

REINFORCEMENT LEARNING

Gergely Neu Univ. Pompeu Fabra

A PRIMAL-DUAL VIEW OF REINFORCEMENT LEARNING

Gergely Neu Univ. Pompeu Fabra

A PRIMAL-DUAL VIEW OF REINFORCEMENT LEARNING

G€RG€LY N€U LINIV. Þ◊mÞ€U FABRA

WHAT IS REINFORCEMENT LEARNING?

under partial feedback

Autonomous driving

Breakthrough in Go

- State: road conditions, other vehicles, obstacles,...
- Actions: turn left/right, accelerate/brake,...
- State transitions: depending on state+action+randomness
- Reward: +100 for reaching destination, -100 for accidents,...

RECOMMENDED READING

- •Richard Sutton and Andrew Barto (2018): "Reinforcement Learning: An Introduction"
 - For an enjoyable (but not very rigorous) introduction
- •Dimitri Bertsekas (2012): "Dynamic Programming and Optimal Control"
 - For a rigorous treatment of the basics
- Csaba Szepesvári (2012):
 "Algorithms for RL"
 - For a rigorous description of basic RL algorithms

- Markov decision processes
 - Value functions and optimal policies
- •Primal view: Dynamic programming
 - Policy evaluation, value and policy iteration
 - Value-function-based methods
 - Temporal differences, Q-learning, LSTD, deep Q networks,...

- Markov decision processes
 - Value functions and optimal policies
- •Primal view: Dynamic programming
 - Policy evaluation, value and policy iteration
 - Value-function-based methods
 - Temporal differences, Q-learning, LSTD, deep Q networks,...
- •Dual view: Linear programming
 - LP duality in MDPs
 - Direct policy optimization methods
 - Policy gradients, REPS, TRPO,...

- Markov decision processes
 Value functions and optimal policies
- •Primal view: Dynamic programming
 - Policy evaluation, value and policy iteration
 - Value-function-based methods
 - Temporal differences, Q-learning, LSTD, deep Q networks,...

Dual view: Linear programming

- LP duality in MDPs
- Direct policy optimization methods
 - Policy gradients, REPS, TRPO,...

part 2

part 1

Markov decision processes

• Value functions and optimal policies

- Primal view: Dynamic programming
 - Policy evaluation, value and policy iteration
 - Value-function-based methods
 - Temporal differences, Q-learning, LSTD, deep Q networks,...

part 1

part 2

•Dual view: Linear programming

- LP duality in MDPs
- Direct policy optimization methods
 - Policy gradients, REPS, TRPO,...

A Markov Decision Process (MDP) is characterized by

- X: a set of states
- *A*: a set of actions, possibly different in each state
- $P: X \times A \times X \rightarrow [0,1]$: a transition function with $P(\cdot | x, a)$ being the distribution of the next state given previous state x and action a:

$$P[x_{t+1} = x' | x_t = x, a_t = a] = P(x' | x, a)$$

• $r: X \times A \rightarrow [0,1]$: a reward function

A Markov Decision Process (MDP) is characterized by (X, A, P, r)

- X: a set of states
- A: a set of actions, possibly different in each state
- P: X × A × X → [0,1]: a transition function with P(· |x, a) being the distribution of the next state given previous state x and action a:

$$P[x_{t+1} = x' | x_t = x, a_t = a] = P(x' | x, a)$$

• $r: X \times A \rightarrow [0,1]$: a reward function

A Markov Decision Process (MDP) is characterized by (X, A, P, r)Interaction in an MDP: in each round t = 1, 2, ...

- Agent observes state x_t and selects action a_t
- Environment moves to state $x_{t+1} \sim P(\cdot | x_t, a_t)$
- Agent receives reward r_t such that $\mathbf{E}[r_t|x_t, a_t] = r(x_t, a_t)$

A Markov Decision Process (MDP) is characterized by (X, A, P, r)Interaction in an MDP: in each round t = 1, 2, ...

- Agent observes state x_t and selects action a_t
- Environment moves to state $x_{t+1} \sim P(\cdot | x_t, a_t)$
- Agent receives reward r_t such that $\mathbf{E}[r_t|x_t, a_t] = r(x_t, a_t)$

GOAL: maximize "total rewards"!

Episodic MDPs:

- There is a terminal state x*
- GOAL: maximize total reward until final round *T* when *x*^{*} is reached:

$$R^* = \mathbf{E}[\sum_{t=0}^T r_t]$$

Episodic MDPs:

- There is a terminal state x^*
- GOAL: maximize total reward until final round T when x* is reached:

$$R^* = \mathbf{E}[\sum_{t=0}^T r_t]$$

Discounted MDPs:

- No terminal state
- Discount factor $\gamma \in (0,1)$
- GOAL: maximize total discounted reward

$$R_{\gamma} = \mathbf{E}[\sum_{t=0}^{\infty} \gamma^{t} r_{t}]$$

Episodic MDPs:

• There is a terminal state x^*

+ other notions:

- long-term average reward
- total reward up to fixed horizon
- GOAL: maximize total reward until final round T when x* is reached:

$$R^* = \mathbf{E}[\sum_{t=0}^T r_t]$$

Discounted MDPs:

- No terminal state
- Discount factor $\gamma \in (0,1)$
- GOAL: maximize total discounted reward

$$R_{\gamma} = \mathbf{E}[\sum_{t=0}^{\infty} \gamma^{t} r_{t}]$$

Episodic MDPs:

• There is a terminal state x^*

+ other notions:

- long-term average reward (part 2?)
- total reward up to fixed horizon
- GOAL: maximize total reward until final round T when x* is reached:

$$R^* = \mathbf{E}[\sum_{t=0}^T r_t]$$

Discounted MDPs:

- No terminal state
- Discount factor $\gamma \in (0,1)$
- GOAL: maximize total discounted reward

$$R_{\gamma} = \mathbf{E}[\sum_{t=0}^{\infty} \gamma^{t} r_{t}]$$

+ we will assume that X and A are finite

POLICIES AND TRAJECTORY DISTRIBUTIONS

Policy: mapping from histories to actions $\pi: x_1, a_1, x_2, a_2, \dots, x_t \mapsto a_t$

POLICIES AND TRAJECTORY DISTRIBUTIONS

Policy: mapping from histories to actions $\pi: x_1, a_1, x_2, a_2, \dots, x_t \mapsto a_t$

Stationary policy: mapping from states to actions (no dependence on history or *t*)

 $\pi: x \mapsto a$

POLICIES AND TRAJECTORY DISTRIBUTIONS

Policy: mapping from histories to actions $\pi: x_1, a_1, x_2, a_2, \dots, x_t \mapsto a_t$

Stationary policy: mapping from states to actions (no dependence on history or *t*)

 $\pi: x \mapsto a$

Let $\tau = (x_1, a_1, x_2, a_2, ...)$ be a trajectory generated by running π in the MDP $\tau \sim (\pi, P)$:

- $a_t = \pi(x_t, a_{t-1}, x_{t-1}, \dots, x_1)$
- $x_{t+1} \sim P(\cdot | x_t, a_t)$
POLICIES AND TRAJECTORY DISTRIBUTIONS

Policy: mapping from histories to actions $\pi: x_1, a_1, x_2, a_2, \dots, x_t \mapsto a_t$

Stationary policy: mapping from states to actions (no dependence on history or *t*)

 $\pi: x \mapsto a$

Let $\tau = (x_1, a_1, x_2, a_2, ...)$ be a trajectory generated by running π in the MDP $\tau \sim (\pi, P)$:

•
$$a_t = \pi(x_t, a_{t-1}, x_{t-1}, \dots, x_1)$$

•
$$x_{t+1} \sim P(\cdot | x_t, a_t)$$

Expectation under this distribution: $E_{\pi}[\cdot]$

Optimal policy π^* **:** a policy that maximizes $\mathbf{E}_{\pi}[R_{\gamma}] = \mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t r_t\right]$

Optimal policy π^* : a policy that maximizes $\mathbf{E}_{\pi}[R_{\gamma}] = \mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t r_t\right]$

Theorem

There exists a deterministic optimal policy π^* such that $\pi^*(x_1, a_1, \dots, x_t) = \pi^*(x_t)$

Optimal policy π^* **:** a policy that maximizes $\mathbf{E}_{\pi}[R_{\gamma}] = \mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t r_t\right]$

There exists a deterministic optimal policy π^* such that $\pi^*(x_1, a_1, \dots, x_t) = \pi^*(x_t)$

Consequence: it's enough to study stationary policies $\pi: x \mapsto a$

$\begin{array}{l} \textbf{Theorem}\\ \text{There exists a deterministic optimal policy } \pi^* \text{ such that}\\ \pi^*(x_1,a_1,\ldots,x_t)=\pi^*(x_t) \end{array}$

Consequence: it's enough to study stationary policies $\pi: x \mapsto a$

Intuitive "proof": Future transitions $x_{t+1} \sim P(\cdot | x_t, a_t)$ do not depend on the previous states $x_1, x_2, ...$

$\begin{array}{l} \textbf{Theorem}\\ \text{There exists a deterministic optimal policy } \pi^* \text{ such that}\\ \pi^*(x_1,a_1,\ldots,x_t) = \pi^*(x_t) \end{array}$

Consequence: it's enough to study stationary policies $\pi: x \mapsto a$

Intuitive "proof": Future transitions $x_{t+1} \sim P(\cdot | x_t, a_t)$ do not depend on the previous states $x_1, x_2, ...$

="Markov property"

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

VALUE FUNCTIONS

Value function: evaluates policy π starting from state x: $V^{\pi}(x) = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r_{t} | x_{0} = x]$

VALUE FUNCTIONS

Value function: evaluates policy π starting from state x: $V^{\pi}(x) = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r_{t} | x_{0} = x]$

Action-value function: evaluates policy π starting from state x and action a: $Q^{\pi}(x, a) = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r_{t} | x_{0} = x, a_{0} = a]$

VALUE FUNCTIONS

Value function: evaluates policy π starting from state x: $V^{\pi}(x) = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r_{t} | x_{0} = x]$

Action-value function: evaluates policy π starting from state x and action a: $Q^{\pi}(x, a) = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r_{t} | x_{0} = x, a_{0} = a]$

> "Optimal policy π^* = $\arg \max_{\pi} V^{\pi}(x_0)$ "

Theorem There exists a policy π^* that satisfies $V^{\pi^*}(x) = \max_{\pi} V^{\pi}(x) \quad (\forall x)$

Theorem There exists a policy π^* that satisfies $V^{\pi^*}(x) = \max_{\pi} V^{\pi}(x) \quad (\forall x)$

Theorem There exists a policy π^* that satisfies $V^{\pi^*}(x) = \max_{\pi} V^{\pi}(x) \quad (\forall x)$

Optimal policy: a policy π^* that satisfies the above

Theorem There exists a policy π^* that satisfies $V^{\pi^*}(x) = \max_{\pi} V^{\pi}(x) \quad (\forall x)$

Optimal policy: a policy π^* that satisfies the above

The optimal value function: $V^* = V^{\pi^*}$

Theorem The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$) $V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) V^{\pi}(y)$

Theorem The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$) $V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) V^{\pi}(y)$

Proof: $V^{\pi}(x) = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x]$

Theorem The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$) $V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) V^{\pi}(y)$

Proof: $V^{\pi}(x) = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x]$ $= r(x, \pi(x)) + \mathbf{E}_{\pi}[\sum_{t=1}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x]$

Theorem The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$) $V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) V^{\pi}(y)$

Proof:

$$V^{\pi}(x) = \mathbf{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x]$$

= $r(x, \pi(x)) + \mathbf{E}_{\pi} [\sum_{t=1}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x]$
= $r(x, \pi(x)) + \gamma \sum_{y} P(y | x, \pi(x)) \mathbf{E}_{\pi} [\sum_{t=1}^{\infty} \gamma^{t-1} r(x_{t}, a_{t}) | x_{1} = y]$

Theorem The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$) $V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) V^{\pi}(y)$

Proof:

$$V^{\pi}(x) = \mathbf{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x] = r(x, \pi(x)) + \mathbf{E}_{\pi} [\sum_{t=1}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x] = r(x, \pi(x)) + \gamma \sum_{y} P(y | x, \pi(x)) \mathbf{E}_{\pi} [\sum_{t=1}^{\infty} \gamma^{t-1} r(x_{t}, a_{t}) | x_{1} = y] = r(x, \pi(x)) + \gamma \sum_{y} P(y | x, \pi(x)) V^{\pi}(y)$$

THE BELLMAN OPTIMALITY EQUATIONS

Theorem The optimal value function satisfies the system of equations $V^*(x) = \max_a \left\{ r(x, a) + \gamma \sum_y P(y|x, a) V^*(y) \right\}$

THE BELLMAN OPTIMALITY EQUATIONS

Theorem
The optimal value function satisfies the system of equations
$$V^*(x) = \max_a \left\{ r(x, a) + \gamma \sum_y P(y|x, a) V^*(y) \right\}$$

Theorem
An optimal policy
$$\pi^*$$
 satisfies
 $\pi^*(x) \in \arg\max_a \left\{ r(x,a) + \gamma \sum_y P(y|x,a) \ V^*(y) \right\}$

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem The optimal action-value function satisfies $Q^*(x, a) = r(x, a) + \gamma \sum_{y} P(y|x, a) \max_{b} Q^*(y, b)$

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem The optimal action-value function satisfies $Q^*(x, a) = r(x, a) + \gamma \sum_{y} P(y|x, a) \max_{b} Q^*(y, b)$

Theorem An optimal policy π^* satisfies $\pi^*(x) \in \arg \max_a Q^*(x, a)$

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem The optimal action-value function satisfies $Q^*(x, a) = r(x, a) + \gamma \sum_{y} P(y|x, a) \max_{b} Q^*(y, b)$

Theorem

An optimal policy π^* satisfies $\pi^*(x) \in \arg \max_a Q^*(x, a)$

= greedy with respect to Q^*

SHORT SUMMARY SO FAR

So far, we have characterized

- The value functions of a given policy
- The optimal policy through value functions
- The optimal value functions
- The optimal policy through the optimal value functions

SHORT SUMMARY SO FAR

So far, we have characterized

- The value functions of a given policy
- The optimal policy through value functions
- The optimal value functions
- The optimal policy through the optimal value functions

BUT HOW DO WE FIND THE OPTIMAL VALUE FUNCTION??

