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WHAT IS REINFORCEMENT LEARNING?

Learning to 
• maximize reward 
• in a reactive environment
• under partial feedback 

Agent Environment
In state 𝑠, 

take action 𝑎

Reward 𝑟, 
new state 𝑠′
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reward?

partial observability

reward?

reward?

reward?
reward? reward?
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Breakthrough in 
Atari game playing

• State: pixels on screen
• Actions: joystick
• State transitions: game dynamics
• Reward: score in game



WHY SHOULD I CARE?

Breakthrough in 
Atari game playing

Breakthrough in Go



WHY SHOULD I CARE?

Breakthrough in 
Atari game playing

Breakthrough in Go

• State: stones currently on board
• Actions: place stone on board
• State transitions: own move + adversary’s move
• Reward: +1 for winning the game



WHY SHOULD I CARE?

Breakthrough in 
Atari game playing

Breakthrough in Go

• State: stones currently on board
• Actions: place stone on board
• State transitions: own move + adversary’s move
• Reward: +1 for winning the game

Autonomous driving



WHY SHOULD I CARE?

Breakthrough in 
Atari game playing

Breakthrough in Go

• State: stones currently on board
• Actions: place stone on board
• State transitions: own move + adversary’s move
• Reward: +1 for winning the game

Autonomous driving

• State: road conditions, other vehicles, obstacles,…
• Actions: turn left/right, accelerate/brake,…
• State transitions: depending on 

state+action+randomness
• Reward: +100 for reaching destination, -100 for 

accidents,…



RECOMMENDED READING

•Richard Sutton and Andrew Barto
(2018): “Reinforcement Learning: 
An Introduction”
• For an enjoyable (but not very 

rigorous) introduction

•Dimitri Bertsekas (2012):
“Dynamic Programming and 
Optimal Control”
• For a rigorous treatment of the basics

•Csaba Szepesvári (2012): 
“Algorithms for RL”
• For a rigorous description of basic RL 

algorithms
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MARKOV DECISION PROCESSES (MDPS)

A Markov Decision Process (MDP) is characterized by
• 𝑋: a set of states
• 𝐴: a set of actions, possibly different in each state
• 𝑃: 𝑋 × 𝐴 × 𝑋 → 0,1 : a transition function with 𝑃 ⋅ 𝑥, 𝑎 being the 

distribution of the next state given previous state 𝑥 and action 𝑎:
𝐏 𝑥𝑡+1 = 𝑥′ 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎 = 𝑃(𝑥′|𝑥, 𝑎)

• 𝑟: 𝑋 × 𝐴 → 0,1 : a reward function
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A Markov Decision Process (MDP) is characterized by 𝑋, 𝐴, 𝑃, 𝑟
Interaction in an MDP: in each round 𝑡 = 1,2, …
• Agent observes state 𝑥𝑡 and selects action 𝑎𝑡
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GOAL: 
maximize “total rewards”!
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NOTIONS OF “TOTAL REWARD”

Episodic MDPs:
 There is a terminal state 𝑥∗

 GOAL: maximize total reward until final round 𝑇
when 𝑥∗ is reached:

𝑅∗ = 𝐄  𝑡=0
𝑇 𝑟𝑡

Discounted MDPs:
 No terminal state
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄  𝑡=0

∞ 𝛾𝑡𝑟𝑡

+ other notions:
• long-term average reward (part 2?)
• total reward up to fixed horizon
• …

+ we will assume that 
𝑋 and 𝐴 are finite
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𝜋: 𝑥1, 𝑎1, 𝑥2, 𝑎2, … , 𝑥𝑡 ↦ 𝑎𝑡

Stationary policy: mapping from states to actions 
(no dependence on history or 𝑡)

𝜋: 𝑥 ↦ 𝑎

Let 𝜏 = 𝑥1, 𝑎1, 𝑥2, 𝑎2, … be a trajectory generated by 
running 𝜋 in the MDP 𝜏 ∼ (𝜋, 𝑃):
• 𝑎𝑡 = 𝜋 𝑥𝑡 , 𝑎𝑡−1, 𝑥𝑡−1, … , 𝑥1
• 𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥𝑡 , 𝑎𝑡
Expectation under this distribution: 𝐄𝜋 ⋅

POLICIES AND TRAJECTORY 
DISTRIBUTIONS
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Value function: evaluates policy 𝜋 starting from state 𝑥:
𝑉𝜋 𝑥 = 𝐄𝜋  𝑡=0

∞ 𝛾𝑡𝑟𝑡 𝑥0 = 𝑥

Action-value function: evaluates policy 𝜋 starting from 
state 𝑥 and action 𝑎:

𝑄𝜋 𝑥, 𝑎 = 𝐄𝜋  𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑥0 = 𝑥, 𝑎0 = 𝑎

“Optimal policy 𝜋∗

= argmax
𝜋

𝑉𝜋 𝑥0 ”
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VALUE FUNCTIONS 
AND THE OPTIMAL POLICY

Theorem
There exists a policy 𝜋∗ that satisfies

𝑉𝜋∗ 𝑥 = max
𝜋

𝑉𝜋 𝑥 ∀𝑥

The optimal value function:
𝑉∗ = 𝑉𝜋∗

Optimal policy: a policy 𝜋∗

that satisfies the above
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Theorem
An optimal policy 𝜋∗ satisfies
𝜋∗ 𝑥 ∈ argmax

𝑎
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= greedy with respect to 𝑄∗
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SHORT SUMMARY SO FAR

So far, we have characterized
 The value functions of a given policy
 The optimal policy through value functions
 The optimal value functions
 The optimal policy through the optimal value functions

BUT HOW DO WE FIND THE 
OPTIMAL VALUE FUNCTION??

… also, is there a way to clean up this mess? See part 2!
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THIS SHORT COURSE: 
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

part 1

part 2



DYNAMIC PROGRAMMING

Dynamic programming
=

computing value functions 
through repeated use of the 

“Bellman operators”
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…and it works!!

Power iteration
Input: arbitrary 𝑉0: 𝑋 → 𝐑 and 𝜋
For 𝑘 = 1,2, … , compute 

𝑉𝑘+1 = 𝑇𝜋𝑉𝑘
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Key idea: 𝑇∗ is a contraction
 for any two functions 𝑉 and 𝑉′, we have

𝑇∗𝑉 − 𝑇∗𝑉′
∞ ≤ 𝛾 𝑉 − 𝑉′

∞

 repeated application gives
𝑉𝑘+1 − 𝑉∗

∞ = 𝑇∗𝑉𝑘 − 𝑇∗𝑉∗
∞

≤ 𝛾 𝑉𝑘 − 𝑉∗
∞

≤ 𝛾2 𝑉𝑘−1 − 𝑉∗
∞

≤ ⋯ ≤ 𝛾𝑘 𝑉0 − 𝑉∗
∞

 thus 
lim
𝑘→∞

𝑉𝑘+1 − 𝑉∗
∞ = 0

Just replace 𝑇∗ with the 
operator 

𝐵∗: 𝑉 ↦ 𝑇𝐺 𝑉 ∞



THIS SHORT COURSE: 
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

part 1

part 2
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FEATURE MAP EXAMPLE

“coarse coding”
≈

indicator features
𝜙𝑖 𝑥 = 𝟏 𝑥 ∈ 𝑋𝑖
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“PROST” FEATURES FOR ATARI GAMES
High-dimensional 
observations: 
192×160 pixels

Low-dimensional 
observations: 
14×16 patches



METHODS FOR 
POLICY EVALUATION

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺  𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

policy evaluation
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A GENTLE START: MONTE CARLO

Idea:
approximate 𝐄𝜋[⋅] by sample averages!

