average of

$$
g_{k, t}=\nabla_{\theta} \log \pi_{\theta_{k}}\left(a_{t} \mid x_{t}\right) \hat{Q}_{k}\left(x_{t}, a_{t}\right)
$$

- Update $\theta_{k+1}=\theta_{k}+\alpha_{k} g_{k}$

$$
\mathbf{E}\left[g_{k}\right]=\nabla_{\theta} \rho\left(\theta_{k}\right)
$$

REINFORCE AS DIRECT POLICY SEARCH

Policy gradient update

Monte Carlo evaluation

REINFORCE AS DIRECT POLICY SEARCH

Policy gradient update

;) direct method: no explicit approximation of V^{π} :)
() converges to local optimum ()
(:) less aggressive updates ()
θ large variance of $g_{k} *$

Monte Carlo evaluation

ACTOR-CRITIC METHODS

A TYPICAL DEEP RL ARCHITECTURE: A3C

Parametrize policy by a deep neural net

A TYPICAL DEEP RL ARCHITECTURE: A3C

Parametrize policy by a deep neural net

POLICY GRADIENTS: THE FINAL ANSWER?

$$
\begin{gathered}
\text { Policy gradient update } \\
\theta_{t+1}=\arg \max _{\theta}\left\{\left\langle\theta, \nabla \rho\left(\theta_{t}\right)\right\rangle-\frac{1}{\alpha_{t}}\left\|\theta-\theta_{t}\right\|_{2}^{2}\right\}
\end{gathered}
$$

POLICY GRADIENTS: THE FINAL ANSWER?

$$
\begin{gathered}
\text { Policy gradient update } \\
\theta_{t+1}=\arg \max _{\theta}\left\{\left\langle\theta, \nabla \rho\left(\theta_{t}\right)\right\rangle-\frac{1}{\alpha_{t}}\left\|\theta-\theta_{t}\right\|_{2}^{2}\right\}
\end{gathered}
$$

Issue \#1:

Euclidean norm may be unnatural way to measure distance between μ_{θ} and $\mu_{\theta_{t}}$?

POLICY GRADIENTS: THE FINAL ANSWER?

> Policy gradient update
> $\theta_{t+1}=\arg \max _{\theta}\left\{\left\langle\theta, \nabla \rho\left(\theta_{t}\right)\right\rangle-\frac{1}{\alpha_{t}}\left\|\theta-\theta_{t}\right\|_{2}^{2}\right\}$

Issue \#2:
Linearizing ρ at θ_{t} may lead to instability?

Issue \#1:
Euclidean norm may be unnatural way to measure distance between μ_{θ} and $\mu_{\theta_{t}}$?

POLICY GRADIENTS: THE FINAL ANSWER?

> Policy gradient update
> $\theta_{t+1}=\arg \max _{\theta}\left\{\left\langle\theta, \nabla \rho\left(\theta_{t}\right)\right\rangle-\frac{1}{\alpha_{t}}\left\|\theta-\theta_{t}\right\|_{2}^{2}\right\}$

Issue \#2:
Linearizing ρ at θ_{t} may lead to instability?

+ Issue \#3:
Policy gradient estimator has huge variance *

A BETTER APPROACH: SmOOTHED LINEAR PROGRAMS

Dual LP
 $R_{\gamma}^{*}=\max _{\mu \in \Delta}\langle\mu, r\rangle$

A BETTER APPROACH: smOOTHED LINEAR PROGRAMS

Dual convex program
 $$
\tilde{R}_{\gamma}^{*}=\max _{\mu \in \Delta}\left\{\langle\mu, r\rangle+\frac{1}{\eta} \Phi(\mu)\right\}
$$

A BETTER APPROACH: smOOTHED LINEAR PROGRAMS

Dual convex program
 $$
\tilde{R}_{\gamma}^{*}=\max _{\mu \in \Delta}\left\{\langle\mu, r\rangle+\frac{1}{\eta} \Phi(\mu)\right\}
$$

Φ : strongly convex function of μ :

- smooth optimum

$$
\mu^{*}=\arg \max _{\mu}\left\{\langle\mu, r\rangle+\frac{1}{\eta} \Phi(\mu)\right\}=\frac{1}{\eta} \nabla_{r} \Phi^{*}(\eta r)
$$

- regularization effect \Rightarrow better generalization?