... also, is there a way to clean up this mess? See part 2!

EASY ANSWER FOR FINITE-HORIZON PROBLEMS

Bae: Come over Dijkstra: But there are so many routes to take and I don't know which one's the fastest Bae: My parents aren't home Dijkstra:

Dijkstra's algorithm

Graph search algorithm

Not to be confused with Dykstra's projection algorithm.

Dijkstra's algorithm is an algorithm for finding the shortest paths between nodes in a graph, which may represent, for example, road networks. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later.^{[1][2]}

The algorithm exists in many variants; Dijkstra's original variant found the shortest path between two nodes,^[2] but a more common variant fixes a single node as the "source" node and finds shortest paths from the source to all other nodes in the graph, producing a shortest-path tree.

Dijkstra's algorithm

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

 Markov decision processes part 1 Value functions and optimal policies Primal view: Dynamic programming • Policy evaluation, value and policy iteration Value-function-based methods Temporal differences, Q-learning, LSTD, deep Q networks,... Dual view: Linear programming part 2 • LP duality in MDPs Direct policy optimization methods • Policy gradients, REPS, TRPO,...

DYNAMIC PROGRAMMING

Dynamic programming

computing value functions through repeated use of the "Bellman operators"

Bellman operator T^{π} : maps a function $V \in \mathbb{R}^{X}$ to another function $T^{\pi}V \in \mathbb{R}^{X}$: $(T^{\pi}V)(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x))V(y)$

Bellman operator T^{π} : maps a function $V \in \mathbb{R}^{X}$ to another function $T^{\pi}V \in r.h.s.$ of BE $(T^{\pi}V)(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x))V(y)$

Bellman operator T^{π} : maps a function $V \in \mathbb{R}^{X}$ to another function $T^{\pi}V \in r.h.s.$ of BE $(T^{\pi}V)(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x))V(y)$

The Bellman Equations: $V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) V^{\pi}(y)$

Bellman operator T^{π} : maps a function $V \in \mathbb{R}^{X}$ to another function $T^{\pi}V \in r.h.s.$ of BE $(T^{\pi}V)(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x))V(y)$

> The Bellman Equations: $V^{\pi} = T^{\pi}V^{\pi}$

Bellman operator T^{π} : maps a function $V \in \mathbb{R}^{X}$ to another function $T^{\pi}V \in r.h.s.$ of BE $(T^{\pi}V)(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x))V(y)$

 V^{π} is the fixed point of T^{π}

The Bellman Equations: $V^{\pi} = T^{\pi}V^{\pi}$

POLICY EVALUATION USING THE BELLMAN OPERATOR

Idea: repeated application of T^{π} on any function V_0 should converge to V^{π} ...

POLICY EVALUATION USING THE BELLMAN OPERATOR

Idea: repeated application of T^{π} on any function V_0 should converge to V^{π} ...

...and it works!!

Power iteration

Input: arbitrary $V_0: X \rightarrow \mathbf{R}$ and π For k = 1, 2, ..., compute $V_{k+1} = T^{\pi}V_k$
POLICY EVALUATION USING THE BELLMAN OPERATOR

Idea: repeated application of T^{π} on any function V_0 should converge to V^{π} ...

...and it works!!

Power iteration

Input: arbitrary $V_0: X \to \mathbf{R}$ and π For k = 1, 2, ..., compute $V_{k+1} = T^{\pi}V_k$ **Theorem:** $\lim_{k \to \infty} V_k = V^{\pi}$

• Power iteration can be written as the linear recursion $V_{k+1} = r + \gamma P^{\pi}V_k$

• Power iteration can be written as the linear recursion $V_{k+1} = r + \gamma P^{\pi}V_k = r + \gamma P^{\pi}(r + \gamma P^{\pi}V_{k-1})$

• Power iteration can be written as the linear recursion $V_{k+1} = r + \gamma P^{\pi}V_k = r + \gamma P^{\pi}(r + \gamma P^{\pi}V_{k-1})$ $= r + \gamma P^{\pi}r + (\gamma P^{\pi})^2 r + \dots + (\gamma P^{\pi})^k r$

• Power iteration can be written as the linear recursion $V_{k+1} = r + \gamma P^{\pi} V_k = r + \gamma P^{\pi} (r + \gamma P^{\pi} V_{k-1})$ $= r + \gamma P^{\pi} r + (\gamma P^{\pi})^2 r + \dots + (\gamma P^{\pi})^k r$ $= \sum_{k=0}^{k} (\gamma P^{\pi})^k r$

• Power iteration can be written as the linear recursion $V_{k+1} = r + \gamma P^{\pi} V_k = r + \gamma P^{\pi} (r + \gamma P^{\pi} V_{k-1})$ $= r + \gamma P^{\pi} r + (\gamma P^{\pi})^2 r + \dots + (\gamma P^{\pi})^k r$ $= \sum_{k=0}^{k} (\gamma P^{\pi})^k r$ $= (I - \gamma P^{\pi})^{-1} \cdot (I - (\gamma P^{\pi})^k) r$

• Power iteration can be written as the linear recursion $V_{k+1} = r + \gamma P^{\pi} V_k = r + \gamma P^{\pi} (r + \gamma P^{\pi} V_{k-1})$ $= r + \gamma P^{\pi} r + (\gamma P^{\pi})^2 r + \dots + (\gamma P^{\pi})^k r$ $= \sum_{k} (\gamma P^{\pi})^k r$ Geometric sum! (von Neumann series) $= (I - \gamma P^{\pi})^{-1} \cdot (I - (\gamma P^{\pi})^k) r$ $\to (I - \gamma P^{\pi})^{-1} r$ $(k \to \infty)$

• Power iteration can be written as the linear recursion $V_{k+1} = r + \gamma P^{\pi} V_k = r + \gamma P^{\pi} (r + \gamma P^{\pi} V_{k-1})$ $= r + \gamma P^{\pi} r + (\gamma P^{\pi})^2 r + \dots + (\gamma P^{\pi})^k r$ $= \sum_{k} (\gamma P^{\pi})^k r$ Geometric sum! (von Neumann series) $= (I - \gamma P^{\pi})^{-1} \cdot (I - (\gamma P^{\pi})^k) r$ $\to (I - \gamma P^{\pi})^{-1} r$ $(k \to \infty)$

• The value function V^{π} satisfies

$$V^{\pi} = r + \gamma P^{\pi} V^{\pi} \iff V^{\pi} = (I - \gamma P^{\pi})^{-1} r$$

- State: location on the grid
- Actions: try to move in one of 8 directions or stay put
- Transition probabilities:
 - move successfully w.p. p = 0.5
 - otherwise move in neighboring direction

- Actions: try to move in one of 8 directions or stay put
- Transition probabilities:
 - move successfully w.p. p = 0.5
 - otherwise move in neighboring direction

Vhatup, iteration 10

Bellman optimality operator T^* : maps a function $V \in \mathbb{R}^X$ to another function $T^*V \in \mathbb{R}^X$: $(T^*V)(x) = \max_a \{r(x, a) + \gamma \sum_y P(y|x, a)V(y)\}$

r.h.s. of BOE

Bellman optimality operator T^* : maps a function $V \in \mathbb{R}^X$ to another function $T^*V \in \mathbb{R}^X$: $(T^*V)(x) = \max_a \{r(x, a) + \gamma \sum_y P(y|x, a)V(y)\}$

r.h.s. of BOE

Bellman optimality operator T^* : maps a function $V \in \mathbb{R}^X$ to another function $T^*V \in \mathbb{R}^X$: $(T^*V)(x) = \max_a \{r(x, a) + \gamma \sum_y P(y|x, a)V(y)\}$

The Bellman Optimality Equations: $V^*(x) = \max_{a} \{ r(x, a) + \gamma \sum_{y} P(y|x, a) \ V^*(y) \}$

r.h.s. of BOE

Bellman optimality operator T^* : maps a function $V \in \mathbb{R}^X$ to another function $T^*V \in \mathbb{R}^X$: $(T^*V)(x) = \max_a \{r(x, a) + \gamma \sum_y P(y|x, a)V(y)\}$

 V^* is the fixed point of T^*

The Bellman Optimality Equations: $V^* = T^*V^*$

VALUE ITERATION

Idea: repeated application of T^* on any function V_0 should converge to $V^*...$

...and it works!!

VALUE ITERATION

Idea: repeated application of T^* on any function V_0 should converge to V^* ...

...and it works!!

Value iteration Input: arbitrary function $V_0: X \rightarrow \mathbf{R}$ For k = 1, 2, ..., compute $V_{k+1} = T^*V_k$

VALUE ITERATION

Idea: repeated application of T^* on any function V_0 should converge to V^* ...

...and it works!!

Value iteration

Input: arbitrary function $V_0: X \to \mathbf{R}$ For k = 1, 2, ..., compute $V_{k+1} = T^*V_k$ **Theorem:** $\lim_{k \to \infty} V_k = V^*$

Key idea: T^* is a contraction • for any two functions V and V', we have $\|T^*V - T^*V'\|_{\infty} \le \gamma \|V - V'\|_{\infty}$

Key idea: T^* is a contraction • for any two functions V and V', we have $\|T^*V - T^*V'\|_{\infty} \le \gamma \|V - V'\|_{\infty}$ • repeated application gives $\|V_{k+1} - V^*\|_{\infty} = \|T^*V_k - T^*V^*\|_{\infty}$

Key idea: T^* is a contraction • for any two functions V and V', we have $\|T^*V - T^*V'\|_{\infty} \le \gamma \|V - V'\|_{\infty}$ • repeated application gives $\|V_{k+1} - V^*\|_{\infty} = \|T^*V_k - T^*V^*\|_{\infty}$ $\le \gamma \|V_k - V^*\|_{\infty}$

Key idea: T^* is a contraction • for any two functions V and V', we have $||T^*V - T^*V'||_{\infty} \le \gamma ||V - V'||_{\infty}$ • repeated application gives $||V_{k+1} - V^*||_{\infty} = ||T^*V_k - T^*V^*||_{\infty}$ $\le \gamma ||V_k - V^*||_{\infty}$

$$\leq \gamma^2 \|V_{k-1} - V^*\|_{\infty}$$

Key idea: T^* is a contraction • for any two functions V and V', we have $||T^*V - T^*V'||_{\infty} \leq \gamma ||V - V'||_{\infty}$ • repeated application gives $||V_{k+1} - V^*||_{\infty} = ||T^*V_k - T^*V^*||_{\infty}$ $\leq \gamma ||V_k - V^*||_{\infty}$ $\leq \gamma^2 ||V_{k-1} - V^*||_{\infty}$ $\leq \cdots \leq \gamma^k ||V_0 - V^*||_{\infty}$