 Simulate 𝑁 trajectories using policy 𝜋
 For every state 𝑥 that appears in the trajectories, let

 𝑉𝑁(𝑥) = avg 𝑅1:𝑁 𝑥

Collection of discounted 
returns  𝑡=0

𝑇′ 𝛾𝑡𝑟𝑡 after first 
visit to 𝑥

Average of i.i.d. 
random variables:

lim
𝑁→∞

 𝑉𝑁 = 𝑉𝜋



Monte Carlo policy evaluation
Input:
𝑁 trajectories ∼ 𝜋, feature map 𝜙: 𝑋 → ℝ𝑑

Output:
 𝑉𝑁 = arg min

𝜃∈ℝ𝑑
𝐄𝑥 𝜃⊤𝜙 𝑥 − 𝑅1:𝑁 𝑥

2
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Monte Carlo policy evaluation
Input:
𝑁 trajectories ∼ 𝜋, feature map 𝜙: 𝑋 → ℝ𝑑

Output:
 𝑉𝑁 = arg min

𝜃∈ℝ𝑑
𝐄𝑥 𝜃⊤𝜙 𝑥 − 𝑅1:𝑁 𝑥

2

Least-squares fit of 
discounted returns
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PROPERTIES OF MONTE CARLO

 Value estimates converge to true values 

 Doesn’t need prior knowledge of 𝑃 or 𝑟

 Doesn’t make use of the Bellman equations 



A BETTER OBJECTIVE?

Idea: construct an objective that uses 
the Bellman equations 

𝑉𝜋 ≈ 𝑇𝜋𝑉𝜋



A BETTER OBJECTIVE?

Idea: construct an objective that uses 
the Bellman equations 

𝑉𝜋 ≈ 𝑇𝜋𝑉𝜋

The Bellman error

𝐿 𝑉 = 𝐄𝑥∼𝜇 𝑇𝜋𝑉 𝑥 − 𝑉 𝑥
2
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Idea: use stochastic approximation to 
reduce instantaneous Bellman error

Δ𝑡 = 𝑇𝜋  𝑉𝑡 𝑥𝑡 −  𝑉𝑡 𝑥𝑡
2

TD(0)
Input: arbitrary function  𝑉0: 𝑋 → 𝐑
For 𝑡 = 0,1, … ,

𝛿𝑡 = 𝑟𝑡 + 𝛾  𝑉𝑡 𝑥𝑡+1 −  𝑉𝑡 𝑥𝑡
 𝑉𝑡+1 𝑥𝑡 =  𝑉𝑡 𝑥𝑡 + 𝛼𝑡𝛿𝑡
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Converges if step-sizes satisfy
 𝑡=0
∞ 𝛼𝑡 = ∞ and     𝑡=0

∞ 𝛼𝑡
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TEMPORAL DIFFERENCE LEARNING

Converges if step-sizes satisfy
 𝑡=0
∞ 𝛼𝑡 = ∞ and     𝑡=0

∞ 𝛼𝑡
2 < ∞

(e.g., 𝛼𝑡 = 𝑐/𝑡 does the job) In equilibrium, 
𝐄 𝑟𝑡 + 𝛾  𝑉𝑡 𝑥𝑡+1 −  𝑉𝑡 𝑥𝑡 = 0
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TD(0) with LFA
Input: arbitrary param. vector 𝜃0 ∈ 𝐑𝑑

For 𝑡 = 0,1, … ,

𝛿𝑡 = 𝑟𝑡 + 𝛾𝜃𝑡
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TD(0) WITH 
LINEAR FUNCTION APPROXIMATION

Let 𝜙:𝑋 → 𝐑𝑑 be a feature vector

Approximating 𝑉𝜋(𝑥) ≈ 𝜃⊤𝜙(𝑥) by TD(0):

TD(0) with LFA
Input: arbitrary param. vector 𝜃0 ∈ 𝐑𝑑

For 𝑡 = 0,1, … ,

𝛿𝑡 = 𝑟𝑡 + 𝛾𝜃𝑡
⊤𝜙 𝑥𝑡+1 − 𝜃𝑡

⊤𝜙 𝑥𝑡
𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝜙 𝑥𝑡

This still converges to 𝑉𝜋!!!
OK, well, somewhere nearby…



TD(0) WITH 
NONLINEAR FUNCTION APPROXIMATION

Let 𝑉𝜃: 𝑋 → 𝑅 be a parametric class of 
functions (e.g., deep neural network)
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NONLINEAR FUNCTION APPROXIMATION

Let 𝑉𝜃: 𝑋 → 𝑅 be a parametric class of 
functions (e.g., deep neural network)

Approximating 𝑉𝜋(𝑥) ≈ 𝑉𝜃(𝑥) by TD(0):

TD(0) with general FA
Input: arbitrary param. vector 𝜃0 ∈ 𝐑𝑑

For 𝑡 = 0,1, … ,
𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝜃𝑡 𝑥𝑡+1 − 𝑉𝜃𝑡 𝑥𝑡
𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝛻𝜃𝑉𝜃𝑡 𝑥𝑡

Not much is known about 
convergence 
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PROPERTIES OF TD(0)

 Value estimates converge to true values 

 Doesn’t need prior knowledge of 𝑃 or 𝑟

 Based on the concept of Bellman error 

= “bootstrapping”



WHERE DOES TD(0) CONVERGE TO?

TD(0) with LFA
Input: arbitrary param. vector 𝜃0 ∈ 𝐑𝑑

For 𝑡 = 0,1, … ,
𝛿𝑡 𝜃 = 𝑟𝑡 + 𝛾𝜃⊤𝜙 𝑥𝑡+1 − 𝜃⊤𝜙 𝑥𝑡

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡 𝜃𝑡 𝜙 𝑥𝑡



WHERE DOES TD(0) CONVERGE TO?

In the limit, TD(0) finds a 𝜃∗ such that
𝐄 𝛿𝑡 𝜃

∗ 𝜙 𝑥𝑡 = 0

TD(0) with LFA
Input: arbitrary param. vector 𝜃0 ∈ 𝐑𝑑

For 𝑡 = 0,1, … ,
𝛿𝑡 𝜃 = 𝑟𝑡 + 𝛾𝜃⊤𝜙 𝑥𝑡+1 − 𝜃⊤𝜙 𝑥𝑡

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡 𝜃𝑡 𝜙 𝑥𝑡
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1
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𝑇
 

𝑡=1

𝑇

𝛿𝑡 𝜃 𝜙 𝑥𝑡 = 0
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Equivalently:
1
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𝑡=1

𝑇
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𝜃 =

1
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WHERE DOES TD(0) CONVERGE TO?