BETTER PROXIMAL REGULARIZATION: MIRROR DESCENT

$$
\begin{gathered}
\text { Policy gradient update } \\
\theta_{t+1}=\arg \max _{\theta}\left\{\left\langle\theta, \nabla \rho\left(\theta_{t}\right)\right\rangle-\frac{1}{\alpha_{t}}\left\|\theta-\theta_{t}\right\|_{2}^{2}\right\}
\end{gathered}
$$

BETTER PROXIMAL REGULARIZATION: MIRROR DESCENT

Policy gradient update

$$
\theta_{t+1}=\arg \max _{\theta}\left\{\left\langle\theta, \nabla \rho\left(\theta_{t}\right)\right\rangle-\frac{1}{\alpha_{t}}\left\|\theta-\theta_{t}\right\|_{2}^{2}\right\}
$$

Mirror descent update

$$
\mu_{t+1}=\arg \max _{\mu \in \Delta}\left\{\langle\mu, r\rangle-\frac{1}{\eta_{t}} D\left(\mu \mid \mu_{t}\right)\right\}
$$

BETTER PROXIMAL REGULARIZATION: MIRROR DESCENT

Doliomamadinnt update
No need for local linearization

$$
\left.\left.\left.\theta_{t}\right)\right\rangle-\frac{1}{\alpha_{t}}\left\|\theta-\theta_{t}\right\|_{2}^{2}\right\}
$$

Mirror descent update

$$
\mu_{t+1}=\arg \max _{\mu \in \Delta}\left\{\langle\mu, r\rangle-\frac{1}{\eta_{t}} D\left(\mu \mid \mu_{t}\right)\right\}
$$

Proximal regularization through

 Bregman divergence $D\left(\mu \mid \mu^{\prime}\right)$ (strongly convex in μ)
dIRECT POLICY OPTIMIZATION

Idea: derive algorithms by thinking of $\mu \in \Delta$ as the decision variable!

Examples

- Policy gradient methods
$=$ gradient descent on $-R_{\gamma}^{\pi}$
- Relative Entropy Policy Search (REPS)
$=$ mirror descent on $-R_{V}^{\pi}$
- Trust-region policy optimization (TRPO)
$=$ mirror descent on (a surrogate of) $-R_{\gamma}^{\pi}$

RELATIVE ENTROPY POLICY SEARCH (REPS, PETERS ET AL., 2010)

Mirror descent update

$$
\begin{aligned}
& \mu_{t+1}=\arg \max _{\mu \in \Delta}\left\{\langle\mu, r\rangle-\frac{1}{\eta_{t}} D\left(\mu \mid \mu_{t}\right)\right\} \\
& D\left(\mu \mid \mu^{\prime}\right)=\sum_{x, a} \mu(x, a) \log \frac{\mu(x, a)}{\mu^{\prime}(x, a)}
\end{aligned}
$$

RELATIVE ENTROPY POLICY SEARCH (REPS, PETERS ET AL., 2010)

Mirror descent update

$$
\begin{aligned}
& \mu_{t+1}=\arg \max _{\mu \in \Delta}\left\{\langle\mu, r\rangle-\frac{1}{\eta_{t}} D\left(\mu \mid \mu_{t}\right)\right\} \\
& D\left(\mu \mid \mu^{\prime}\right)=\sum_{x, a} \mu(x, a) \log \frac{\mu(x, a)}{\mu^{\prime}(x, a)}
\end{aligned}
$$