Key idea: T^* is a contraction • for any two functions V and V', we have $||T^*V - T^*V'||_{\infty} \leq \gamma ||V - V'||_{\infty}$ • repeated application gives $||V_{k+1} - V^*||_{\infty} = ||T^*V_k - T^*V^*||_{\infty}$ $\leq \gamma ||V_k - V^*||_{\infty}$ $\leq \gamma^2 ||V_{k-1} - V^*||_{\infty}$ $\leq \cdots \leq \gamma^k ||V_0 - V^*||_{\infty}$

thus

$$\lim_{k\to\infty} \|V_{k+1} - V^*\|_{\infty} = 0$$

VALUE ITERATION IN ACTION

- Actions: try to move in one of 8 directions or stay put
- Transition probabilities:
 - move successfully w.p. p = 0.5
 - otherwise move in neighboring direction

VALUE ITERATION IN ACTION

Vhat_{opt}, iteration 0

VALUE ITERATION IN ACTION

Vhat opt, iteration 1

Optimal Policy

))))))))	
Simo	

Greedy policy with respect to *V*: $(GV)(x) = \arg \max_{a} \{r(x, a) + \sum_{y} P(y|x, a)V(x)\}$

Recall:
$$\pi^* = GV^*$$

Greedy policy with respect to *V*: $(GV)(x) = \arg \max_{a} \{r(x, a) + \sum_{y} P(y|x, a)V(x)\}$

Recall:
$$\pi^* = GV^*$$

Greedy policy with respect to V: $(GV)(x) = \arg \max_{a} \{r(x, a) + \sum_{y} P(y|x, a)V(x)\}$

Policy Iteration

Input: arbitrary function $V_0: X \rightarrow \mathbf{R}$ For k = 0, 1, ..., compute $\pi_k = G(V_k), \quad V_{k+1} = V^{\pi_k}$

Recall:
$$\pi^* = GV^*$$

Greedy policy with respect to V: $(GV)(x) = \arg \max_{a} \{r(x, a) + \sum_{y} P(y|x, a)V(x)\}$

Policy Iteration

Input: arbitrary function $V_0: X \to \mathbf{R}$ For k = 0, 1, ..., compute $\pi_k = G(V_k), \quad V_{k+1} = V^{\pi_k}$ **Theorem:** $\lim_{k \to \infty} V_k = V^*$

THE CONVERGENCE OF VALUE ITERATION: PROOF SKETCH

Key idea: T^* is a contraction • for any two functions V and V', we have $||T^*V - T^*V'||_{\infty} \leq \gamma ||V - V'||_{\infty}$ • repeated application gives $||V_{k+1} - V^*||_{\infty} = ||T^*V_k - T^*V^*||_{\infty}$ $\leq \gamma ||V_k - V^*||_{\infty}$ $\leq \gamma^2 ||V_{k-1} - V^*||_{\infty}$ $\leq \cdots \leq \gamma^k ||V_0 - V^*||_{\infty}$

thus

$$\lim_{k\to\infty} \|V_{k+1} - V^*\|_{\infty} = 0$$

THE CONVERGENCE OF THE CONVERGENCE OF THE CONVERGENCE OF THE SECTION: PROOF SKETCH Just replace T* with the

operator

 $B^*: V \mapsto (T^{G(V)})$

Key idea: *T*^{*} is a contraction

• for any two functions V and V', we have $\|T^*V - T^*V'\|_{\infty} \le \gamma \|V - V'\|_{\infty}$

$$\begin{aligned} \|V_{k+1} - V^*\|_{\infty} &= \|T^*V_k - T^*V^*\|_{\infty} \\ &\leq \gamma \|V_k - V^*\|_{\infty} \\ &\leq \gamma^2 \|V_{k-1} - V^*\|_{\infty} \\ &\leq \cdots \leq \gamma^k \|V_0 - V^*\|_{\infty} \end{aligned}$$

thus

$$\lim_{k\to\infty} \|V_{k+1} - V^*\|_{\infty} = 0$$

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

 Markov decision processes part 1 • Value functions and optimal policies Primal view: Dynamic programming Policy evaluation, value and policy iteration Value-function-based methods • Temporal differences, Q-learning, LSTD, deep Q networks,... Dual view: Linear programming part 2 • LP duality in MDPs Direct policy optimization methods • Policy gradients, REPS, TRPO,...

Policy iteration:

Policy iteration:

Policy iteration:

Fundamental RL tasks:

- Policy evaluation
- Policy improvement

Challenges in RL:

- Unknown transition and reward functions ⇒ have to learn from sample access only
- State/action space can be large $\Rightarrow V^*$ and π^* cannot be stored in memory

Approximate policy iteration:

Fundamental RL tasks:

- Policy evaluation
- Policy improvement

Challenges in RL:

- Unknown transition and reward functions ⇒ have to learn from sample access only
- State/action space can be large
 ⇒ V* and π* cannot be stored in memory

Approximate policy iteration:

 \Rightarrow have to learn from sample access only

LEVELS OF SAMPLE ACCESS

 \Rightarrow have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Full knowledge of P \Rightarrow Planning (not RL)

 \Rightarrow have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Generative model: Full sample access to $P(\cdot | x, a)$ for any (x, a)

Full knowledge of $P \Rightarrow$ Planning (not RL)

 \Rightarrow have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Samples from full trajectories + reset action or save states

Generative model: Full sample access to $P(\cdot | x, a)$ for any (x, a)

Full knowledge of $P \Rightarrow$ Planning (not RL)

Unknown transition and reward functions ⇒ have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Samples from a single trajectory \Rightarrow online RL

Samples from full trajectories + reset action or save states

Generative model: Full sample access to $P(\cdot | x, a)$ for any (x, a)

> Full knowledge of P \Rightarrow Planning (not RL)

Unknown transition and reward functions ⇒ have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Samples from a single trajectory \Rightarrow online RL

Samples from full trajectories + reset action or save states

Generative model: Full sample access to $P(\cdot | x, a)$ for any (x, a)

Full knowledge of $P \Rightarrow$ Planning (not RL)

 \Rightarrow *V*^{*} and π^* cannot be stored in memory

DEALING WITH LARGE STATE SPACES

Idea: approximate V^* and/or π^* in a computationally tractable way!

 \Rightarrow *V*^{*} and π^* cannot be stored in memory

DEALING WITH LARGE STATE SPACES

Idea: approximate V^* and/or π^* in a computationally tractable way!

Approximating V*: linear function approximation

• Define a set of *d* features:

$$\phi_i: X \to \mathbf{R}$$

- Parametrize value functions as $V_{\theta}(x) = \theta^{\top} \phi(x)$
- Learning $V^* \Leftrightarrow$ Learning a good θ_* $V_{\theta^*} \approx V^*$

 \Rightarrow *V*^{*} and π^* cannot be stored in memory

DEALING WITH LARGE STATE SPACES

Idea: approximate V^* and/or π^* in a computationally tractable way!

Approximating *V**: linear function approximation

- Define a set of d features: $\phi_i: X \to \mathbf{R}$
- Parametrize value functions as $V_{\theta}(x) = \theta^{\top} \phi(x)$
- Learning $V^* \Leftrightarrow$ Learning a good θ_* $V_{\theta^*} \approx V^*$

Approximating π^* : parametrized policies

- Define a set of d features: $\phi_i: X \times A \rightarrow \mathbf{R}$
- Parametrize (stochastic) policies as $\pi_{\theta}(a|x) \propto \exp(\theta^{\top}\phi(x))$
- Learning $\pi^* \Leftrightarrow$ Learning a good θ_* $\pi_{\theta^*} \approx \pi^*$

 \Rightarrow *V*^{*} and π^* cannot be stored in memory

DEALING WITH LARGE STATE SPACES

Idea: approximate V^* and/or π^* in a computationally tractable way!

Approximating V^* : linear function approximation Define a set of d features: $\phi_i: X \to \mathbf{R}$ Parametrize value functions as $V_{\theta}(x) = \theta^{T} \phi(x)$ Learning $V^* \Leftrightarrow$ Learning a good θ_* $V_{\theta^*} \approx V^*$

Approximating π^* : parametrized policies

- Define a set of d features: $\phi_i: X \times A \rightarrow \mathbf{R}$
- Parametrize (stochastic) policies as $\pi_{\theta}(a|x) \propto \exp(\theta^{\top}\phi(x))$
- Learning $\pi^* \Leftrightarrow$ Learning a good θ_* $\pi_{\theta^*} \approx \pi^*$

FEATURE MAP EXAMPLE

TROT

FEATURE MAP EXAMPLE

TROY

FEATURE MAP EXAMPLE

TROY

"PROST" FEATURES FOR ATARI GAMES

High-dimensional observations: 192×160 pixels

"PROST" FEATURES FOR ATARI GAMES

	Ì		Т,	È	î.	Ж	j	4	Ì				
	1		Th	1	2	m	1	î	1 C	-			
	c#c		zto	1	5	đ	G	a	68				
				-a		-	-			_			
						<u> </u>		Ľ					
	T		ŤΤ			T		1					
	Ċ.		Ċ,	Ŧ,	t.	4 3	1	T.	ţ				
		4											
											•		
"PROST" FEATURES FOR ATARI GAMES

METHODS FOR POLICY EVALUATION

Observe:

Policy evaluation = estimating V^{π} : $V^{\pi}(x) = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x]$

Observe:

Policy evaluation = estimating
$$V^{\pi}$$
:
 $V^{\pi}(x) = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x]$

Idea:

approximate $\mathbf{E}_{\pi}[\cdot]$ by sample averages!

- Simulate N trajectories using policy π
- For every state x that appears in the trajectories, let $\hat{V}_N(x) = \arg(R_{1:N}(x))$

Idea:

approximate $\mathbf{E}_{\pi}[\cdot]$ by sample averages!

- Simulate N trajectories using policy π
- For every state x that appears in the trajectories, let $\hat{V}_N(x) = \arg(R_{1:N}(x))$

Idea:

approximate $\mathbf{E}_{\pi}[\cdot]$ by sample averages!

- Simulate N trajectories using policy π
- For every state x that appears in the trajectories, let $\hat{V}_N(x) = \arg(R_{1:N}(x))$

Collection of discounted returns $\sum_{t=0}^{T'} \gamma^t r_t$ after first visit to x

Idea: approximate $\mathbf{E}_{\pi}[\cdot]$ by sample averages!

• Simulate N trajectories using policy π • For every state x that appears in the trajectories, let $\hat{V}_N(x) = \operatorname{avg}(R_{1:N}(x))$

Average of i.i.d. random variables: $\lim_{N\to\infty} \hat{V}_N = V^{\pi}$ Collection of discounted returns $\sum_{t=0}^{T'} \gamma^t r_t$ after first visit to x

MONTE CARLO WITH FEATURES

Monte Carlo policy evaluation Input: *N* trajectories ~ π , feature map $\phi: X \to \mathbb{R}^d$ **Output:** $\hat{V}_N = \arg\min_{\theta \in \mathbb{R}^d} \mathbf{E}_x \left[\left(\theta^\top \phi(x) - R_{1:N}(x) \right)^2 \right]$

MONTE CARLO WITH FEATURES

Monte Carlo policy evaluation Input: *N* trajectories ~ π , feature map $\phi: X \to \mathbb{R}^d$ **Output:** $\hat{V}_N = \arg\min_{\theta\in\mathbb{R}^d} \mathbf{E}_x \left[\left(\theta^{\top} \phi(x) - R_{1:N}(x) \right)^2 \right]$

Least-squares fit of discounted returns

PROPERTIES OF MONTE CARLO

☺ Value estimates converge to true values ☺

 \odot Doesn't need prior knowledge of *P* or $r \odot$

PROPERTIES OF MONTE CARLO

☺ Value estimates converge to true values ☺

 \odot Doesn't need prior knowledge of P or r \odot

⊗ Doesn't make use of the Bellman equations ⊗

A BETTER OBJECTIVE?

Idea: construct an objective that uses the Bellman equations

 $V^{\pi} \approx T^{\pi} V^{\pi}$

A BETTER OBJECTIVE?