Idea: given a finite trajectory, approximate 
the TD fixed point by solving

𝐄 𝛿𝑡 𝜃 𝜙 𝑥𝑡 ≈
1

𝑇
 

𝑡=1

𝑇

𝛿𝑡 𝜃 𝜙 𝑥𝑡 = 0
1

𝑇

Equivalently:
1

𝑇
 

𝑡=1

𝑇

𝜙 𝑥𝑡 𝜙 𝑥𝑡 − 𝛾𝜙 𝑥𝑡+1
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LEARNING (LSTD)

LSTD(0)
Input: trajectory 𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1

𝑇

𝜃𝑇 = 𝐴𝑇
−1𝑏𝑇

 𝑉𝑇 = 𝜃𝑇
⊤𝜙

 converges to same 𝜃∗ as TD(0) 

 no need to set step sizes 𝛼𝑡 

 computational complexity: 𝑂 𝑇𝑑2 + 𝑑3 

 𝐴𝑇
−1 may not exist for small 𝑇

TD(0): 
𝑂 𝑇𝑑
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Theorem
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THE CONVERGENCE OF TD(0) AND LSTD(0)

Theorem
In the limit 𝑇 → ∞, LSTD(0) and TD(0) both 

minimize the projected Bellman error

𝐿 𝑉 = 𝐄𝑥∼𝜇 Π𝜙 𝑇𝜋𝑉 𝑥 − 𝑉 𝑥
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Projection onto span 
of features



FROM POLICY EVALUATION 
POLICY IMPROVEMENT

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺  𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

so far:
policy evaluation



FROM POLICY EVALUATION 
POLICY IMPROVEMENT

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺  𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

now for the real deal:
policy eval + improvement
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Idea: Let’s try to
• directly learn about 𝑄∗, and
• improve the policy on the fly!

 Compute 휀-greedy policy w.r.t.  𝑄𝑡:

𝜋𝑡(𝑥) =  
argmax  𝑄𝑡 𝑥, 𝑎 , w. p. 1 − 휀
uniform random action, w. p. 휀

 Improve estimated  𝑄𝑡+1 by reducing Bellman error

Δ𝑡 = 𝐄 𝑟𝑡 + 𝛾max
𝑎

 𝑄𝑡 𝑥𝑡+1, 𝑎 −  𝑄𝑡 𝑥𝑡 , 𝑎𝑡

2

Off-policy learning:
evaluating 𝜋∗ while 

following suboptimal policy!



Q-learning
Input: arbitrary  𝑄0: 𝑋 × 𝐴 → 𝐑
For 𝑡 = 0,1, … ,
• Choose action 𝑎𝑡 ∼ 휀-greedy w.r.t.  𝑄𝑡
• Observe 𝑟𝑡, 𝑥𝑡+1
• Compute

𝛿𝑡 = 𝑟𝑡 + 𝛾max
𝑎

 𝑄𝑡 𝑥𝑡+1, 𝑎 −  𝑄𝑡 𝑥𝑡 , 𝑎𝑡
 𝑄𝑡+1 𝑥𝑡 , 𝑎𝑡 =  𝑄𝑡 𝑥𝑡 , 𝑎𝑡 + 𝛼𝑡𝛿𝑡

OFF-POLICY CONTROL: Q-LEARNING
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SARSA
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ON-POLICY CONTROL: SARSA

SARSA ∼ XARXA
Input: arbitrary  𝑄0: 𝑋 × 𝐴 → 𝐑
For 𝑡 = 0,1, … ,
• Choose action 𝑎𝑡 ∼ 휀-greedy w.r.t.  𝑄𝑡
• Observe 𝑟𝑡, 𝑥𝑡+1, 𝑎𝑡+1′

• Compute
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Q-LEARNING VS. SARSA 
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and 
non-linear FA by using the update rule
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Q-LEARNING VS. SARSA 
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and 
non-linear FA by using the update rule

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝛻𝜃𝑄𝜃(𝑥𝑡, 𝑎𝑡)

 SARSA guarantees bounded error and tends to 
behave well in practice (may not find optimal policy though)



Q-LEARNING VS. SARSA 
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and 
non-linear FA by using the update rule

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝛻𝜃𝑄𝜃(𝑥𝑡, 𝑎𝑡)

 SARSA guarantees bounded error and tends to 
behave well in practice (may not find optimal policy though)

 Q-learning may diverge catastrophically



Q-LEARNING VS. SARSA 
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and 
non-linear FA by using the update rule

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝛻𝜃𝑄𝜃(𝑥𝑡, 𝑎𝑡)

 SARSA guarantees bounded error and tends to 
behave well in practice (may not find optimal policy though)

 Q-learning may diverge catastrophically
 Proposed fixes: gradient TD algorithms, emphatic TD algorithms, 

double Q-learning, soft Q-learning, G-learning,…



Q-LEARNING VS. SARSA 
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and 
non-linear FA by using the update rule

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝛻𝜃𝑄𝜃(𝑥𝑡, 𝑎𝑡)

 SARSA guarantees bounded error and tends to 
behave well in practice (may not find optimal policy though)

 Q-learning may diverge catastrophically
 Proposed fixes: gradient TD algorithms, emphatic TD algorithms, 

double Q-learning, soft Q-learning, G-learning,…
 Practical solution: tune it until it works 
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DIVERGENCE OF 
OFF-POLICY TD LEARNING

The “deadly triad”:
 Function approximation
 Bootstrapping
 Off-policy learning

BUT
Divergence is typically not too 
extreme when behavior policy 

is close to evaluation policy
and FA is linear
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DEEP 
REINFORCEMENT 

LEARNING

the moment you all 
have been waiting for



THE PROMISE OF 
DEEP REINFORCEMENT LEARNING

Parametrize 𝑄-function/policy by a deep net

(𝑥, 𝑎)

𝑄𝜃(𝑥, 𝑎)

𝜋𝜃 𝑎 𝑥
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THE PROMISE OF 
DEEP REINFORCEMENT LEARNING

Parametrize 𝑄-function/policy by a deep net

(𝑥, 𝑎)

𝑄𝜃(𝑥, 𝑎)

𝜋𝜃 𝑎 𝑥
Hope:

Take advantage of 
representation power!

Challenge:
Existing RL methods 

difficult to generalize



LEAST-SQUARES TEMPORAL DIFFERENCE 
LEARNING (LSTD)

LSTD(0)
Input: trajectory 𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1

𝑇

𝜃𝑇 = 𝐴𝑇
−1𝑏𝑇

 𝑉𝑇 = 𝜃𝑇
⊤𝜙

 converges to same 𝜃∗ as TD(0) 

 no need to set step sizes 𝛼𝑡 

 computational complexity: 𝑂 𝑇𝑑2 + 𝑑3 

 𝐴𝑇
−1 may not exist for small 𝑇



Idea not directly applicable to non-
linear function approximation!





LSTD FOR NON-LINEAR 
FUNCTION APPROXIMATION?

Can we optimize Bellman error

𝐿 𝜃 = 𝐄𝑥∼𝜇 𝑇𝜋𝑉𝜃 𝑥 − 𝑉𝜃 𝑥
2

by stochastic gradient descent????



LSTD FOR NON-LINEAR 
FUNCTION APPROXIMATION?

Can we optimize Bellman error

𝐿 𝜃 = 𝐄𝑥∼𝜇 𝑇𝜋𝑉𝜃 𝑥 − 𝑉𝜃 𝑥
2

by stochastic gradient descent????

NO!!
Bellman error involves a double expectation:

𝐿 𝜃 = 𝐄𝑋 ℓ 𝜃; 𝑋, 𝐄𝑌 𝑌 𝑋

can’t get unbiased gradients!



LSTD FOR NON-LINEAR 
FUNCTION APPROXIMATION?

Can we optimize Bellman error

𝐿 𝜃 = 𝐄𝑥∼𝜇 𝑇𝜋𝑉𝜃 𝑥 − 𝑉𝜃 𝑥
2

by stochastic gradient descent????