Closed-form "policy update":

$$
\left.\mu_{t+1}(x, a)=\mu_{t}(x, a) e^{\eta_{t}\left(r(x, a)+\gamma \mathbf{E}_{y \mid x}, a\right.}\left[\tilde{V}_{t}(y)\right]-\widetilde{V}_{t}(x)\right)
$$

RELATIVE ENTROPY POLICY SEARCH (REPS, PETERS ET AL., 2010)

Mirror descent update

$$
\begin{aligned}
& \mu_{t+1}=\arg \max _{\mu \in \Delta}\left\{\langle\mu, r\rangle-\frac{1}{\eta_{t}} D\left(\mu \mid \mu_{t}\right)\right\} \\
& D\left(\mu \mid \mu^{\prime}\right)=\sum_{x, a} \mu(x, a) \log \frac{\mu(x, a)}{\mu^{\prime}(x, a)}
\end{aligned}
$$

Closed-form "policy update":

$$
\mu_{t+1}(x, a)=\mu_{t}(x, a) e^{\left.\eta_{t}\left(r(x, a)+\gamma \mathbf{E}_{y \mid x}, a, \mid \tilde{V}_{t}(y)\right]-\widetilde{v}_{t}(x)\right)}
$$

"Value function"

$$
\tilde{v}_{t}=\text { ??? }
$$

THE REPS VALUE FUNCTION

Theorem
The REPS value function \widetilde{V}_{t} is given as the minimizer of the loss function
$\tilde{L}(V)=\log \mathbf{E}_{x \sim \mu_{t}}\left[e^{\eta_{t}\left(T^{\pi} V(x)-V(x)\right)}\right]$

THE REPS VALUE FUNCTION

Theorem
The REPS value function \widetilde{V}_{t} is given as the minimizer of the loss function $\tilde{L}(V)=\log \mathbf{E}_{x \sim \mu_{t}}\left[e^{\eta_{t}\left(T^{\pi} V(x)-V(x)\right)}\right]$
"Proof": Lagrangian duality.

THE REPS VALUE FUNCTION

Theorem
The REPS value function \tilde{V}_{t} is given as the minimizer of the loss function
$\tilde{L}(V)=\log \mathbf{E}_{x \sim \mu_{t}}\left[e^{\eta_{t}\left(T^{\pi} V(x)-V(x)\right)}\right]$
"Proof": Lagrangian duality.
A natural competitor for the Bellman error

$$
L(V)=\mathbf{E}_{x \sim \mu}\left[\left(T^{\pi} V(x)-V(x)\right)^{2}\right] ? ? ?
$$

Stay tuned for "deep REPS" results ©

DIRECT POLICY OPTIMIZATION

Idea: derive algorithms by thinking of $\mu \in \Delta$ as the decision variable!

Examples

- Policy gradient methods
$=$ gradient descent on $-R_{\gamma}^{\pi}$
- Relative Entropy Policy Search (REPS)
$=$ mirror descent on $-R_{\gamma}^{\pi}$
- Trust-region policy optimization (TRPO)
$=$ mirror descent on (a surrogate of) $-R_{\gamma}^{\pi}$

THE REGULARIZED BELLMAN EQUATIONS

The Bellman opt. equations $V^{*}(x)=\max _{a}\left\{r(x, a)+\gamma \sum_{y} P(y \mid x, a) V^{*}(y)\right\}$

THE REGULARIZED BELLMAN EQUATIONS

The regularized Bellman opt. equations $V^{*}(x)=\underset{a}{\left.\operatorname{softmax}^{\eta}\left\{r(x, a)+\gamma \sum_{y} P(y \mid x, a) V^{*}(y)\right\},{ }^{2}\right)}$

THE REGULARIZED BELLMAN EQUATIONS

> The regularized Bellman opt. equations $V^{*}(x)=\operatorname{softmax}_{a}^{\eta}\left\{r(x, a)+\gamma \Sigma_{y} P(y \mid x, a) V^{*}(y)\right\}$

Used almost exclusively since ~late 2016

- Better optimization properties: smooth gradients, less sensitive to errors
- Better exploration: optimal policy naturally stochastic, no need for ε-greedy trick

THE REGULARIZED BELLMAN EQUATIONS

Is there a natural "dual" explanation?