Idea: construct an objective that uses the Bellman equations

 $V^{\pi} \approx T^{\pi} V^{\pi}$

The Bellman error $L(V) = \mathbf{E}_{x \sim \mu} \left[\left(T^{\pi} V(x) - V(x) \right)^2 \right]$

Idea: use stochastic approximation to reduce instantaneous Bellman error $\Delta_t = \left(T^{\pi} \hat{V}_t(x_t) - \hat{V}_t(x_t)\right)^2$

Idea: use stochastic approximation to reduce instantaneous Bellman error

$$\Delta_t = \left(T^\pi \widehat{V}_t(x_t) - \widehat{V}_t(x_t) \right)^2$$

<u>TD(0)</u>

Input: arbitrary function $\hat{V}_0: X \to \mathbf{R}$ For t = 0, 1, ..., $\delta_t = r_t + \gamma \hat{V}_t(x_{t+1}) - \hat{V}_t(x_t)$ $\hat{V}_{t+1}(x_t) = \hat{V}_t(x_t) + \alpha_t \delta_t$

TD(0) Input: arbitrary function $\hat{V}_0: X \to \mathbf{R}$ For t = 0, 1, ..., $\delta_t = r_t + \gamma \hat{V}_t(x_{t+1}) - \hat{V}_t(x_t)$ $\hat{V}_{t+1}(x_t) = \hat{V}_t(x_t) + \alpha_t \delta_t$

Converges if step-sizes satisfy $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ (e.g., $\alpha_t = c/t$ does the job)

TD(0) Input: arbitrary function $\hat{V}_0: X \to \mathbf{R}$ For t = 0, 1, ..., $\delta_t = r_t + \gamma \hat{V}_t(x_{t+1}) - \hat{V}_t(x_t)$ $\hat{V}_{t+1}(x_t) = \hat{V}_t(x_t) + \alpha_t \delta_t$

Converges if step-sizes satisfy $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ (e.g., $\alpha_t = c/t$ does the job)

In equilibrium, $\mathbf{E}[r_t + \gamma \hat{V}_t(x_{t+1}) - \hat{V}_t(x_t)] = 0$

TD(0) WITH LINEAR FUNCTION APPROXIMATION

Let $\phi: X \to \mathbf{R}^d$ be a feature vector

TD(0) WITH LINEAR FUNCTION APPROXIMATION

Let $\phi: X \to \mathbf{R}^d$ be a feature vector Approximating $V^{\pi}(x) \approx \theta^{\top} \phi(x)$ by TD(0):

TD(0) with LFA
Input: arbitrary param. vector
$$\theta_0 \in \mathbb{R}^d$$

For $t = 0, 1, ...,$
 $\delta_t = r_t + \gamma \theta_t^\top \phi(x_{t+1}) - \theta_t^\top \phi(x_t)$
 $\theta_{t+1} = \theta_t + \alpha_t \delta_t \phi(x_t)$

TD(0) WITH LINEAR FUNCTION APPROXIMATION

Let $\phi: X \to \mathbf{R}^d$ be a feature vector Approximating $V^{\pi}(x) \approx \theta^{\top} \phi(x)$ by TD(0):

TD(0) with LFA
Input: arbitrary param. vector
$$\theta_0 \in \mathbf{R}^d$$

For $t = 0, 1, ...,$
 $\delta_t = r_t + \gamma \theta_t^\top \phi(x_{t+1}) - \theta_t^\top \phi(x_t)$
 $\theta_{t+1} = \theta_t + \alpha_t \delta_t \phi(x_t)$

This still converges to V^{π} !!!

OK, well, somewhere nearby...

TD(0) WITH NONLINEAR FUNCTION APPROXIMATION

Let $V_{\theta}: X \rightarrow R$ be a parametric class of functions (e.g., deep neural network)

Approximating $V^{\pi}(x) \approx V_{\theta}(x)$ by TD(0):

TD(0) with general FA

Input: arbitrary param. vector $\theta_0 \in \mathbf{R}^d$ For t = 0, 1, ..., $\delta_t = r_t + \gamma V_{\theta_t}(x_{t+1}) - V_{\theta_t}(x_t)$ $\theta_{t+1} = \theta_t + \alpha_t \delta_t \nabla_{\theta} V_{\theta_t}(x_t)$

TD(0) WITH NONLINEAR FUNCTION APPROXIMATION

Let $V_{\theta}: X \rightarrow R$ be a p functions (e.g., deep

Not much is known about convergence 😕

Approximating $V^{\pi}(x) \approx V_{\theta}(x)$ by TD(0):

TD(0) with general FA

Input: arbitrary param. vector $\theta_0 \in \mathbf{R}^d$ For t = 0, 1, ..., $\delta_t = r_t + \gamma V_{\theta_t}(x_{t+1}) - V_{\theta_t}(x_t)$

 $\theta_{t+1} = \theta_t + \alpha_t \delta_t \nabla_\theta V_{\theta_t}(x_t)$

PROPERTIES OF TD(0)

☺ Value estimates converge to true values ☺

 \odot Doesn't need prior knowledge of P or r \odot

☺ Based on the concept of Bellman error ☺

PROPERTIES OF TD(0)

☺ Value estimates converge to true values ☺

 \odot Doesn't need prior knowledge of P or r \odot

☺ Based on the concept of Bellman error ☺

= "bootstrapping"

TD(0) with LFA Input: arbitrary param. vector $\theta_0 \in \mathbf{R}^d$ For t = 0, 1, ..., $\delta_t(\theta) = r_t + \gamma \theta^\top \phi(x_{t+1}) - \theta^\top \phi(x_t)$ $\theta_{t+1} = \theta_t + \alpha_t \delta_t(\theta_t) \phi(x_t)$

TD(0) with LFA Input: arbitrary param. vector $\theta_0 \in \mathbf{R}^d$ For t = 0, 1, ..., $\delta_t(\theta) = r_t + \gamma \theta^\top \phi(x_{t+1}) - \theta^\top \phi(x_t)$ $\theta_{t+1} = \theta_t + \alpha_t \delta_t(\theta_t) \phi(x_t)$

In the limit, TD(0) finds a θ^* such that $\mathbf{E}[\delta_t(\theta^*)\phi(x_t)] = 0$

Idea: given a finite trajectory, approximate
the TD fixed point by solving
$$\mathbf{E}[\delta_t(\theta)\phi(x_t)] \approx \frac{1}{T} \sum_{t=1}^T \delta_t(\theta)\phi(x_t) = 0$$

Idea: given a finite trajectory, approximate
the TD fixed point by solving $\mathbf{E}[\delta_t(\theta)\phi(x_t)] \approx \frac{1}{T}\sum_{t=1}^T \delta_t(\theta)\phi(x_t) = 0$

Equivalently:

$$\frac{1}{T}\sum_{t=1}^{T}\phi(x_t)(\phi(x_t) - \gamma\phi(x_{t+1}))^{\mathsf{T}}\theta = \frac{1}{T}\sum_{t=1}^{T}r_t\phi(x_t)$$

LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING (LSTD)

LSTD(0) Input: trajectory $(x_t, a_t, r_t)_{t=1}^T$ $\theta_T = A_T^{-1} b_T$ $\widehat{V}_T = \theta_T^{\mathsf{T}} \phi$

LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING (LSTD)

LSTD(0) Input: trajectory $(x_t, a_t, r_t)_{t=1}^T$ $\theta_T = A_T^{-1} b_T$ $\hat{V}_T = \theta_T^T \phi$

 \odot converges to same θ^* as TD(0) \odot

 \odot no need to set step sizes α_t \odot

LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING (LSTD)

LSTD(0) Input: trajectory $(x_t, a_t, r_t)_{t=1}^T$ $\theta_T = A_T^{-1} b_T$ $\widehat{V}_T = \theta_T^T \phi$

 \odot converges to same θ^* as TD(0) \odot

TD(0): 0(Td)

 \odot no need to set step sizes $\alpha_t \odot$

 \otimes computational complexity: $O(Td^2 + d^3) \otimes$

 $\otimes A_T^{-1}$ may not exist for small $T \otimes$

THE CONVERGENCE OF TD(0) AND LSTD(0)

Theorem In the limit $T \to \infty$, LSTD(0) and TD(0) both minimize the projected Bellman error $L(V) = \mathbf{E}_{x \sim \mu} \left[\left(\Pi_{\phi} [T^{\pi}V(x)] - V(x) \right)^2 \right]$

THE CONVERGENCE OF TD(0) AND LSTD(0)

Theorem In the limit $T \to \infty$, LSTD(0) and TD(0) both minimize the projected Bellman error $L(V) = \mathbf{E}_{x \sim \mu} \left[\left(\Pi_{\mathbf{\phi}} [T^{\pi}V(x)] - V(x) \right)^2 \right]$

> Projection onto span of features

FROM POLICY EVALUATION POLICY IMPROVEMENT

FROM POLICY EVALUATION POLICY IMPROVEMENT

Idea: Let's try to

- directly learn about Q^* , and
- improve the policy on the fly!

- Idea: Let's try to
 directly learn about Q*, and
 - improve the policy on the fly!
- Compute ε -greedy policy w.r.t. \hat{Q}_t : $\pi_t(x) = \begin{cases} \arg \max \hat{Q}_t(x, a), & \text{w.p. } 1 \varepsilon \\ \text{uniform random action, } & \text{w.p. } \varepsilon \end{cases}$ • Improve estimated \hat{Q}_{t+1} by reducing Bellman error $\Delta_t = \left(\mathbf{E} \left[r_t + \gamma \max_a \hat{Q}_t(x_{t+1}, a) \right] - \hat{Q}_t(x_t, a_t) \right)^2$

Off-policy learning: evaluating π^* while following suboptimal policy!

- Idea: Let's try to following subd
 directly learn about Q*, and
 - improve the policy on the fly!
- Compute ε -greedy policy w.r.t. \hat{Q}_t : $\pi_t(x) = \begin{cases} \arg \max \hat{Q}_t(x, a), & \text{w.p. } 1 \varepsilon \\ \text{uniform random action, } & \text{w.p. } \varepsilon \end{cases}$ • Improve estimated \hat{Q}_{t+1} by reducing Bellman error $\Delta_t = \left(\mathbf{E} \left[r_t + \gamma \max_a \hat{Q}_t(x_{t+1}, a) \right] - \hat{Q}_t(x_t, a_t) \right)^2$

<u>Q-learning</u>

Input: arbitrary $\hat{Q}_0: X \times A \rightarrow \mathbf{R}$ For t = 0, 1, ...,

- Choose action $a_t \sim \varepsilon$ -greedy w.r.t. \hat{Q}_t
- Observe r_t , x_{t+1}
- Compute

 $\delta_t = r_t + \gamma \max_a \hat{Q}_t(x_{t+1}, a) - \hat{Q}_t(x_t, a_t)$ $\hat{Q}_{t+1}(x_t, a_t) = \hat{Q}_t(x_t, a_t) + \alpha_t \delta_t$

SARSA

Input: arbitrary $\hat{Q}_0: X \times A \rightarrow \mathbf{R}$ For t = 0, 1, ...,

- Choose action $a_t \sim \varepsilon$ -greedy w.r.t. \hat{Q}_t
- Observe r_t , x_{t+1} , a'_{t+1}
- Compute

 $\delta_t = r_t + \gamma \hat{Q}_t(x_{t+1}, a'_{t+1}) - \hat{Q}_t(x_t, a_t)$ $\hat{Q}_{t+1}(x_t, a_t) = \hat{Q}_t(x_t, a_t) + \alpha_t \delta_t$

SARSA

Input: arbitrary $\hat{Q}_0: X \times A \rightarrow \mathbf{R}$ For t = 0, 1, ...,

- Choose action $a_t \sim \varepsilon$ -greedy w.r.t. \hat{Q}_t
- Observe r_t , x_{t+1} , $a'_{t+1} \sim a'_{t+1} \sim \varepsilon$ –greedy:
- Compute

on-policy

 $\delta_t = r_t + \gamma \hat{Q}_t(x_{t+1}, \boldsymbol{a'_{t+1}}) - \hat{Q}_t(x_t, a_t)$ $\hat{Q}_{t+1}(x_t, a_t) = \hat{Q}_t(x_t, a_t) + \alpha_t \delta_t$

SARSA

Input: arbitrary $\hat{Q}_0: X \times A \rightarrow \mathbf{R}$ For t = 0, 1, ...,

- Choose action $a_t \sim \varepsilon$ -greedy w.r.t. \hat{Q}_t
- Observe r_t , x_{t+1} , $a'_{t+1} \rightarrow a'_{t+1} \sim \varepsilon$ –greedy:
- Compute

 $r_{+1} \sim \varepsilon$ –greed on-policy

 $\delta_t = r_t + \gamma \hat{Q}_t(x_{t+1}, \boldsymbol{a'_{t+1}}) - \hat{Q}_t(x_t, a_t)$ $\hat{Q}_{t+1}(x_t, a_t) = \hat{Q}_t(x_t, a_t) + \alpha_t \delta_t$

SARSA =
$$(s_t, a_t, r_t, s_{t+1}, a'_{t+1})$$

SARSA ~ XARXA Input: arbitrary $\hat{Q}_0: X \times A \rightarrow \mathbf{R}$ For t = 0, 1, ...,

- Choose action $a_t \sim \varepsilon$ -greedy w.r.t. \hat{Q}_t
- Observe r_t , x_{t+1} , $a'_{t+1} \rightarrow a'_{t+1} \sim \varepsilon$ –greedy:
- Compute

'_{t+1} ~ ε –greedy on-policy

 $\delta_t = r_t + \gamma \hat{Q}_t(x_{t+1}, \boldsymbol{a}'_{t+1}) - \hat{Q}_t(x_t, \boldsymbol{a}_t)$ $\hat{Q}_{t+1}(x_t, \boldsymbol{a}_t) = \hat{Q}_t(x_t, \boldsymbol{a}_t) + \alpha_t \delta_t$

SARSA = $(s_t, a_t, r_t, s_{t+1}, a'_{t+1})$

Both algorithms can be adapted to linear and non-linear FA by using the update rule $\theta_{t+1} = \theta_t + \alpha_t \delta_t \nabla_\theta Q_\theta(x_t, a_t)$

 SARSA guarantees bounded error and tends to behave well in practice (may not find optimal policy though)

- SARSA guarantees bounded error and tends to behave well in practice (may not find optimal policy though)
- Q-learning may diverge catastrophically

- SARSA guarantees bounded error and tends to behave well in practice (may not find optimal policy though)
- Q-learning may diverge catastrophically
 - Proposed fixes: gradient TD algorithms, emphatic TD algorithms, double Q-learning, soft Q-learning, G-learning,...