NO!!
Bellman error involves a double expectation:

𝐿 𝜃 = 𝐄𝑋 ℓ 𝜃; 𝑋, 𝐄𝑌 𝑌 𝑋

The infamous 
“double sampling” 

issue of RL

can’t get unbiased gradients!
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FITTED POLICY EVALUATION

Idea: compute sequence of value 
functions by minimizing

𝐿𝑛  𝑉;  𝑉𝑘 =
1

𝑛
 

𝑡=1

𝑛

𝑟𝑡 +  𝑉𝑘 𝑥𝑡+1 −  𝑉 𝑥𝑡
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FITTED POLICY EVALUATION

Idea: compute sequence of value 
functions by minimizing

𝐿𝑛  𝑉;  𝑉𝑘 =
1

𝑛
 

𝑡=1

𝑛

𝑟𝑡 +  𝑉𝑘 𝑥𝑡+1 −  𝑉 𝑥𝑡
2

Target Free variable

This can be finally treated as a 
regression problem & solved by SGD!



FITTED POLICY ITERATION

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺  𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘 Fitted policy evaluation

휀-Greedy policy update



FITTED POLICY ITERATION

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺  𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘 Fitted policy evaluation

휀-Greedy policy update

Computing policy needs 
model of 𝑃… better use 

Q-functions!



Idea: compute sequence of 𝑄-value functions by 
minimizing

𝐿𝑛  𝑄;  𝑄𝑘 =
1

𝑛
 

𝑡=1

𝑛

𝑟𝑡 +max
𝑎

 𝑄𝑘 𝑥𝑡+1, 𝑎 −  𝑄 𝑥𝑡, 𝑎𝑡

2

FITTED VALUE ITERATION

Free variableTarget



FITTED VALUE ITERATION

Fitted value iteration
Input: function space 𝐹,  𝑄0 ∈ 𝐹
For 𝑘 = 0,1, … ,
• 𝜋𝑘 = 𝐺𝜀  𝑄𝑘
• generate trajectory

𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1
𝑛 ∼ 𝜋𝑘

• compute
 𝑄𝑘+1 = argmin

 𝑄∈𝐹
𝐿𝑛  𝑄;  𝑄𝑘
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FITTED VALUE ITERATION

Fitted value iteration
Input: function space 𝐹,  𝑄0 ∈ 𝐹
For 𝑘 = 0,1, … ,
• 𝜋𝑘 = 𝐺𝜀  𝑄𝑘
• generate trajectory

𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1
𝑛 ∼ 𝜋𝑘

• compute
 𝑄𝑘+1 = argmin

 𝑄∈𝐹
𝐿𝑛  𝑄;  𝑄𝑘

Convergence can be guaranteed!
under very technical assumptions…

Computing 
policy is trivial!
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DEEP Q NETWORKS

Parametrize 𝑄-function by a deep neural net

(𝑥, 𝑎) 𝑄𝜃(𝑥, 𝑎)
+ training tricks:
• Store transitions 𝑥, 𝑎, 𝑟, 𝑥′ in replay buffer 𝐷 to break 

dependence on recent samples
• Compute small updates by mini-batch stochastic 

gradient descent
• Use an older parameter vector 𝜃𝑘−𝑚 in target to avoid 

oscillations
• …

Minimize the loss

𝐄 𝑋,𝐴,𝑅,𝑋′ ∼𝐷 𝑅 + 𝛾max
𝑏

𝑄𝜃𝑘 𝑋′, 𝑏 − 𝑄𝜃 𝑋, 𝐴

2



DEEP Q NETWORKS FOR PLAYING ATARI

Superhuman 
performance!!

BUT results very difficult to 
reproduce as the system is 

very unstable…
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But first: 
some more notation 



Policy: mapping from histories to actions
𝜋: 𝑥1, 𝑎1, 𝑥2, 𝑎2, … , 𝑥𝑡 ↦ 𝑎𝑡

Stationary policy: mapping from states to actions 
(no dependence on history or 𝑡)

𝜋: 𝑥 ↦ 𝑎

Let 𝜏 = 𝑥1, 𝑎1, 𝑥2, 𝑎2, … be a trajectory generated by 
running 𝜋 in the MDP 𝜏 ∼ (𝜋, 𝑃):
• 𝑎𝑡 = 𝜋 𝑥𝑡 , 𝑎𝑡−1, 𝑥𝑡−1, … , 𝑥1
• 𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥𝑡 , 𝑎𝑡
Expectation under this distribution: 𝐄𝜋 ⋅

POLICIES AND TRAJECTORY 
DISTRIBUTIONS
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action distributions
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𝜋 𝑎 𝑥 = 𝑃 𝑎𝑡 = 𝑎 𝑥𝑡 = 𝑥
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ANOTHER PERSPECTIVE ON 
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state
 Discount factor 𝛾 ∈ 0,1
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ANOTHER PERSPECTIVE ON 
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄  𝑡=0

∞ 𝛾𝑡𝑟𝑡



ANOTHER PERSPECTIVE ON 
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄  𝑡=0

∞ 𝛾𝑡𝑟𝑡

Observe: the discounted reward of a policy is

𝑅𝛾
𝜋 = 𝐄𝜋  𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡
𝑅𝛾
𝜋 = 𝐄𝜋  𝑥,𝑎 𝑡=0

𝑇 𝛾𝑡𝟏 𝑥𝑡=𝑥,𝑎𝑡=𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 =  𝑥,𝑎 𝑡=0

𝑇 𝛾𝑡𝐏𝜋 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 =  𝑥,𝑎 𝜇𝜋 𝑥, 𝑎 𝑟(𝑥, 𝑎) = 𝜇𝜋, 𝑟



ANOTHER PERSPECTIVE ON 
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄  𝑡=0

∞ 𝛾𝑡𝑟𝑡

Observe: the discounted reward of a policy is

𝑅𝛾
𝜋 = 𝐄𝜋  𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡
𝑅𝛾
𝜋 = 𝐄𝜋  𝑥,𝑎 𝑡=0

∞ 𝛾𝑡𝟏 𝑥𝑡=𝑥,𝑎𝑡=𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 =  𝑥,𝑎 𝑡=0

𝑇 𝛾𝑡𝐏𝜋 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 =  𝑥,𝑎 𝜇𝜋 𝑥, 𝑎 𝑟(𝑥, 𝑎) = 𝜇𝜋, 𝑟



ANOTHER PERSPECTIVE ON 
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄  𝑡=0

∞ 𝛾𝑡𝑟𝑡

Observe: the discounted reward of a policy is

𝑅𝛾
𝜋 = 𝐄𝜋  𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡
𝑅𝛾
𝜋 = 𝐄𝜋  𝑥,𝑎 𝑡=0

∞ 𝛾𝑡𝟏 𝑥𝑡=𝑥,𝑎𝑡=𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 =  𝑥,𝑎 𝑡=0

∞ 𝛾𝑡𝐏𝜋 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 =  𝑥,𝑎 𝜇𝜋 𝑥, 𝑎 𝑟(𝑥, 𝑎) = 𝜇𝜋, 𝑟



ANOTHER PERSPECTIVE ON 
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄  𝑡=0

∞ 𝛾𝑡𝑟𝑡

Observe: the discounted reward of a policy is

𝑅𝛾
𝜋 = 𝐄𝜋  𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡
𝑅𝛾
𝜋 = 𝐄𝜋  𝑥,𝑎 𝑡=0

∞ 𝛾𝑡𝟏 𝑥𝑡=𝑥,𝑎𝑡=𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 =  𝑥,𝑎 𝑡=0

∞ 𝛾𝑡𝐏𝜋 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 =  𝑥,𝑎 𝜇𝜋 𝑥, 𝑎 𝑟(𝑥, 𝑎)