The regularized Bellman opt. equations $V^{*}(x)=\underset{a}{\operatorname{softmax}}{ }^{\eta}\left\{r(x, a)+\gamma \sum_{y} P(y \mid x, a) V^{*}(y)\right\}$

Used almost exclusively since ~late 2016

- Better optimization properties: smooth gradients, less sensitive to errors
- Better exploration: optimal policy naturally stochastic, no need for ε-greedy trick

DUALITY THEORY FOR THE REGULARIZED BELLMAN EQUATIONS

The regularized Bellman opt. equations

$$
V^{*}(x)=\underset{a}{\operatorname{softmax}}{ }^{\eta}\left\{r(x, a)+\gamma \Sigma_{y} P(y \mid x, a) V^{*}(y)\right\}
$$

??? Dual convex program ???

$$
\tilde{R}_{\gamma}^{*}=\max _{\mu \in \Delta}\left\{\langle\mu, r\rangle-\frac{1}{\eta} \Phi(\mu)\right\}
$$

DUALITY THEORY FOR THE REGULARIZED BELLMAN EQUATIONS

Theorem (Neu et al., 2017)

The two formulations are connected by Lagrangian duality with the choice

$$
\begin{aligned}
\Phi(\mu) & =\sum_{x, a} \mu(x, a) \log \frac{\mu(x, a)}{\sum_{b} \mu(x, b)} \\
& =\sum_{x} \mu(x) \sum_{a} \pi_{\mu}(a \mid x) \log \pi_{\mu}(a \mid x)
\end{aligned}
$$

DUALITY THEORY FOR THE REGULARIZED BELLMAN EQUATIONS

Theorem (Neu et al., 2017)

The two formulations are connected by Lagrangian duality with the choice

$$
\begin{aligned}
\Phi(\mu) & =\sum_{x, a} \mu(x, a) \log \frac{\mu(x, a)}{\sum_{b} \mu(x, b)} \\
& =\sum_{x} \mu(x) \sum_{a} \pi_{\mu}(a \mid x) \log \pi_{\mu}(a \mid x)
\end{aligned}
$$

The conditional entropy of $A \mid X$ under μ

DUALITY THEORY FOR THE REGULARIZED BELLMAN EQUATIONS

Theorem (Neu et al., 2017)
The two formulations are connected by Lagrangian duality with the choice

$$
\begin{aligned}
\Phi(\mu) & =\sum_{x, a} \mu(x, a) \log \frac{\mu(x, a)}{\sum_{b} \mu(x, b)} \\
& =\sum_{x} \mu(x) \sum_{a} \pi_{\mu}(a \mid x) \log \pi_{\mu}(a \mid x)
\end{aligned}
$$

The conditional entropy of $A \mid X$ under μ

DUALITY THEORY FOR THE REGULARIZED BELLMAN EQUATIONS

The regularized Bellman opt. equations

$$
V^{*}(x)=\operatorname{softmax}_{a}^{\eta}\left\{r(x, a)+\gamma \sum_{y} P(y \mid x, a) V^{*}(y)\right\}
$$

Dual convex program

$$
\tilde{R}_{\gamma}^{*}=\max _{\mu \in \Delta}\left\{\langle\mu, r\rangle-\frac{1}{\eta} \Phi(\mu)\right\}
$$

MIRROR DESCENT WITH CONDITIONAL ENTROPY (NEU ET AL., 2017)

Mirror descent update

$\mu_{t+1}=\arg \max _{\mu \in \Delta}\left\{\langle\mu, r\rangle-\frac{1}{\eta_{t}} D_{\Phi}\left(\mu \mid \mu_{t}\right)\right\}$

$$
D_{\Phi}\left(\mu \mid \mu_{t}\right)=\sum_{x, a} \mu(x, a) \log \frac{\pi_{\mu}(a \mid x)}{\pi_{t}(x, a)}
$$