- SARSA guarantees bounded error and tends to behave well in practice (may not find optimal policy though)
- Q-learning may diverge catastrophically
 - Proposed fixes: gradient TD algorithms, emphatic TD algorithms, double Q-learning, soft Q-learning, G-learning,...
 - Practical solution: tune it until it works

DIVERGENCE OF OFF-POLICY TD LEARNING

The "deadly triad":

- Function approximation
- Bootstrapping
- Off-policy learning

DIVERGENCE OF OFF-POLICY TD LEARNING

The "deadly triad":

- Function approximation
- Bootstrapping
- Off-policy learning

BUT

Divergence is typically not too extreme when behavior policy is close to evaluation policy and FA is linear

REINFORCEMENT LEARNING

THE PROMISE OF DEEP REINFORCEMENT LEARNING

Parametrize *Q*-function/policy by a deep net

THE PROMISE OF DEEP REINFORCEMENT LEARNING

Parametrize *Q*-function/policy by a deep net

THE PROMISE OF DEEP REINFORCEMENT LEARNING

Parametrize *Q*-function/policy by a deep net

LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING (LSTD)

LSTD(0) Input: trajectory $(x_t, a_t, r_t)_{t=1}^T$ $\theta_T = A_T^{-1} b_T$ $\hat{V}_T = \theta_T^T \phi$

Idea not directly applicable to nonlinear function approximation!

LSTD FOR NON-LINEAR FUNCTION APPROXIMATION?

Can we optimize Bellman error $L(\theta) = \mathbf{E}_{x \sim \mu} \left[\left(T^{\pi} V_{\theta}(x) - V_{\theta}(x) \right)^{2} \right]$ by stochastic gradient descent????

LSTD FOR NON-LINEAR FUNCTION APPROXIMATION?

Can we optimize Bellman error $L(\theta) = \mathbf{E}_{x \sim \mu} \left[\left(T^{\pi} V_{\theta}(x) - V_{\theta}(x) \right)^{2} \right]$ by stochastic gradient descent????

NO!!

Bellman error involves a double expectation: $L(\theta) = \mathbf{E}_X[\ell(\theta; X, \mathbf{E}_Y[Y|X])]$

can't get unbiased gradients!

LSTD FOR NON-LINEAR FUNCTION APPROXIMATION?

Can we optimize Bellman error $L(\theta) = \mathbf{E}_{x \sim \mu} \begin{bmatrix} (\text{The infamous} \\ \text{"double sampling"} \\ \text{issue of Please} \end{bmatrix}$ issue of RL NO!! Bellman error involves a double expectation: $L(\theta) = \mathbf{E}_{X}[\ell(\theta; X, \mathbf{E}_{Y}[Y|X])]$

can't get unbiased gradients!

TACKLING DOUBLE SAMPLING

•Saddle-point optimization: $\min_{\theta} \mathbf{E}[f(\theta; X, \mathbf{E}[Y|X])^2]$

TACKLING DOUBLE SAMPLING

•Saddle-point optimization: $\min_{\theta} \mathbf{E}[f(\theta; X, \mathbf{E}[Y|X])^2] = \min_{\theta} \max_{z} \mathbf{E}[z(X, Y) \cdot f(\theta; X, \mathbf{E}[Y|X])] - \mathbf{E}[z^2(X, Y)]$

TACKLING DOUBLE SAMPLING No nested expectation here! Saddle-point optimization: $\min_{\theta} \mathbf{E}[f(\theta; X, \mathbf{E}[Y|X])^2] =$ $\min \max \mathbf{E}[z(X,Y) \cdot f(\theta; X, \mathbf{E}[Y|X])] - \mathbf{E}[z^2(X,Y)]$ \Rightarrow "modified Bellman residual" (Antos et al. 2008), "Gradient TD" methods (Sutton et al. 2009), SBEED (Dai et al., 2018)

TACKLING DOUBLE SAMPLING

No nested expectation here!

•Saddle-point optimization: $\min_{\alpha} \mathbf{E}[f(\theta; X, \mathbf{E}[Y|X])^2] =$

 $\min_{\theta} \max_{z} \mathbf{E}[z(X,Y) \cdot f(\theta; X, \mathbf{E}[Y|X])] - \mathbf{E}[z^{2}(X,Y)]$

⇒ "modified Bellman residual" (Antos et al. 2008), "Gradient TD" methods (Sutton et al. 2009), SBEED (Dai et al., 2018)

Iterative optimization schemes

TACKLING DOUBLE SAMPLING No nested expectation here! Saddle-point optimization: $\min_{\theta} \mathbf{E}[f(\theta; X, \mathbf{E}[Y|X])^2] =$ $\min \max \mathbf{E}[z(X,Y) \cdot f(\theta; X, \mathbf{E}[Y|X])] - \mathbf{E}[z^2(X,Y)]$ \Rightarrow "modified Bellman residual" (Antos et al. 2008), "Gradient TD" methods (Sutton et al. 2009), SBEED (Dai et al., 2018)

Iterative optimization schemes

FITTED POLICY EVALUATION

$$\hat{V}_{k} = \frac{1}{n} \sum_{k=1}^{n} \left(r_{k} + \hat{V}_{k}(x_{t+1}) - \hat{V}(x_{t}) \right)^{2}$$

FITTED POLICY EVALUATION

This can be finally treated as a regression problem & solved by SGD!

FITTED POLICY ITERATION

ε-Greedy policy update

Computing policy needs model of P... better use Q-functions!

Fitted policy evaluation

FITTED VALUE ITERATION

FITTED VALUE ITERATION

Fitted value iteration

Input: function space F, $\hat{Q}_0 \in F$ For k = 0, 1, ...,

•
$$\pi_k = G_{\varepsilon} \hat{Q}_k$$

generate trajectory

$$(x_t, a_t, r_t)_{t=1}^n \sim \pi_k$$

compute

$$\widehat{Q}_{k+1} = \operatorname{argmin}_{\widehat{Q} \in F} L_n(\widehat{Q}; \widehat{Q}_k)$$

FITTED VALUE ITERATION

Fitted value iteration Input: function space F, $\hat{Q}_0 \in F$

For
$$k=0,1,...$$
 ,

• $\pi_k = G_{\varepsilon} \widehat{Q}_k$

• generate trajectory

$$(x_t, a_t, r_t)_{t=1}^n \sim \pi_k$$

compute

$$\widehat{Q}_{k+1} = \operatorname{argmin}_{\widehat{Q} \in F} L_n(\widehat{Q}; \widehat{Q}_k)$$

Computing policy is trivial!

FITTED VALUE ITERATION

Fitted value iteration Input: function space $F, \hat{Q}_0 \in F$

For
$$k = 0, 1, ...,$$

•
$$\pi_k = G_{\mathcal{E}} \widehat{Q}_k$$
 -

• generate trajectory

$$(x_t, a_t, r_t)_{t=1}^n \sim \pi_k$$

compute

$$\widehat{Q}_{k+1} = \operatorname*{argmin}_{\widehat{Q} \in F} L_n(\widehat{Q}; \widehat{Q}_k)$$

Convergence can be guaranteed!

under very technical assumptions...

Computing policy is trivial!

DEEP Q NETWORKS

Parametrize *Q*-function by a deep neural net

DEEP Q NETWORKS

Minimize the loss

$$\mathbf{E}_{(X,A,R,X')\sim D}\left[\left(R+\gamma \max_{b}Q_{\theta_{k}}(X',b)-Q_{\theta}(X,A)\right)^{2}\right]$$

- + training tricks:
- Store transitions (x, a, r, x') in replay buffer D to break dependence on recent samples
- Compute small updates by mini-batch stochastic gradient descent
- Use an older parameter vector θ_{k-m} in target to avoid oscillations

•

DEEP Q NETWORKS FOR PLAYING ATARI

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

Markov decision processes • Value functions and optimal policies
Primal view: Dynamic programming • Policy evaluation, value and policy iteration • Value-function-based methods • Temporal differences, Q-learning, LSTD, deep Q networks,...

part 2

Dual view: Linear programming

- LP duality in MDPs
- Direct policy optimization methods
 - Policy gradients, REPS, TRPO,...

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

POLICIES AND TRAJECTORY DISTRIBUTIONS

Policy: mapping from histories to actions $\pi: x_1, a_1, x_2, a_2, \dots, x_t \mapsto a_t$

Stationary policy: mapping from states to actions (no dependence on history or *t*)

 $\pi: x \mapsto a$

Let $\tau = (x_1, a_1, x_2, a_2, ...)$ be a trajectory generated by running π in the MDP $\tau \sim (\pi, P)$:

•
$$a_t = \pi(x_t, a_{t-1}, x_{t-1}, \dots, x_1)$$

•
$$x_{t+1} \sim P(\cdot | x_t, a_t)$$

Expectation under this distribution: $E_{\pi}[\cdot]$

POLICIES AND TRAJECTORY DISTRIBUTIONS

Stationary stochastic policy: mapping from states to action distributions

 $\pi: A \times X \rightarrow [0,1]$

where

$$\pi(a|x) = P[a_t = a|x_t = x]$$

Let $\tau = (x_1, a_1, x_2, a_2, ...)$ be a trajectory generated by running π in the MDP $\tau \sim (\pi, P)$:

•
$$a_t = \pi(x_t, a_{t-1}, x_{t-1}, \dots, x_1)$$

•
$$x_{t+1} \sim P(\cdot | x_t, a_t)$$

Expectation under this distribution: $E_{\pi}[\cdot]$

POLICIES AND TRAJECTORY DISTRIBUTIONS

Stationary stochastic policy: mapping from states to action distributions

 $\pi: A \times X \rightarrow [0,1]$

where

$$\pi(a|x) = P[a_t = a|x_t = x]$$

Let $\tau = (x_1, a_1, x_2, a_2, ...)$ be a trajectory generated by running π in the MDP $\tau \sim (\pi, P)$:

• $a_t \sim \pi(\cdot | x_t)$

•
$$x_{t+1} \sim P(\cdot | x_t, a_t)$$

Expectation under this distribution: $E_{\pi}[\cdot]$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state
- Discount factor $\gamma \in (0,1)$
- GOAL: maximize total discounted reward

$$R_{\gamma} = \mathbf{E}[\sum_{t=0}^{\infty} \gamma^{t} r_{t}]$$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, initial state $x_0 \sim \mu_0$
- Discount factor $\gamma \in (0,1)$
- GOAL: maximize total discounted reward

$$R_{\gamma} = \mathbf{E}[\sum_{t=0}^{\infty} \gamma^{t} r_{t}]$$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, initial state $x_0 \sim \mu_0$
- Discount factor $\gamma \in (0,1)$
- GOAL: maximize total discounted reward

$$R_{\gamma} = \mathbf{E}[\sum_{t=0}^{\infty} \gamma^t r_t]$$

Observe: the discounted reward of a policy is $R^{\pi}_{\gamma} = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t})]$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, initial state $x_0 \sim \mu_0$
- Discount factor $\gamma \in (0,1)$
- GOAL: maximize total discounted reward

$$R_{\gamma} = \mathbf{E}[\sum_{t=0}^{\infty} \gamma^{t} r_{t}]$$

Observe: the discounted reward of a policy is $R_{\gamma}^{\pi} = \mathbf{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t})]$ $= \mathbf{E}_{\pi} [\sum_{x,a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{1}_{\{x_{t}=x, a_{t}=a\}} r(x, a)]$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, initial state $x_0 \sim \mu_0$
- Discount factor $\gamma \in (0,1)$
- GOAL: maximize total discounted reward

$$R_{\gamma} = \mathbf{E}[\sum_{t=0}^{\infty} \gamma^t r_t]$$

Observe: the discounted reward of a policy is $R_{\gamma}^{\pi} = \mathbf{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t})]$ $= \mathbf{E}_{\pi} [\sum_{x,a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{1}_{\{x_{t}=x,a_{t}=a\}} r(x, a)]$ $= \sum_{x,a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{P}_{\pi} [x_{t} = x, a_{t} = a] r(x, a)$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, initial state $x_0 \sim \mu_0$
- Discount factor $\gamma \in (0,1)$
- GOAL: maximize total discounted reward

$$R_{\gamma} = \mathbf{E}[\sum_{t=0}^{\infty} \gamma^{t} r_{t}]$$

Observe: the discounted reward of a policy is $R_{\gamma}^{\pi} = \mathbf{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t})]$ $= \mathbf{E}_{\pi} [\sum_{x,a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{1}_{\{x_{t}=x,a_{t}=a\}} r(x, a)]$ $= \sum_{x,a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{P}_{\pi} [x_{t} = x, a_{t} = a] r(x, a)$ $= \sum_{x,a} \mu_{\pi} (x, a) r(x, a)$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, initial state $x_0 \sim \mu_0$
- Discount factor $\gamma \in (0,1)$
- GOAL: maximize total discounted reward

$$R_{\gamma} = \mathbf{E}[\sum_{t=0}^{\infty} \gamma^{t} r_{t}]$$

Observe: the discounted reward of a policy is $R_{\gamma}^{\pi} = \mathbf{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t})]$ $= \mathbf{E}_{\pi} [\sum_{x,a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{1}_{\{x_{t}=x,a_{t}=a\}} r(x, a)]$ $= \sum_{x,a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{P}_{\pi} [x_{t} = x, a_{t} = a] r(x, a)$ $= \sum_{x,a} \mu_{\pi}(x, a) r(x, a) = \langle \mu_{\pi}, r \rangle$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, initial state $x_0 \sim \mu_0$
- Discount factor $\gamma \in (0,1)$
- GOAL: maximize total discounted reward

$$R_{\gamma} = \mathbf{E}[\sum_{t=0}^{\infty} \gamma^{t} r_{t}]$$

Observe: the discounted reward of a policy is $R_{\gamma}^{\pi} = \langle \mu_{\pi}, r \rangle$

 μ_{π} = the discounted occupancy measure induced by policy π : $\mu_{\pi}(x, a) = \sum_{t=0}^{\infty} \gamma^{t} \mathbf{P}_{\pi}[x_{t} = x, a_{t} = a]$

ANOTHER PERSPECTIVE ON DISCOUNTED REWARDS

Discounted MDPs:

- No terminal state, i
- Discount factor $\gamma \in$
- GOAL: maximize tot

A linear optimization problem?!

$$R_{\gamma} = \mathbf{E} \left[-_{0} \gamma^{c} r_{t} \right]$$

Observe: the discounted reward of a policy is $R^{\pi}_{\gamma} = \langle \mu_{\pi}, r \rangle$

 μ_{π} = the discounted occupancy measure induced by policy π : $\mu_{\pi}(x, a) = \sum_{t=0}^{\infty} \gamma^{t} \mathbf{P}_{\pi}[x_{t} = x, a_{t} = a]$

TOWARDS A LINEAR-PROGRAM FORMULATION

Theorem

A function μ is a discounted occupancy measure of some (stationary stochastic) policy π if and only if it satisfies

$$\sum_{a'} \mu(x', a') = (1 - \gamma) \sum_{a'} \mu_0(x', a') + \gamma \sum_{x, a} P(x'|x, a) \mu(x, a)$$

and $\sum_{x, a} \mu(x, a) = 1/(1 - \gamma).$

TOWARDS A LINEAR-PROGRAM FORMULATION

Theorem

A function μ is a discounted occupancy measure of some (stationary stochastic) policy π if and only if it satisfies

$$\sum_{a'} \mu(x', a') = (1 - \gamma) \sum_{a'} \mu_0(x', a') + \gamma \sum_{x, a} P(x'|x, a) \mu(x, a)$$

and $\sum_{x, a} \mu(x, a) = 1/(1 - \gamma).$

Linear constraints! Define Δ = the set of occupancy measures μ .

 $LP \\ R_{\gamma}^* = \max_{\mu \in \Delta} \langle \mu, r \rangle$

 $LP \\ R_{\gamma}^* = \max_{\mu \in \Delta} \langle \mu, r \rangle$

$$LP'$$

$$R_{\gamma}^{*} = \min_{V \in \mathbb{R}^{X}} \langle \mu_{0}, V \rangle$$
s.t. $V(x) \ge r(x, a) + \gamma \sum_{y} P(y|x, a) V(y) \quad (\forall x, a)$

Dual LP $R^*_{\gamma} = \max_{\mu \in \Delta} \langle \mu, r \rangle$

Primal LP

$$R_{\gamma}^{*} = \min_{V \in \mathbb{R}^{X}} \langle \mu_{0}, V \rangle$$
s.t. $V(x) \ge r(x, a) + \gamma \sum_{y} P(y|x, a) V(y) \quad (\forall x, a)$

*names are due to tradition

Dual LP $R^*_{\gamma} = \max_{\mu \in \Delta} \langle \mu, r \rangle$

Primal LP = The Bellman opt. equations $V^*(x) = \max_a \{r(x, a) + \gamma \sum_y P(y|x, a)V^*(y)\}$

Assuming $\mu_0 > 0$

*names are due to tradition

A single numerical objective to optimize!

 $\begin{array}{l} \text{Dual LP} \\ R_{\gamma}^{*} = \max_{\mu \in \Delta} \langle \mu, r \rangle \end{array}$

Primal LP = The Bellman opt. equations $V^*(x) = \max_a \{r(x,a) + \gamma \sum_y P(y|x,a)V^*(y)\}$

Assuming $\mu_0 > 0$

*names are due to tradition

OPTIMAL SOLUTIONS OF THE LP

Theorem There exists a basic solution $\mu^* \in \Delta$ to the dual LP.

OPTIMAL SOLUTIONS OF THE LP

Theorem There exists a basic solution $\mu^* \in \Delta$ to the dual LP.

"Proof":

objective $\langle \mu, r \rangle$ is bounded on nonempty Δ

\Rightarrow

there exists optimal solution $\mu^* \in \Delta$

there exists basic solution $\mu^* \in \Delta$

OPTIMAL SOLUTIONS OF THE LP

Theorem There exists a basic solution $\mu^* \in \Delta$ to the dual LP.

"Proof": objective $\langle \mu, r \rangle$ is bounded on nonempty Δ \Rightarrow there exists optimal solution $\mu^* \in \Delta$ \Rightarrow A "corner" of Δ there exists basic solution $\mu^* \in \Delta$

Question: how do we extract a policy from a feasible $\mu \in \Delta$?

Question: how do we extract a policy from a feasible $\mu \in \Delta$?

Corollary

Assume that $\mu_0(x) > 0$ for all $x \in X$. Then, for any occupancy measure $\mu \in \Delta$, there exists a unique policy π such that $\mu = \mu_{\pi}$, given by $\pi(a|x) = \frac{\mu(x,a)}{\sum_b \mu(x,b)}$.

Question: how do we extract a policy from a feasible $\mu \in \Delta$?

Corollary

Assume that $\mu_0(x) > 0$ for all $x \in X$. Then, for any occupancy measure $\mu \in \Delta$, there exists a unique policy π such that $\mu = \mu_{\pi}$, given by $\pi(a|x) = \frac{\mu(x,a)}{\sum_h \mu(x,b)}$.

Well-defined since $\sum_{b} \mu(x, b) > 0$ by assumption

Question: how do we extract a policy from a feasible $\mu \in \Delta$?

Corollary

Assume that $\mu_0(x) > 0$ for all $x \in X$. Then, for any occupancy measure $\mu \in \Delta$, there exists a unique policy π such that $\mu = \mu_{\pi}$, given by $\pi(a|x) = \frac{\mu(x, a)}{\sum_b \mu(x, b)}$. Basic solutions \Leftrightarrow Well-defined since $\sum_b \mu(x, b) > 0$ by assumption

LINEAR PROGRAMMING FOR MDPS

"Why don't they teach this in school?!?"

- Needs some strange conditions that DP theory does not $(\mu_0 > 0$ for existence results and for optimal policy)
 - Temporal aspect is rather abstract
 - Less intuitive for control theorists and computational neuroscience folks (classic RL crowd)
LINEAR PROGRAMMING FOR MDPS

"Why don't they teach this in school?!?"

- Needs some strange conditions that DP theory does not $(\mu_0 > 0$ for existence results and for optimal policy)
 - Temporal aspect is rather abstract
 - Less intuitive for control theorists and computational neuroscience folks (classic RL crowd)

Advantages

- Defining optimality is very simple (no value functions, no fixed points, etc.)
- Easily comprehensible with an optimization background (single numerical objective)
 - Powerful tool for developing algorithms

LINEAR PROGRAMMING FOR MDPS

"Why don't they teach this in school?!?"

- Needs some strange conditions that DP theory does not $(\mu_0 > 0$ for existence results and for optimal policy)
 - Temporal aspect is rather abstract
 - Less intuitive for control theorists and computational neuroscience folks (classic RL crowd)

Advantages

- Defining optimality is very simple (no value functions, no fixed points, etc.)
- Easily comprehensible with an optimization background (single numerical objective)
 - Powerful tool for developing algorithms

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

 Markov decision processes part 1 • Value functions and optimal policies Primal view: Dynamic programming Policy evaluation, value and policy iteration Value-function-based methods • Temporal differences, Q-learning, LSTD, deep Q networks,... Dual view: Linear programming part 2 • LP duality in MDPs Direct policy optimization methods • Policy gradients, REPS, TRPO,...

Idea: derive algorithms by thinking of $\mu \in \Delta$ as the decision variable!

Idea: derive algorithms by thinking of $\mu \in \Delta$ as the decision variable!

Examples

- Policy gradient methods
 - = gradient descent on $-R_{\gamma}^{\pi}$
- Relative Entropy Policy Search (REPS) = mirror descent on $-R_{\gamma}^{\pi}$
- Trust-region policy optimization (TRPO)
 - = mirror descent on (a surrogate of) $-R_{\gamma}^{\pi}$

Idea: derive algorithms by thinking of $\mu \in \Delta$ as the decision variable!

Examples

- Policy gradient methods = gradient descent on $-R_{\gamma}^{\pi}$
- Relative Entropy Policy Search (REPS) = mirror descent on $-R_{\gamma}^{\pi}$
- Trust-region policy optimization (TRPO)
 - = mirror descent on (a surrogate of) $-R_{\gamma}^{\pi}$

• Construct mapping $\theta \mapsto \pi_{\theta}$

• Construct mapping $\theta \mapsto \pi_{\theta}$

 Construct mapping

 θ ↦ π_θ

 Define objective function:
 ρ(θ) = R^{π_θ}

- Construct mapping $\theta \mapsto \pi_{\theta}$ Define objective function:
 - $\rho(\theta) = R_{\gamma}^{\pi_{\theta}}$
 - Update parameters by gradient ascent: $\theta_{k+1} = \theta_k + \alpha_k \nabla_{\theta} \rho(\theta_k)$

- Construct mapping

 θ ↦ π_θ

 Define objective function:
 - $\rho(\theta) = R_{\gamma}^{\pi_{\theta}}$
 - Update parameters by gradient ascent:

$$\theta_{k+1} = \theta_k + \alpha_k \nabla_\theta \rho(\theta_k)$$

... and hope for convergence

Parameter space Θ

How can we estimate the gradients?