ANOTHER PERSPECTIVE ON 
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄  𝑡=0

∞ 𝛾𝑡𝑟𝑡

Observe: the discounted reward of a policy is

𝑅𝛾
𝜋 = 𝐄𝜋  𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡
𝑅𝛾
𝜋 = 𝐄𝜋  𝑥,𝑎 𝑡=0

∞ 𝛾𝑡𝟏 𝑥𝑡=𝑥,𝑎𝑡=𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 =  𝑥,𝑎 𝑡=0

∞ 𝛾𝑡𝐏𝜋 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 =  𝑥,𝑎 𝜇𝜋 𝑥, 𝑎 𝑟(𝑥, 𝑎) = 𝜇𝜋, 𝑟



ANOTHER PERSPECTIVE ON 
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄  𝑡=0

∞ 𝛾𝑡𝑟𝑡

Observe: the discounted reward of a policy is
𝑅𝛾
𝜋 = 𝜇𝜋, 𝑟

𝜇𝜋 = the discounted occupancy measure
induced by policy 𝜋:
𝜇𝜋 𝑥, 𝑎 =  𝑡=0

∞ 𝛾𝑡𝐏𝜋 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎



ANOTHER PERSPECTIVE ON 
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄  𝑡=0

∞ 𝛾𝑡𝑟𝑡

Observe: the discounted reward of a policy is
𝑅𝛾
𝜋 = 𝜇𝜋, 𝑟

𝜇𝜋 = the discounted occupancy measure
induced by policy 𝜋:
𝜇𝜋 𝑥, 𝑎 =  𝑡=0

∞ 𝛾𝑡𝐏𝜋 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎

A linear optimization 
problem?!



TOWARDS A LINEAR-PROGRAM 
FORMULATION 

Theorem
A function 𝜇 is a discounted occupancy measure of some 
(stationary stochastic) policy 𝜋 if and only if it satisfies

 

𝒂′

𝜇 𝑥′, 𝑎′ = 1 − 𝛾  

𝒂′

𝜇0 𝑥′, 𝑎′ + 𝛾 

𝑥,𝑎

𝑃 𝑥′ 𝑥, 𝑎 𝜇 𝑥, 𝑎

and  𝑥,𝑎 𝜇(𝑥, 𝑎) = 1/(1 − 𝛾).



TOWARDS A LINEAR-PROGRAM 
FORMULATION 

Theorem
A function 𝜇 is a discounted occupancy measure of some 
(stationary stochastic) policy 𝜋 if and only if it satisfies

 

𝒂′

𝜇 𝑥′, 𝑎′ = 1 − 𝛾  

𝒂′

𝜇0 𝑥′, 𝑎′ + 𝛾 

𝑥,𝑎

𝑃 𝑥′ 𝑥, 𝑎 𝜇 𝑥, 𝑎

and  𝑥,𝑎 𝜇(𝑥, 𝑎) = 1/(1 − 𝛾).

Linear constraints!
Define Δ = the set of 

occupancy measures 𝜇.
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∗ = max

𝜇∈Δ
〈𝜇, 𝑟〉



OPTIMIZATION IN MDPS 
AS A LINEAR PROGRAM

Dual LP
𝑅𝛾
∗ = max

𝜇∈Δ
〈𝜇, 𝑟〉

Primal LP’
𝑅𝛾
∗ = min

𝑉∈ℝ𝑋
𝜇0, 𝑉

s.t. 𝑉 𝑥 ≥ 𝑟 𝑥, 𝑎 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝑎 𝑉 𝑦 ∀𝑥, 𝑎



OPTIMIZATION IN MDPS 
AS A LINEAR PROGRAM

Dual LP
𝑅𝛾
∗ = max

𝜇∈Δ
〈𝜇, 𝑟〉

Primal LP’
𝑅𝛾
∗ = min

𝑉∈ℝ𝑋
𝜇0, 𝑉

s.t. 𝑉 𝑥 ≥ 𝑟 𝑥, 𝑎 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝑎 𝑉 𝑦 ∀𝑥, 𝑎

*names are due to tradition



OPTIMIZATION IN MDPS 
AS A LINEAR PROGRAM

Dual LP
𝑅𝛾
∗ = max

𝜇∈Δ
〈𝜇, 𝑟〉
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𝑎
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OPTIMIZATION IN MDPS 
AS A LINEAR PROGRAM

Dual LP
𝑅𝛾
∗ = max

𝜇∈Δ
〈𝜇, 𝑟〉

Primal LP ≡ The Bellman opt. equations
𝑉∗ 𝑥 = max

𝑎
𝑟 𝑥, 𝑎 + 𝛾  𝑦𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

*names are due to tradition

A single numerical 
objective to optimize!

Assuming 𝜇0 > 0



OPTIMAL SOLUTIONS OF THE LP

Theorem
There exists a basic solution 𝜇∗ ∈ Δ to the dual LP.
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“Proof”: 
objective 𝜇, 𝑟 is bounded on nonempty Δ

⇒
there exists optimal solution 𝜇∗ ∈ Δ

⇒
there exists basic solution 𝜇∗ ∈ Δ

Theorem
There exists a basic solution 𝜇∗ ∈ Δ to the dual LP.



OPTIMAL SOLUTIONS OF THE LP

“Proof”: 
objective 𝜇, 𝑟 is bounded on nonempty Δ

⇒
there exists optimal solution 𝜇∗ ∈ Δ

⇒
there exists basic solution 𝜇∗ ∈ Δ

Theorem
There exists a basic solution 𝜇∗ ∈ Δ to the dual LP.

A “corner” of Δ
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Question: how do we extract a policy 
from a feasible 𝜇 ∈ Δ??
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Corollary
Assume that 𝜇0(𝑥) > 0 for all 𝑥 ∈ 𝑋. Then, for any 

occupancy measure 𝜇 ∈ Δ, there exists a unique policy 𝜋
such that 𝜇 = 𝜇𝜋, given by

𝜋 𝑎 𝑥 =
𝜇 𝑥, 𝑎

 𝑏 𝜇 𝑥, 𝑏
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EXTRACTING A POLICY

Question: how do we extract a policy 
from a feasible 𝜇 ∈ Δ??

Corollary
Assume that 𝜇0(𝑥) > 0 for all 𝑥 ∈ 𝑋. Then, for any 

occupancy measure 𝜇 ∈ Δ, there exists a unique policy 𝜋
such that 𝜇 = 𝜇𝜋, given by

𝜋 𝑎 𝑥 =
𝜇 𝑥, 𝑎

 𝑏 𝜇 𝑥, 𝑏
.

Well-defined since 
 𝑏 𝜇(𝑥, 𝑏) > 0 by assumption

Basic solutions 
⇔

Deterministic policies



LINEAR PROGRAMMING FOR MDPS

“Why don’t they teach this in school?!?”
• Needs some strange conditions that DP theory does not

(𝜇0 > 0 for existence results and for optimal policy)
• Temporal aspect is rather abstract

• Less intuitive for control theorists and computational 
neuroscience folks (classic RL crowd)
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A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…
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•Direct policy optimization methods
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Idea: derive algorithms by thinking of 
𝜇 ∈ Δ as the decision variable!
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POLICY GRADIENT METHODS

Parameter space Θ

𝜃

• Construct mapping 
𝜃 ↦ 𝜋𝜃

• Define objective function:
𝜌 𝜃 = 𝑅𝛾

𝜋𝜃

• Update parameters by 
gradient ascent:
𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝛻𝜃𝜌 𝜃𝑘

(𝑥, 𝑎) 𝜋𝜃 𝑎 𝑥
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POLICY GRADIENT METHODS

Parameter space Θ

𝜃

… and hope for convergence

𝜃∗

How can we estimate 
the gradients?