MIRROR DESCENT WITH CONDITIONAL ENTROPY (NEU ET AL., 2017)

Mirror descent update

$$
\begin{aligned}
& \mu_{t+1}=\arg \max _{\mu \in \Delta}\left\{\langle\mu, r\rangle-\frac{1}{\eta_{t}} D_{\Phi}\left(\mu \mid \mu_{t}\right)\right\} \\
& D_{\Phi}\left(\mu \mid \mu_{t}\right)=\sum_{x, a} \mu(x, a) \log \frac{\pi_{\mu}(a \mid x)}{\pi_{t}(x, a)}
\end{aligned}
$$

Closed-form policy update:

$$
\pi_{t+1}(a \mid x)=\pi_{t}(a \mid x) e^{\eta_{t}\left(r(x, a)+\gamma \mathbf{E}_{y \mid x, a}\left[\tilde{V}_{t}(y)\right]-\widetilde{V}_{t}(x)\right)}
$$

MIRROR DESCENT WITH CONDITIONAL ENTROPY (NEU ET AL., 2017)

Mirror descent update

$$
\mu_{t+1}=\arg \max _{\mu \in \Delta}\left\{\langle\mu, r\rangle-\frac{1}{\eta_{t}} D_{\Phi}\left(\mu \mid \mu_{t}\right)\right\}
$$

$$
D_{\Phi}\left(\mu \mid \mu_{t}\right)=\sum_{x, a} \mu(x, a) \log \frac{\pi_{\mu}(a \mid x)}{\pi_{t}(x, a)}
$$

Closed-form policy update:

$$
\pi_{t+1}(a \mid x)=\pi_{t}(a \mid x) e^{\eta_{t}\left(r(x, a)+\gamma \mathbf{E}_{y \mid x, a}\left[\widetilde{V}_{t}(y)\right]-\widetilde{V}_{t}(x)\right)}
$$

Value function $\tilde{V}_{t}=$ solution to proximally regularized BOE

TRUST-REGION POLICY OPTIMIZATION (TRPO, SCHULMAN ET AL., 2015)

$$
\begin{gathered}
\text { Mirror descent update } \\
\mu_{t+1}=\arg \max _{\mu \in \Delta}\left\{\langle\mu, r\rangle-\frac{1}{\eta_{t}} D_{\Phi}\left(\mu \mid \mu_{t}\right)\right\} \\
D_{\Phi}\left(\mu \mid \mu_{t}\right)=\sum_{x, a} \mu(x, a) \log \frac{\pi_{\mu}(a \mid x)}{\pi_{t}(x, a)}
\end{gathered}
$$

TRUST-REGION POLICY OPTIMIZATION (TRPO, SCHULMAN ET AL., 2015)

$$
\begin{gathered}
\text { Mirror descent update } \\
\mu_{t+1}=\arg \max _{\mu \in \Delta}\left\{\left\langle\mu, \tilde{Q}_{t}-\tilde{V}_{t}\right\rangle-\frac{1}{\eta_{t}} D_{\Phi}\left(\mu \mid \mu_{t}\right)\right\} \\
D_{\Phi}\left(\mu \mid \mu_{t}\right)=\sum_{x} \mu_{t}(x) \sum_{a} \pi_{\mu}(a \mid x) \log \frac{\pi_{\mu}(a \mid x)}{\pi_{t}(x, a)}
\end{gathered}
$$

TRUST-REGION POLICY OPTIMIZATION (TRPO, SCHULMAN ET AL., 2015)

Dense surrogate for $\langle\mu, r\rangle$
(works because $\langle\mu, r\rangle=\left\langle\mu, \tilde{Q}_{t}-\tilde{V}_{t}\right\rangle$ when $\mu \in \Delta$)