- Construct mapping

 θ ↦ π_θ

 Define objective function:
 - $\rho(\theta) = R_{\gamma}^{\pi_{\theta}}$
 - Update parameters by gradient ascent:

$$\theta_{k+1} = \theta_k + \alpha_k \nabla_\theta \rho(\theta_k)$$

... and hope for convergence

Theorem
$$\nabla_{\theta}\rho(\theta) = \sum_{x} \mu_{\theta}(x) \sum_{a} \nabla_{\theta}\pi_{\theta}(a|x) Q^{\pi_{\theta}}(x,a)$$

Corollary

Assuming that $\pi_{\theta}(a|x) > 0$ for all x, a, $\nabla_{\theta}\rho(\theta) = \sum_{x,a} \mu_{\theta}(x)\pi_{\theta}(a|x) \left(\nabla_{\theta}\log \pi_{\theta}(a|x) Q^{\pi_{\theta}}(x,a)\right)$

Corollary Assuming that $\pi_{\theta}(a|x) > 0$ for all x, a, $\nabla_{\theta}\rho(\theta) = \mathbf{E}_{(\tilde{x},\tilde{a})\sim\mu_{\theta}\pi_{\theta}}[\nabla_{\theta}\log\pi_{\theta}(\tilde{a}|\tilde{x})Q^{\pi_{\theta}}(\tilde{x},\tilde{a})]$

 $\nabla_{\theta}\rho(\alpha) = \sum u(x) \sum \nabla \nabla \pi (\alpha | x) Q^{\pi_{\theta}}(x, a)$

Theorem

Gradient can be written as an expectation!!!!

Corollary

Assuming that $\pi_{\theta}(a|x) > 0$ for all x, a, $\nabla_{\theta}\rho(\theta) = \mathbf{E}_{(\tilde{x},\tilde{a})\sim\mu_{\theta}\pi_{\theta}}[\nabla_{\theta}\log\pi_{\theta}(\tilde{a}|\tilde{x})Q^{\pi_{\theta}}(\tilde{x},\tilde{a})]$

REINFORCE: A STOCHASTIC POLICY GRADIENT ALGORITHM

Idea: replace expectation by a sample mean \Rightarrow stochastic gradient algorithm

REINFORCE: A STOCHASTIC POLICY GRADIENT ALGORITHM

Idea: replace expectation by a sample mean \Rightarrow stochastic gradient algorithm

REINFORCE

Input: arbitrary initial θ_0 For k = 0, 1, ...

- Obtain sample trajectory $(x_t, a_t, r_t)_{t=1}^T \sim \pi_{\theta_k}$
- Estimate $\hat{Q}_k \approx Q^{\pi_{\theta_k}}$ by Monte Carlo
- Estimate $g_k \approx \nabla_{\theta} \rho(\theta_k)$ by the average of $g_{k,t} = \nabla_{\theta} \log \pi_{\theta_k}(a_t | x_t) \hat{Q}_k(x_t, a_t)$

• Update
$$\theta_{k+1} = \theta_k + \alpha_k g_k$$

REINFORCE: A STOCHASTIC POLICY GRADIENT ALGORITHM

Idea: replace expectation by a sample mean \Rightarrow stochastic gradient algorithm

REINFORCE

Input: arbitrary initial θ_0 For k = 0, 1, ...

- Obtain sample trajectory $(x_t, a_t, r_t)_{t=1}^T \sim \pi_{\theta_k}$
- Estimate $\hat{Q}_k \approx Q^{\pi_{\theta_k}}$ by Monte Carlo
- Estimate $g_k \approx \nabla_{\theta} \rho(\theta_k)$ by the average of $g_{k,t} = \nabla_{\theta} \log \pi_{\theta_k}(a_t | x_t) \hat{Q}_k(x_t, a_t)$

• Update
$$\theta_{k+1} = \theta_k + \alpha_k g_k$$

 $\mathbf{E}[g_k] = \nabla_{\theta} \rho(\theta_k)$

REINFORCE AS DIRECT POLICY SEARCH

Policy gradient update	
improvo policy	
$\pi_{\nu} \approx G\hat{V}_{\nu}$	
V_{-} π_{-}	
K K	•
evaluate policy	
$\hat{V}_{k+1} \approx V^{\pi_k}$	
Monte Carlo evaluation	

REINFORCE AS DIRECT POLICY SEARCH

- \bigcirc direct method: no explicit approximation of V^{π} \bigcirc
- \odot converges to local optimum \odot
 - \odot less aggressive updates \odot
 - ${\ensuremath{ \ensuremath{ \otimes } }}$ large variance of g_k ${\ensuremath{ \otimes } }$

ACTOR-CRITIC METHODS

Typical actor: policy gradient updates

Critic:

- Monte Carlo \Rightarrow REINFORCE
- TD(λ)

0

- LSTD(λ)
- DQN, ...

A TYPICAL DEEP RL ARCHITECTURE: A3C

Parametrize policy by a deep neural net

A TYPICAL DEEP RL ARCHITECTURE: A3C

Parametrize policy by a deep neural net

 $\begin{aligned} & \text{Policy gradient update} \\ & \theta_{t+1} = \arg \max_{\theta} \left\{ \langle \theta, \nabla \rho(\theta_t) \rangle - \frac{1}{\alpha_t} \| \theta - \theta_t \|_2^2 \right\} \end{aligned}$

Policy gradient update

$$\theta_{t+1} = \arg \max_{\theta} \left\{ \langle \theta, \nabla \rho(\theta_t) \rangle - \frac{1}{\alpha_t} \| \theta - \theta_t \|_2^2 \right\}$$

lssue #1:

Euclidean norm may be unnatural way to measure distance between μ_{θ} and μ_{θ_t} ?

Policy gradient update

 $\theta_{t+1} = \arg \max_{\theta} \left\{ \langle \theta, \nabla \rho(\theta_t) \rangle - \frac{1}{\alpha_t} \| \theta - \theta_t \|_2^2 \right\}$

Issue #2:

Linearizing ρ at θ_t may lead to instability?

Issue #1:

Euclidean norm may be unnatural way to measure distance between μ_{θ} and μ_{θ_t} ?

Policy gradient update

 $\theta_{t+1} = \arg \max_{\theta} \left\{ \langle \theta, \nabla \rho(\theta_t) \rangle - \frac{1}{\alpha_t} \| \theta - \theta_t \|_2^2 \right\}$

Issue #2:

Linearizing ρ at θ_t may lead to instability?

+ Issue #3:

Policy gradient estimator has huge variance 😕

Issue #1:

Euclidean norm may be unnatural way to measure distance between μ_{θ} and μ_{θ_t} ?

A BETTER APPROACH: Smoothed linear programs

 $\begin{array}{l} \text{Dual LP} \\ R_{\gamma}^{*} = \max_{\mu \in \Delta} \langle \mu, r \rangle \end{array}$

A BETTER APPROACH: Smoothed linear programs

Dual convex program $\tilde{R}^*_{\gamma} = \max_{\mu \in \Delta} \left\{ \langle \mu, r \rangle + \frac{1}{\eta} \Phi(\mu) \right\}$

A BETTER APPROACH: Smoothed linear programs

Dual convex program

$$\widetilde{R}^*_{\gamma} = \max_{\mu \in \Delta} \left\{ \langle \mu, r \rangle + \frac{1}{\eta} \Phi(\mu) \right\}$$

 Φ : strongly convex function of μ :

smooth optimum

$$\mu^* = \arg \max_{\mu} \left\{ \langle \mu, r \rangle + \frac{1}{\eta} \Phi(\mu) \right\} = \frac{1}{\eta} \nabla_r \Phi^*(\eta r)$$

• regularization effect \Rightarrow better generalization?

BETTER PROXIMAL REGULARIZATION: MIRROR DESCENT

 $\begin{aligned} & \text{Policy gradient update} \\ & \theta_{t+1} = \arg \max_{\theta} \left\{ \langle \theta, \nabla \rho(\theta_t) \rangle - \frac{1}{\alpha_t} \| \theta - \theta_t \|_2^2 \right\} \end{aligned}$

BETTER PROXIMAL REGULARIZATION: MIRROR DESCENT

 $\begin{aligned} & \text{Policy gradient update} \\ & \theta_{t+1} = \arg \max_{\theta} \left\{ \langle \theta, \nabla \rho(\theta_t) \rangle - \frac{1}{\alpha_t} \| \theta - \theta_t \|_2^2 \right\} \\ & \text{Mirror descent update} \\ & \mu_{t+1} = \arg \max_{\mu \in \Delta} \left\{ \langle \mu, r \rangle - \frac{1}{\eta_t} D(\mu | \mu_t) \right\} \end{aligned}$

BETTER PROXIMAL REGULARIZATION: MIRROR DESCENT

Proximal regularization through Bregman divergence $D(\mu|\mu')$ (strongly convex in μ)

Idea: derive algorithms by thinking of $\mu \in \Delta$ as the decision variable!

Examples

- Policy gradient methods
 - = gradient descent on $-R_{\gamma}^{\pi}$
- Relative Entropy Policy Search (REPS) = mirror descent on $-R_{\nu}^{\pi}$
- Trust-region policy optimization (TRPO)
 mirror descent on (a surrogate of)
 - = mirror descent on (a surrogate of) $-R_{\gamma}^{\pi}$

RELATIVE ENTROPY POLICY SEARCH (REPS, PETERS ET AL., 2010)

 $\begin{aligned} & \text{Mirror descent update} \\ & \mu_{t+1} = \arg \max_{\mu \in \Delta} \left\{ \langle \mu, r \rangle - \frac{1}{\eta_t} D(\mu | \mu_t) \right\} \\ & D(\mu | \mu') = \sum_{x,a} \mu(x, a) \log \frac{\mu(x, a)}{\mu'(x, a)} \end{aligned}$
RELATIVE ENTROPY POLICY SEARCH (REPS, PETERS ET AL., 2010)

Mirror descent update $\mu_{t+1} = \arg \max_{\mu \in \Delta} \left\{ \langle \mu, r \rangle - \frac{1}{\eta_t} D(\mu | \mu_t) \right\}$ $D(\mu | \mu') = \sum_{x,a} \mu(x, a) \log \frac{\mu(x, a)}{\mu'(x, a)}$ Closed-form "policy update":

Closed-form "policy update": $\mu_{t+1}(x,a) = \mu_t(x,a)e^{\eta_t \left(r(x,a) + \gamma \mathbf{E}_{y|x,a}[\widetilde{V}_t(y)] - \widetilde{V}_t(x)\right)}$

RELATIVE ENTROPY POLICY SEARCH (REPS, PETERS ET AL., 2010)

Mirror descent update $\mu_{t+1} = \arg \max_{\mu \in \Delta} \left\{ \langle \mu, r \rangle - \frac{1}{\eta_t} D(\mu | \mu_t) \right\}$ $D(\mu|\mu') = \sum_{x,a} \mu(x,a) \log \frac{\mu(x,a)}{\mu'(x,a)}$ **Closed-form "policy update":** $\mu_{t+1}(x,a) = \mu_t(x,a) e^{\eta_t \left(r(x,a) + \gamma \mathbf{E}_{y|x,a}[\widetilde{V}_t(y)] - \widetilde{V}_t(x) \right)}$ "Value function" $\widetilde{V}_{\pm} = ???$

THE REPS VALUE FUNCTION

Theorem The REPS value function \tilde{V}_t is given as the minimizer of the loss function $\tilde{L}(V) = \log \mathbf{E}_{x \sim \mu_t} \left[e^{\eta_t \left(T^{\pi_V(x) - V(x)} \right)} \right]$

THE REPS VALUE FUNCTION

Theorem The REPS value function \tilde{V}_t is given as the minimizer of the loss function $\tilde{L}(V) = \log \mathbf{E}_{x \sim \mu_t} \left[e^{\eta_t \left(T^{\pi_V(x) - V(x)} \right)} \right]$

"Proof": Lagrangian duality.

THE REPS VALUE FUNCTION

Theorem The REPS value function \tilde{V}_t is given as the minimizer of the loss function $\tilde{L}(V) = \log \mathbf{E}_{x \sim \mu_t} \left[e^{\eta_t \left(T^{\pi_V(x) - V(x)} \right)} \right]$

"Proof": Lagrangian duality.

A natural competitor for the Bellman error $L(V) = \mathbf{E}_{x \sim \mu} \left[\left(T^{\pi} V(x) - V(x) \right)^2 \right]???$

Stay tuned for "deep REPS" results 🙂

DIRECT POLICY OPTIMIZATION

Idea: derive algorithms by thinking of $\mu \in \Delta$ as the decision variable!

Examples

- Policy gradient methods
 - = gradient descent on $-R_{\gamma}^{\pi}$
- Relative Entropy Policy Search (REPS) = mirror descent on $-R_{\gamma}^{\pi}$
- Trust-region policy optimization (TRPO) = mirror descent on (a surrogate of) $-R_{\nu}^{\pi}$

The Bellman opt. equations $V^*(x) = \max_{a} \{ r(x,a) + \gamma \sum_{y} P(y|x,a) V^*(y) \}$

The regularized Bellman opt. equations $V^*(x) = \underset{a}{\operatorname{softmax}}^{\eta} \{ r(x,a) + \gamma \sum_{y} P(y|x,a) V^*(y) \}$

The regularized Bellman opt. equations $V^*(x) = \underset{a}{\operatorname{softmax}}^{\eta} \{ r(x,a) + \gamma \sum_{y} P(y|x,a) V^*(y) \}$

Used almost exclusively since ~late 2016

- Better optimization properties: smooth gradients, less sensitive to errors
- Better exploration: optimal policy naturally stochastic, no need for ε –greedy trick

Is there a natural "dual" explanation?