• Construct mapping 
𝜃 ↦ 𝜋𝜃

• Define objective function:
𝜌 𝜃 = 𝑅𝛾

𝜋𝜃

• Update parameters by 
gradient ascent:
𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝛻𝜃𝜌 𝜃𝑘

(𝑥, 𝑎) 𝜋𝜃 𝑎 𝑥
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Theorem

𝛻𝜃𝜌 𝜃 = 
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𝜇𝜃 𝑥  

𝑎

𝛻𝜃𝜋𝜃 𝑎 𝑥 𝑄𝜋𝜃 𝑥, 𝑎



THE POLICY GRADIENT THEOREM

Theorem

𝛻𝜃𝜌 𝜃 = 

𝑥

𝜇𝜃 𝑥  

𝑎

𝛻𝜃𝜋𝜃 𝑎 𝑥 𝑄𝜋𝜃 𝑥, 𝑎

Corollary
Assuming that 𝜋𝜃 𝑎 𝑥 > 0 for all 𝑥, 𝑎,

𝛻𝜃𝜌 𝜃 = 

𝑥,𝑎

𝜇𝜃 𝑥 𝜋𝜃 𝑎 𝑥 𝛻𝜃 log 𝜋𝜃 𝑎 𝑥 𝑄𝜋𝜃 𝑥, 𝑎
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𝑥

𝜇𝜃 𝑥  

𝑎

𝛻𝜃𝜋𝜃 𝑎 𝑥 𝑄𝜋𝜃 𝑥, 𝑎

THE POLICY GRADIENT THEOREM

Corollary
Assuming that 𝜋𝜃 𝑎 𝑥 > 0 for all 𝑥, 𝑎,

𝛻𝜃𝜌 𝜃 = 𝐄  𝑥,  𝑎 ∼𝜇𝜃𝜋𝜃
𝛻𝜃 log 𝜋𝜃  𝑎  𝑥 𝑄𝜋𝜃  𝑥,  𝑎



Theorem

𝛻𝜃𝜌 𝜃 = 

𝑥

𝜇𝜃 𝑥  

𝑎

𝛻𝜃𝜋𝜃 𝑎 𝑥 𝑄𝜋𝜃 𝑥, 𝑎

THE POLICY GRADIENT THEOREM

Corollary
Assuming that 𝜋𝜃 𝑎 𝑥 > 0 for all 𝑥, 𝑎,

𝛻𝜃𝜌 𝜃 = 𝐄  𝑥,  𝑎 ∼𝜇𝜃𝜋𝜃
𝛻𝜃 log 𝜋𝜃  𝑎  𝑥 𝑄𝜋𝜃  𝑥,  𝑎

Gradient can be written as an 
expectation!!!!
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GRADIENT ALGORITHM

Idea: replace expectation by a sample 
mean ⇒ stochastic gradient algorithm



REINFORCE: A STOCHASTIC POLICY 
GRADIENT ALGORITHM

REINFORCE
Input: arbitrary initial 𝜃0
For 𝑘 = 0,1,…
• Obtain sample trajectory 𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1

𝑇 ∼ 𝜋𝜃𝑘
• Estimate  𝑄𝑘 ≈ 𝑄𝜋𝜃𝑘 by Monte Carlo
• Estimate 𝑔𝑘 ≈ 𝛻𝜃𝜌 𝜃𝑘 by the average of 

𝑔𝑘,𝑡 = 𝛻𝜃 log 𝜋𝜃𝑘 𝑎𝑡 𝑥𝑡  𝑄𝑘 𝑥𝑡, 𝑎𝑡
• Update 𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝑔𝑘

Idea: replace expectation by a sample 
mean ⇒ stochastic gradient algorithm



REINFORCE: A STOCHASTIC POLICY 
GRADIENT ALGORITHM

REINFORCE
Input: arbitrary initial 𝜃0
For 𝑘 = 0,1,…
• Obtain sample trajectory 𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1

𝑇 ∼ 𝜋𝜃𝑘
• Estimate  𝑄𝑘 ≈ 𝑄𝜋𝜃𝑘 by Monte Carlo
• Estimate 𝑔𝑘 ≈ 𝛻𝜃𝜌 𝜃𝑘 by the average of 

𝑔𝑘,𝑡 = 𝛻𝜃 log 𝜋𝜃𝑘 𝑎𝑡 𝑥𝑡  𝑄𝑘 𝑥𝑡, 𝑎𝑡
• Update 𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝑔𝑘

Idea: replace expectation by a sample 
mean ⇒ stochastic gradient algorithm

𝐄 𝑔𝑘 = 𝛻𝜃𝜌 𝜃𝑘



REINFORCE AS DIRECT POLICY SEARCH

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺  𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

Policy gradient update

Monte Carlo evaluation



REINFORCE AS DIRECT POLICY SEARCH

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺  𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

Policy gradient update

Monte Carlo evaluation

 direct method: no explicit 
approximation of 𝑉𝜋



 converges to local optimum 

 less aggressive updates 

 large variance of 𝑔𝑘 



ACTOR-CRITIC METHODS

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺  𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

ACTOR

CRITIC

Typical actor: 
policy gradient updates

Critic:
• Monte Carlo ⇒ REINFORCE
• TD(𝜆)
• LSTD(𝜆)
• DQN, …
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Parametrize policy by a deep neural net

(𝑥, 𝑎) 𝜋𝜃 𝑎 𝑥



A TYPICAL DEEP RL ARCHITECTURE: A3C

Parametrize policy by a deep neural net

(𝑥, 𝑎) 𝜋𝜃 𝑎 𝑥

+ another neural net to estimate 𝑉𝜋𝜃 and to 
estimate 𝑄𝜋𝜃 by “bootstrapped” Monte Carlo

+ asynchronous updates
+ entropy-regularization of the objective

+…



POLICY GRADIENTS: THE FINAL ANSWER?

Policy gradient update
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𝜃
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2
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POLICY GRADIENTS: THE FINAL ANSWER?

Policy gradient update

𝜃𝑡+1 = argmax
𝜃

𝜃, 𝛻𝜌 𝜃𝑡 −
1

𝛼𝑡
𝜃 − 𝜃𝑡 2

2

Issue #1:
Euclidean norm may be 
unnatural way to measure 
distance between 𝜇𝜃 and 𝜇𝜃𝑡?

Issue #2:
Linearizing 𝜌 at 𝜃𝑡 may 
lead to instability?

+ Issue #3:
Policy gradient estimator 
has huge variance 
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SMOOTHED LINEAR PROGRAMS

Dual LP
𝑅𝛾
∗ = max

𝜇∈Δ
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A BETTER APPROACH: 
SMOOTHED LINEAR PROGRAMS

Dual convex program

 𝑅𝛾
∗ = max

𝜇∈Δ
𝜇, 𝑟 +

1

𝜂
Φ 𝜇

Φ: strongly convex function of 𝜇:
• smooth optimum

𝜇∗ = argmax
𝜇

𝜇, 𝑟 +
1
𝜂
Φ 𝜇 =

1

𝜂
∇𝑟Φ

∗(𝜂𝑟)

• regularization effect ⇒ better  generalization?