Mirror descent update

$$
\mu_{t+1}=\arg \max _{\mu \in \Delta}\left\{\left\langle\mu, \widetilde{Q}_{t}-\tilde{V}_{t}\right\rangle-\frac{1}{\eta_{t}} D_{\Phi}\left(\mu \mid \mu_{t}\right)\right\}
$$

$$
D_{\Phi}\left(\mu \mid \mu_{t}\right)=\sum_{x} \mu_{t}(x) \sum_{a} \pi_{\mu}(a \mid x) \log \frac{\pi_{\mu}(a \mid x)}{\pi_{t}(x, a)}
$$

$\mu_{t} \approx \mu_{t+1}$, but μ_{t} can be sampled from

TRUST-REGION POLICY OPTIMIZATION (TRPO, SCHULMAN ET AL., 2015)

Theorem (Neu et al., 2017)
TRPO is equivalent to the MDP-E algorithm of Even-Dar, Kakade and Mansour (2006)

$$
\lim _{t \rightarrow \infty}\left\langle\mu_{t}, r\right\rangle=\left\langle\mu^{*}, r\right\rangle
$$

TRUST-REGION POLICY OPTIMIZATION (TRPO, SCHULMAN ET AL., 2015)

Theorem (Neu et al., 2017)
TRPO is equivalent to the MDP-E algorithm of Even-Dar, Kakade and Mansour (2006)

$$
\Rightarrow
$$

$$
\lim _{t \rightarrow \infty}\left\langle\mu_{t}, r\right\rangle=\left\langle\mu^{*}, r\right\rangle
$$

TRUST-REGION POLICY OPTIMIZATION (TRPO, SCHULMAN ET AL., 2015)

Theorem (Neu et al., 2017)
TRPO is equivalent to the MDP-E algorithm of Even-Dar, Kakade and Mansour (2006)

$$
\Rightarrow
$$

$$
\lim _{t \rightarrow \infty}\left\langle\mu_{t}, r\right\rangle=\left\langle\mu^{*}, r\right\rangle
$$

Literally the most broadly used
x, a - Another surrogate for μ deep RL algorithm!
(but reading the original paper is not recommended...)

BEYOND LINEAR PROGRAMMING: SADDLE-POINT OPTIMIZATION

$$
\begin{gathered}
\text { Dual LP } \\
R_{\gamma}^{*}=\max _{\mu \in \Delta}\langle\mu, r\rangle
\end{gathered}
$$

$$
\begin{gathered}
\text { Primal LP } \\
R_{\gamma}^{*}=\min _{V \in \mathbb{R}^{X}}\left\langle\mu_{0}, V\right\rangle \\
\text { s.t. } V(x) \geq r(x, a)+\gamma \sum_{y} P(y \mid x, a) V(y)(\forall x, a)
\end{gathered}
$$

BEYOND LINEAR PROGRAMMING: SADDLE-POINT OPTIMIZATION

Bellman saddle point

 $\min _{V} \max _{\mu \in \Delta}\left\{\langle\mu, r+\gamma P V-V\rangle+(1-\gamma)\left\langle\mu_{0}, V\right\rangle\right\}$
BEYOND LINEAR PROGRAMMING: SADDLE-POINT OPTIMIZATION

Bellman saddle point

$\min _{V} \max _{\mu \in \Delta}\left\{\langle\mu, r+\gamma P V-V\rangle+(1-\gamma)\left\langle\mu_{0}, V\right\rangle\right\}$
\approx the Lagrangian of the two LPs
\Rightarrow
solution exists \& optimal policy can be extracted under same conditions

PRIMAL-DUAL π-LEARNING (WANG ET AL., 2017-)

Bellman saddle point $\min _{V} \max _{\mu \in \Delta}\left\{\langle\mu, r+\gamma P V-V\rangle+(1-\gamma)\left\langle\mu_{0}, V\right\rangle\right\}$

PRIMAL-DUAL π-LEARNING (WANG ET AL., 2017-)