The regularized Bellman opt. equations $V^*(x) = \underset{a}{\operatorname{softmax}}^{\eta} \{ r(x,a) + \gamma \sum_{y} P(y|x,a) V^*(y) \}$

Used almost exclusively since ~late 2016

- Better optimization properties: smooth gradients, less sensitive to errors
- Better exploration: optimal policy naturally stochastic, no need for ε –greedy trick

The regularized Bellman opt. equations $V^*(x) = \underset{a}{\operatorname{softmax}}^{\eta} \{ r(x,a) + \gamma \sum_{y} P(y|x,a) V^*(y) \}$

??? Dual convex program **???** $\tilde{R}^*_{\gamma} = \max_{\mu \in \Delta} \left\{ \langle \mu, r \rangle - \frac{1}{\eta} \Phi(\mu) \right\}$

Theorem (Neu et al., 2017) The two formulations are connected by Lagrangian duality with the choice $\Phi(\mu) = \sum_{x,a} \mu(x,a) \log \frac{\mu(x,a)}{\sum_{b} \mu(x,b)}$ $= \sum_{x} \mu(x) \sum_{a} \pi_{\mu}(a|x) \log \pi_{\mu}(a|x)$

Theorem (Neu et al., 2017) The two formulations are connected by Lagrangian duality with the choice $\Phi(\mu) = \sum_{x,a} \mu(x,a) \log \frac{\mu(x,a)}{\sum_{b} \mu(x,b)}$ $= \sum_{x} \mu(x) \sum_{a} \pi_{\mu}(a|x) \log \pi_{\mu}(a|x)$

The conditional entropy of A|X under μ

Theorem (Neu et al., 2017) The two formulations are connected by Lagrangian duality with the choice $\Phi(\mu) = \sum_{x,a} \mu(x,a) \log \frac{\mu(x,a)}{\sum_{b} \mu(x,b)}$ $= \sum_{x} \mu(x) \sum_{a} \pi_{\mu}(a|x) \log \pi_{\mu}(a|x)$

The conditional entropy of A|X under μ

A convex function of μ !

The regularized Bellman opt. equations $V^*(x) = \underset{a}{\text{softmax}}^{\eta} \{ r(x,a) + \gamma \sum_y P(y|x,a) V^*(y) \}$

Dual convex program
$$\tilde{R}_{\gamma}^{*} = \max_{\mu \in \Delta} \left\{ \langle \mu, r \rangle - \frac{1}{\eta} \Phi(\mu) \right\}$$

MIRROR DESCENT WITH CONDITIONAL ENTROPY (NEU ET AL., 2017)

 $\begin{aligned} & \text{Mirror descent update} \\ & \mu_{t+1} = \arg \max_{\mu \in \Delta} \left\{ \langle \mu, r \rangle - \frac{1}{\eta_t} D_{\Phi}(\mu | \mu_t) \right\} \\ & D_{\Phi}(\mu | \mu_t) = \sum_{x,a} \mu(x, a) \log \frac{\pi_{\mu}(a | x)}{\pi_t(x, a)} \end{aligned}$

MIRROR DESCENT WITH CONDITIONAL ENTROPY (NEU ET AL., 2017)

$$\begin{aligned} & \text{Mirror descent update} \\ & \mu_{t+1} = \arg \max_{\mu \in \Delta} \left\{ \langle \mu, r \rangle - \frac{1}{\eta_t} D_{\Phi}(\mu | \mu_t) \right\} \\ & D_{\Phi}(\mu | \mu_t) = \sum_{x,a} \mu(x, a) \log \frac{\pi_{\mu}(a | x)}{\pi_t(x, a)} \end{aligned}$$

Closed-form policy update: $\pi_{t+1}(a|x) = \pi_t(a|x)e^{\eta_t \left(r(x,a) + \gamma \mathbf{E}_{y|x,a}[\widetilde{V}_t(y)] - \widetilde{V}_t(x)\right)}$

MIRROR DESCENT WITH CONDITIONAL ENTROPY (NEU ET AL., 2017)

$$\begin{aligned} & \text{Mirror descent update} \\ & \mu_{t+1} = \arg \max_{\mu \in \Delta} \left\{ \langle \mu, r \rangle - \frac{1}{\eta_t} D_{\Phi}(\mu | \mu_t) \right\} \\ & D_{\Phi}(\mu | \mu_t) = \sum_{x,a} \mu(x, a) \log \frac{\pi_{\mu}(a | x)}{\pi_t(x, a)} \end{aligned}$$

Closed-form policy update: $\pi_{t+1}(a|x) = \pi_t(a|x)e^{\eta_t \left(r(x,a) + \gamma \mathbf{E}_{y|x,a}[\widetilde{V}_t(y)] - \widetilde{V}_t(x)\right)}$

Value function \tilde{V}_t = solution to proximally regularized BOE

 $\begin{aligned} & \text{Mirror descent update} \\ & \mu_{t+1} = \arg \max_{\mu \in \Delta} \left\{ \langle \mu, r \rangle - \frac{1}{\eta_t} D_{\Phi}(\mu | \mu_t) \right\} \\ & D_{\Phi}(\mu | \mu_t) = \sum_{x,a} \mu(x, a) \log \frac{\pi_{\mu}(a | x)}{\pi_t(x, a)} \end{aligned}$

$$\begin{aligned} & \text{Mirror descent update} \\ & \mu_{t+1} = \arg \max_{\mu \in \Delta} \left\{ \langle \mu, \tilde{Q}_t - \tilde{V}_t \rangle - \frac{1}{\eta_t} D_{\Phi}(\mu | \mu_t) \right\} \end{aligned}$$

 $D_{\Phi}(\mu|\mu_t) = \sum_x \mu_t(x) \sum_a \pi_{\mu}(a|x) \log \frac{\pi_{\mu}(a|x)}{\pi_t(x,a)}$

Dense surrogate for $\langle \mu, r \rangle$ (works because $\langle \mu, r \rangle = \langle \mu, \tilde{Q}_t - \tilde{V}_t \rangle$ when $\mu \in \Delta$)

 $Mirror \, descent \, update$ $\mu_{t+1} = \arg \max_{\mu \in \Delta} \left\{ \langle \mu, \tilde{Q}_t - \tilde{V}_t \rangle - \frac{1}{\eta_t} D_{\Phi}(\mu | \mu_t) \right\}$

 $D_{\Phi}(\mu|\mu_t) = \sum_{x} \mu_t(x) \sum_{a} \pi_{\mu}(a|x) \log \frac{\pi_{\mu}(a|x)}{\pi_t(x,a)}$

 $\mu_t \approx \mu_{t+1}$, but μ_t can be sampled from

Theorem (Neu et al., 2017) TRPO is equivalent to the MDP-E algorithm of Even-Dar, Kakade and Mansour (2006) \Rightarrow $\lim_{t\to\infty} \langle \mu_t, r \rangle = \langle \mu^*, r \rangle$

Theorem (Neu et al., 2017) TRPO is equivalent to the MDP-E algorithm of Even-Dar, Kakade and Mansour (2006) \Rightarrow $\lim_{t\to\infty} \langle \mu_t, r \rangle = \langle \mu^*, r \rangle$

+ more tricks:

- Another surrogate for μ
- Truncation of objective
 - Constraint vs. penalty Mini-batch SGD

...

Theorem (Neu et al., 2017) TRPO is equivalent to the MDP-E algorithm of Even-Dar, Kakade and Mansour (2006) \Rightarrow $\lim_{t\to\infty} \langle \mu_t, r \rangle = \langle \mu^*, r \rangle$

Literally the most broadly used+ more tricks:(x, a)deep RL algorithm!x, a(but reading the original paper
is not recommended...)Truncation of objectivea|x|Mini-batch SGD

BEYOND LINEAR PROGRAMMING: SADDLE-POINT OPTIMIZATION

Dual LP $R^*_{\gamma} = \max_{\mu \in \Delta} \langle \mu, r \rangle$

Primal LP $R_{\gamma}^{*} = \min_{V \in \mathbb{R}^{X}} \langle \mu_{0}, V \rangle$ s.t. $V(x) \ge r(x, a) + \gamma \sum_{y} P(y|x, a) V(y) \quad (\forall x, a)$

BEYOND LINEAR PROGRAMMING: SADDLE-POINT OPTIMIZATION

Bellman saddle point min max{ $\langle \mu, r + \gamma PV - V \rangle + (1 - \gamma) \langle \mu_0, V \rangle$ } $V = \mu \in \Delta$

BEYOND LINEAR PROGRAMMING: SADDLE-POINT OPTIMIZATION

Bellman saddle point min max{ $\langle \mu, r + \gamma PV - V \rangle + (1 - \gamma) \langle \mu_0, V \rangle$ } $V = \mu \in \Delta$

 \approx the Lagrangian of the two LPs

\Rightarrow

solution exists & optimal policy can be extracted under same conditions

PRIMAL-DUAL π -LEARNING (WANG ET AL., 2017-)

Bellman saddle point $\min_{V} \max_{\mu \in \Delta} \{ \langle \mu, r + \gamma PV - V \rangle + (1 - \gamma) \langle \mu_0, V \rangle \}$

PRIMAL-DUAL π -LEARNING (WANG ET AL., 2017-)

Bellman saddle point $\min_{V} \max_{\mu \in \Delta} \{ \langle \mu, r + \gamma PV - V \rangle + (1 - \gamma) \langle \mu_0, V \rangle \}$

> Value update: $\tilde{V}_{t+1} = \tilde{V}_t + \alpha_t (\mu_t - \gamma \mu_t P)$

Policy update: $\mu_{t+1}(x,a) = \mu_t(x,a)e^{\eta_t \left(r(x,a) + \gamma \mathbf{E}_{y|x,a}[\widetilde{V}_t(y)] - \widetilde{V}_t(x)\right)}$

PRIMAL-DUAL π -LEARNING (WANG ET AL., 2017-)

Bellman saddle point $\min_{V} \max_{\mu \in \Delta} \{ \langle \mu, r + \gamma PV - V \rangle + (1 - \gamma) \langle \mu_0, V \rangle \}$

Value update: $\tilde{V}_{t+1} = \tilde{V}_t + \alpha_t (\mu_t - \gamma \mu_t P)$

Gradient step in primal

Exponentiated gradient step in dual

Policy update:

 $\mu_{t+1}(x,a) = \mu_t(x,a)e^{\eta_t \left(r(x,a) + \gamma \mathbf{E}_{y|x,a}[\widetilde{V}_t(y)] - \widetilde{V}_t(x)\right)}$

PRIMAL-DUAL π -learning (WANG ET AL., 2017-)

Bellman saddle point min max{ $\langle \mu, r + \gamma PV - V \rangle + (1 - \gamma) \langle \mu_0, V \rangle$ } $\mu \in \overline{\Delta}$

 $\mu_{t+1}(x,a) = \mu_t(x,a)e^{it}$

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

- Markov decision processes
 Value functions and optimal policies
- •Primal view: Dynamic programming
 - Policy evaluation, value and policy iteration
 - Value-function-based methods
 - Temporal differences, Q-learning, LSTD, deep Q networks,...

Dual view: Linear programming

- LP duality in MDPs
- Direct policy optimization methods
 - Policy gradients, REPS, TRPO,...

part 2

part 1

THIS SHORT COURSE: A PRIMAL-DUAL VIEW

EXPLORATION VS. EXPLOITATION

EXPLORATION VS. EXPLOITATION

EXPLORATION VS. EXPLOITATION

Still no practical algorithms!

- Multi-armed bandits
- Exploration bonuses
- Thompson sampling
- Monte Carlo tree search

RL is an insanely popular field with

- huge recent successes
- some beautiful fundamental theory
- unique algorithmic ideas

RL is an insanely popular field with

- huge recent successes
- some beautiful fundamental theory
- unique algorithmic ideas
- BUT still fundamental challenges in
- understanding efficient exploration
- stability of algorithms
- generalizability of successes

Come and work on RL theory ;)

BUT still fundamental challenges in

- understanding efficient exploration
- stability of algorithms
- generalizability of successes

Come and work on RL theory ;)

+ also come see PARADISE LOST tonight!

Thanks!!!