BETTER PROXIMAL REGULARIZATION: 
MIRROR DESCENT

Policy gradient update
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BETTER PROXIMAL REGULARIZATION: 
MIRROR DESCENT

Policy gradient update

𝜃𝑡+1 = argmax
𝜃

𝜃, 𝛻𝜌 𝜃𝑡 −
1

𝛼𝑡
𝜃 − 𝜃𝑡 2

2

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷 𝜇 𝜇𝑡

Proximal regularization through 
Bregman divergence 𝐷 𝜇 𝜇′

(strongly convex in 𝜇)

No need for local 
linearization



DIRECT POLICY OPTIMIZATION

Examples
 Policy gradient methods 
= gradient descent on −𝑅𝛾𝜋

 Relative Entropy Policy Search (REPS) 
= mirror descent on −𝑅𝛾𝜋

 Trust-region policy optimization (TRPO)
= mirror descent on (a surrogate of) −𝑅𝛾𝜋

Idea: derive algorithms by thinking of 
𝜇 ∈ Δ as the decision variable!



RELATIVE ENTROPY POLICY SEARCH
(REPS, PETERS ET AL., 2010)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷 𝜇 𝜇𝑡

𝐷 𝜇 𝜇′ =  𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜇(𝑥,𝑎)

𝜇′(𝑥,𝑎)
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(REPS, PETERS ET AL., 2010)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷 𝜇 𝜇𝑡

𝐷 𝜇 𝜇′ =  𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜇(𝑥,𝑎)

𝜇′(𝑥,𝑎)

Closed-form “policy update”:

𝜇𝑡+1 𝑥, 𝑎 = 𝜇𝑡 𝑥, 𝑎 𝑒
𝜂𝑡 𝑟 𝑥,𝑎 +𝛾𝐄𝑦|𝑥,𝑎  𝑉𝑡 𝑦 − 𝑉𝑡 𝑥



RELATIVE ENTROPY POLICY SEARCH
(REPS, PETERS ET AL., 2010)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷 𝜇 𝜇𝑡

𝐷 𝜇 𝜇′ =  𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜇(𝑥,𝑎)

𝜇′(𝑥,𝑎)

Closed-form “policy update”:

𝜇𝑡+1 𝑥, 𝑎 = 𝜇𝑡 𝑥, 𝑎 𝑒
𝜂𝑡 𝑟 𝑥,𝑎 +𝛾𝐄𝑦|𝑥,𝑎  𝑉𝑡 𝑦 − 𝑉𝑡 𝑥

“Value function” 
 𝑉𝑡 = ???



THE REPS VALUE FUNCTION

Theorem
The REPS value function  𝑉𝑡 is given as 

the minimizer of the loss function
 𝐿 𝑉 = log 𝐄𝑥∼𝜇𝑡 𝑒

𝜂𝑡 𝑇𝜋𝑉 𝑥 −𝑉 𝑥



THE REPS VALUE FUNCTION

“Proof”: Lagrangian duality.

Theorem
The REPS value function  𝑉𝑡 is given as 

the minimizer of the loss function
 𝐿 𝑉 = log 𝐄𝑥∼𝜇𝑡 𝑒

𝜂𝑡 𝑇𝜋𝑉 𝑥 −𝑉 𝑥



THE REPS VALUE FUNCTION

“Proof”: Lagrangian duality.

Theorem
The REPS value function  𝑉𝑡 is given as 

the minimizer of the loss function
 𝐿 𝑉 = log 𝐄𝑥∼𝜇𝑡 𝑒

𝜂𝑡 𝑇𝜋𝑉 𝑥 −𝑉 𝑥

A natural competitor for the Bellman error

𝐿 𝑉 = 𝐄𝑥∼𝜇 𝑇𝜋𝑉 𝑥 − 𝑉 𝑥
2

???

Stay tuned for “deep REPS” results 



DIRECT POLICY OPTIMIZATION

Examples
 Policy gradient methods 
= gradient descent on −𝑅𝛾𝜋

 Relative Entropy Policy Search (REPS) 
= mirror descent on −𝑅𝛾𝜋

 Trust-region policy optimization (TRPO)
= mirror descent on (a surrogate of) −𝑅𝛾𝜋

Idea: derive algorithms by thinking of 
𝜇 ∈ Δ as the decision variable!



THE REGULARIZED BELLMAN EQUATIONS

The Bellman opt. equations
𝑉∗ 𝑥 = max

𝑎
𝑟 𝑥, 𝑎 + 𝛾  𝑦𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦
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• Better optimization properties: 

smooth gradients, less sensitive to errors
• Better exploration:

optimal policy naturally stochastic, no 
need for 휀 −greedy trick



The regularized Bellman opt. equations
𝑉∗ 𝑥 = softmax

𝑎

𝜂 𝑟 𝑥, 𝑎 + 𝛾  𝑦𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

THE REGULARIZED BELLMAN EQUATIONS

Used almost exclusively since ∼late 2016
• Better optimization properties: 

smooth gradients, less sensitive to errors
• Better exploration:

optimal policy naturally stochastic, no 
need for 휀 −greedy trick

Is there a natural “dual” 
explanation?



The regularized Bellman opt. equations
𝑉∗ 𝑥 = softmax

𝑎

𝜂 𝑟 𝑥, 𝑎 + 𝛾  𝑦𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

DUALITY THEORY FOR 
THE REGULARIZED BELLMAN EQUATIONS

??? Dual convex program ???

 𝑅𝛾
∗ = max

𝜇∈Δ
𝜇, 𝑟 −

1

𝜂
Φ 𝜇



DUALITY THEORY FOR 
THE REGULARIZED BELLMAN EQUATIONS

Theorem (Neu et al., 2017)
The two formulations are connected 

by Lagrangian duality with the choice

Φ 𝜇 = 

𝑥,𝑎

𝜇 𝑥, 𝑎 log
𝜇 𝑥, 𝑎

 𝑏 𝜇(𝑥, 𝑏)
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𝑥

𝜇 𝑥  

𝑎

𝜋𝜇 𝑎 𝑥 log 𝜋𝜇 𝑎 𝑥
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DUALITY THEORY FOR 
THE REGULARIZED BELLMAN EQUATIONS

Theorem (Neu et al., 2017)
The two formulations are connected 

by Lagrangian duality with the choice

Φ 𝜇 = 

𝑥,𝑎

𝜇 𝑥, 𝑎 log
𝜇 𝑥, 𝑎

 𝑏 𝜇(𝑥, 𝑏)

Φ 𝜇 = 

𝑥

𝜇 𝑥  

𝑎

𝜋𝜇 𝑎 𝑥 log 𝜋𝜇 𝑎 𝑥

The conditional entropy 
of 𝐴|𝑋 under 𝜇 A convex function of 𝜇!