Bellman saddle point

$\min _{V} \max _{\mu \in \Delta}\left\{\langle\mu, r+\gamma P V-V\rangle+(1-\gamma)\left\langle\mu_{0}, V\right\rangle\right\}$
 $V \quad \mu \in \Delta$

Value update:

$$
\tilde{V}_{t+1}=\tilde{V}_{t}+\alpha_{t}\left(\mu_{t}-\gamma \mu_{t} P\right)
$$

Policy update:

$$
\mu_{t+1}(x, a)=\mu_{t}(x, a) e^{\left.\eta_{t}\left(r(x, a)+\gamma \mathbf{E}_{y \mid x}, a \mid \widetilde{V}_{t}(y)\right]-\widetilde{V}_{t}(x)\right)}
$$

PRIMAL-DUAL π-LEARNING (WANG ET AL., 2017-)

Bellman saddle point

$$
\min _{V} \max _{\mu \in \Delta}\left\{\langle\mu, r+\gamma P V-V\rangle+(1-\gamma)\left\langle\mu_{0}, V\right\rangle\right\}
$$

Value update:

$$
\tilde{V}_{t+1}=\tilde{v}_{t}+\alpha_{t}\left(\mu_{t}-\gamma \mu_{t} P\right)
$$

Policy update:

$$
\mu_{t+1}(x, a)=\mu_{t}(x, a) e^{\eta_{t}\left(r(x, a)+\gamma \mathbf{E}_{y \mid x}, a\left[\tilde{V}_{t}(y)\right]-\tilde{V}_{t}(x)\right)}
$$

PRIMAL-DUAL π-LEARNING (WANG ET AL., 2017-)

Bellman saddle point

 $\min _{V} \max _{\mu \in \Delta}\left\{\langle\mu, r+\gamma P V-V\rangle+(1-\gamma)\left\langle\mu_{0}, V\right\rangle\right\}$
₹ incremental REPS

Gradient step in primal state-of-the art sample complexity $\mu_{t} P$) results for discounted \& undiscounted MDPs!

Exponentiated gradient step in dual

$$
\mu_{t+1}(x, a)=\mu_{t}(x, a) e^{m} \backslash \underbrace{}_{y \mid x, a}\left[\tilde{V}_{t}(y)\right]-\tilde{v}_{t}(x))
$$

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

- Markov decision processes
- Value functions and optimal policies
-Primal view: Dynamic programming
- Policy evaluation, value and policy iteration
-Value-function-based methods
- Temporal differences, Q-learning, LSTD, deep Q networks,...
-Dual view: Linear programming
- LP duality in MDPs
- Direct policy optimization methods
- Policy gradients, REPS, TRPO,...

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

-Markov decision processes

- Value functions and optimal policies
-Primal view: Dynamic programming
- Policy evaluation value and nolicv iteration
- Value-functi
- Temporal diffe
what else?
-Dual view: L
- LP duality in MDPs
- Direct policy optimization methods
- Policy gradients, REPS, TRPO,...

EXPLORATION VS. EXPLOITATION

EXPLORATION VS. EXPLOITATION

EXPLORATION VS. EXPLOITATION

reward?

reward?

Still no practical algorithms!

- Multi-armed bandits
- Exploration bonuses
- Thompson sampling
- Monte Carlo tree search

CONCLUSION

RL is an insanely popular field with

- huge recent successes
- some beautiful fundamental theory
- unique algorithmic ideas

CONCLUSION

RL is an insanely popular field with

- huge recent successes
- some beautiful fundamental theory
- unique algorithmic ideas

BUT still fundamental challenges in

- understanding efficient exploration
- stability of algorithms
" generalizability of successes

CONCLUSION

Come and work on RL theory;

BUT still fundamental challenges in

- understanding efficient exploration
- stability of algorithms
- generalizability of successes

CONCLUSION

Come and work on RL theory ;)

+ also come see
tonight!

Thanks!!!