The regularized Bellman opt. equations
𝑉∗ 𝑥 = softmax

𝑎

𝜂 𝑟 𝑥, 𝑎 + 𝛾  𝑦𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

DUALITY THEORY FOR 
THE REGULARIZED BELLMAN EQUATIONS

Dual convex program

 𝑅𝛾
∗ = max

𝜇∈Δ
𝜇, 𝑟 −

1

𝜂
Φ 𝜇



MIRROR DESCENT WITH CONDITIONAL 
ENTROPY (NEU ET AL., 2017)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷Φ 𝜇 𝜇𝑡

𝐷Φ 𝜇 𝜇𝑡 =  𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜋𝜇 𝑎 𝑥
𝜋𝑡(𝑥,𝑎)



MIRROR DESCENT WITH CONDITIONAL 
ENTROPY (NEU ET AL., 2017)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷Φ 𝜇 𝜇𝑡

𝐷Φ 𝜇 𝜇𝑡 =  𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜋𝜇 𝑎 𝑥
𝜋𝑡(𝑥,𝑎)

Closed-form policy update:

𝜋𝑡+1 𝑎|𝑥 = 𝜋𝑡 𝑎|𝑥 𝑒
𝜂𝑡 𝑟 𝑥,𝑎 +𝛾𝐄𝑦|𝑥,𝑎  𝑉𝑡 𝑦 − 𝑉𝑡 𝑥



MIRROR DESCENT WITH CONDITIONAL 
ENTROPY (NEU ET AL., 2017)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷Φ 𝜇 𝜇𝑡

𝐷Φ 𝜇 𝜇𝑡 =  𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜋𝜇 𝑎 𝑥
𝜋𝑡(𝑥,𝑎)

Closed-form policy update:

𝜋𝑡+1 𝑎|𝑥 = 𝜋𝑡 𝑎|𝑥 𝑒
𝜂𝑡 𝑟 𝑥,𝑎 +𝛾𝐄𝑦|𝑥,𝑎  𝑉𝑡 𝑦 − 𝑉𝑡 𝑥

Value function  𝑉𝑡 = solution to 
proximally regularized BOE
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TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇,  𝑄𝑡 −  𝑉𝑡 −
1

𝜂𝑡
𝐷Φ 𝜇 𝜇𝑡

Dense surrogate for 〈𝜇, 𝑟〉
(works because 𝜇, 𝑟 = 𝜇,  𝑄𝑡 −  𝑉𝑡 when 𝜇 ∈ Δ)

𝐷Φ 𝜇 𝜇𝑡 =  𝑥 𝜇𝑡 𝑥  𝑎 𝜋𝜇 𝑎 𝑥 log
𝜋𝜇(𝑎|𝑥)

𝜋𝑡(𝑥,𝑎)

𝜇𝑡 ≈ 𝜇𝑡+1, but 𝜇𝑡 can be sampled from



TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

Theorem (Neu et al., 2017)
TRPO is equivalent to the MDP-E algorithm of 

Even-Dar, Kakade and Mansour (2006)
⇒

lim
𝑡→∞

〈𝜇𝑡, 𝑟〉 = 〈𝜇∗, 𝑟〉
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(𝑥, 𝑎)
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𝜋𝜃 𝑎 𝑥

+ more tricks:
• Another surrogate for 𝜇
• Truncation of objective
• Constraint vs. penalty
• Mini-batch SGD
• …
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TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

(𝑥, 𝑎)
𝑄𝜃(𝑥, 𝑎)

𝜋𝜃 𝑎 𝑥

+ more tricks:
• Another surrogate for 𝜇
• Truncation of objective
• Constraint vs. penalty
• Mini-batch SGD
• …

Theorem (Neu et al., 2017)
TRPO is equivalent to the MDP-E algorithm of 

Even-Dar, Kakade and Mansour (2006)
⇒

lim
𝑡→∞

〈𝜇𝑡, 𝑟〉 = 〈𝜇∗, 𝑟〉

Literally the most broadly used 
deep RL algorithm!

(but reading the original paper 
is not recommended…)



BEYOND LINEAR PROGRAMMING:
SADDLE-POINT OPTIMIZATION

Dual LP
𝑅𝛾
∗ = max

𝜇∈Δ
〈𝜇, 𝑟〉

Primal LP’
𝑅𝛾
∗ = min

𝑉∈ℝ𝑋
𝜇0, 𝑉

s.t. 𝑉 𝑥 ≥ 𝑟 𝑥, 𝑎 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝑎 𝑉 𝑦 ∀𝑥, 𝑎
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SADDLE-POINT OPTIMIZATION

Bellman saddle point
min
𝑉

max
𝜇∈Δ

𝜇, 𝑟 + 𝛾𝑃𝑉 − 𝑉 + 1 − 𝛾 𝜇0, 𝑉



BEYOND LINEAR PROGRAMMING:
SADDLE-POINT OPTIMIZATION

Bellman saddle point
min
𝑉

max
𝜇∈Δ

𝜇, 𝑟 + 𝛾𝑃𝑉 − 𝑉 + 1 − 𝛾 𝜇0, 𝑉

≈ the Lagrangian of the two LPs 
⇒

solution exists & optimal policy can 
be extracted under same conditions 



PRIMAL-DUAL 𝜋-LEARNING
(WANG ET AL., 2017-)

Bellman saddle point
min
𝑉

max
𝜇∈Δ

𝜇, 𝑟 + 𝛾𝑃𝑉 − 𝑉 + 1 − 𝛾 𝜇0, 𝑉



PRIMAL-DUAL 𝜋-LEARNING
(WANG ET AL., 2017-)

Bellman saddle point
min
𝑉

max
𝜇∈Δ

𝜇, 𝑟 + 𝛾𝑃𝑉 − 𝑉 + 1 − 𝛾 𝜇0, 𝑉

Policy update:

𝜇𝑡+1 𝑥, 𝑎 = 𝜇𝑡 𝑥, 𝑎 𝑒
𝜂𝑡 𝑟 𝑥,𝑎 +𝛾𝐄𝑦|𝑥,𝑎  𝑉𝑡 𝑦 − 𝑉𝑡 𝑥

Value update:
 𝑉𝑡+1 =  𝑉𝑡 + 𝛼𝑡 𝜇𝑡 − 𝛾𝜇𝑡𝑃
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Exponentiated gradient 
step in dual



PRIMAL-DUAL 𝜋-LEARNING
(WANG ET AL., 2017-)

Bellman saddle point
min
𝑉

max
𝜇∈Δ

𝜇, 𝑟 + 𝛾𝑃𝑉 − 𝑉 + 1 − 𝛾 𝜇0, 𝑉

Policy update:

𝜇𝑡+1 𝑥, 𝑎 = 𝜇𝑡 𝑥, 𝑎 𝑒
𝜂𝑡 𝑟 𝑥,𝑎 +𝛾𝐄𝑦|𝑥,𝑎  𝑉𝑡 𝑦 − 𝑉𝑡 𝑥

Value update:
 𝑉𝑡+1 =  𝑉𝑡 + 𝛼𝑡 𝜇𝑡 − 𝛾𝜇𝑡𝑃

Gradient step in primal

Exponentiated gradient 
step in dual

≈ incremental REPS
state-of-the art sample complexity 

results for discounted & 
undiscounted MDPs!



THIS SHORT COURSE: 
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

part 1

part 2



THIS SHORT COURSE: 
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

part 1

part 2
what else?



state actions

next state

reward

EXPLORATION VS. EXPLOITATION

reward?

reward?

reward?

reward?
reward? reward?



state actions

next state

reward

EXPLORATION VS. EXPLOITATION

reward?

reward?

reward?

reward?
reward? reward?

• Multi-armed bandits
• Exploration bonuses
• Thompson sampling

• Monte Carlo tree search
• …



state actions

next state

reward

EXPLORATION VS. EXPLOITATION

reward?

reward?

reward?

reward?
reward? reward?

• Multi-armed bandits
• Exploration bonuses
• Thompson sampling

• Monte Carlo tree search
• …

Still no practical 
algorithms!
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CONCLUSION

RL is an insanely popular field with
 huge recent successes
 some beautiful fundamental theory
 unique algorithmic ideas

BUT still fundamental challenges in
 understanding efficient exploration
 stability of algorithms
 generalizability of successes

Come and work on RL theory ;)

Thanks!!!

+ also come see

tonight!


