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Abstract

We consider an online influence maximization problem in which a decision maker
selects a node among a large number of possibilities and places a piece of infor-
mation at the node. The node transmits the information to some others that are in
the same connected component in a random graph. The goal of the decision maker
is to reach as many nodes as possible, with the added complication that feedback
is only available about the degree of the selected node. Our main result shows
that such local observations can be sufficient for maximizing global influence in
two broadly studied families of random graph models: stochastic block models
and Chung–Lu models. With this insight, we propose a bandit algorithm that
aims at maximizing local (and thus global) influence, and provide its theoretical
analysis in both the subcritical and supercritical regimes of both considered models.
Notably, our performance guarantees show no explicit dependence on the total
number of nodes in the network, making our approach well-suited for large-scale
applications.

1 Introduction

Finding most influential nodes in social networks has received increasing attention in the last few
years. The problem has been cast in a variety of different ways according to the notion of influence
and the information available to a decision maker. We refer the reader to [18, 9, 10, 27, 7, 29, 28] and
the references therein for recent progress in various directions. In the present paper, we consider the
problem of maximizing influence in a sequential setup where the learner has only partial information
about the set of influenced nodes.

Specifically, we define and explore a sequential decision-making model in which the goal of a decision
maker is to find a node among a set V of n possible nodes with maximal (expected) influence. In
our model, at every time instance t = 1, . . . , T , the n nodes form the vertex set of a random graph
Gt such that node i and node j are connected in Gt by an (undirected) edge with probability pi,j .
All edges are present independently of each other and the graphs G1, . . . , GT are independent and
identically distributed. If the decision maker selects a node vt ∈ V at time t, then the information
placed at the node spreads to the entire connected component of vt in the graph Gt. The goal of
the decision maker is to spread the information as much as possible, which can be formulated as
maximizing a notion of rewards corresponding to the number of vertices in the connected component
containing the selected node.
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In this paper, we study a setting where the decision maker has no prior knowledge of the distribution
ofGt, so it has to learn about this distribution on the fly, while simultaneously attempting to maximize
the total rewards. This gives rise to a dilemma of exploration versus exploitation, which is commonly
studied within the framework of multi-armed bandits [5]. Indeed, if the decision maker could observe
the set of all influenced nodes in every round, the sequential influence maximization problem outlined
above could be naturally formulated as a stochastic multi-armed bandit problem [20, 2]. However,
this direct approach has multiple setbacks. First off, in most practical applications, the number n
of nodes is so large that one cannot even hope to maintain individual statistics about each of them,
let alone expect any algorithm to identify the most influential node in any reasonable time. More
importantly, in most cases of practical interest, tracking down the set of all influenced users may be
difficult or downright impossible due to privacy and computational considerations. This motivates
the study of a more restrictive setting where the decision maker has to manage with only partial
observations of the set of influenced nodes.

Formally, we address this latter challenge by considering a more realistic observation model, where
after selecting a node vt to be influenced, the learner only observes the number of immediate neighbors
of vt in the realized random graphGt (i.e., the degree of vt inGt). This model brings up the following
important question: is it possible to maximize global influence while only having access to such local
measurements? Our key technical result is answering this question in the positive for some broadly
studied random graph models. Specifically, we show that, assuming that the graphs Gt are generated
from certain stochastic block models [1] or a Chung–Lu model [14], maximizing local influence is
equivalent to maximizing global influence.

This observation motivates our algorithmic approach that applies ideas from the multi-armed bandit
literature to try and maximize the local influence of each selected node. In order to analyze the
performance of our algorithms, we adapt the standard notion of regret from said literature to fit our
needs. The traditional notion of regret measures the difference between the cumulative reward of
choosing a maximally influential node in each round and the cumulative reward the decision maker
achieves during the T rounds of the game. This definition, however, is rather problematic in our
problem setup: as mentioned above, the number n of all nodes is typically so large that finding a
maximally influential node is computationally infeasible, thus making the task of competing with
this benchmark unreasonably complicated. To resolve this issue, we consider the notion of quantile
regret that compares the learner’s performance to the top α-fraction of all nodes ([8, 12, 22, 19]).
Our main result is showing both instance-dependent bounds of order logT and worst-case bounds of
order

√
T on the quantile regret of our algorithm. Notably, our bounds hold for both the subcritical

and supercritical regimes of the random-graph models considered, and show no explicit dependence
on the number of nodes n.

Related online influence maximization algorithms consider more general classes of networks, but
make more restrictive assumptions about the interplay between rewards and feedback. One line
of work explored by Wen et al. [29], Wang and Chen [28] assumes that the algorithm receives
full feedback on where the information reached in the previous trials (i.e., not only the number
of influenced nodes, but their exact identities and influence paths, too). Clearly, such detailed
measurements are nearly impossible to obtain in practice, as opposed to the local observations that
our algorithm requires. Another related setup was considered by Carpentier and Valko [7], whose
algorithm only receives feedback about the nodes that were directly influenced by the chosen node,
but the model does not assume that neighbors in the graph share the information to further neighbors
and counts the reward only by the nodes directly connected to the selected one. That is, in contrast
to our work, this work does not attempt to show any relation between local and global influence
maximization. One downside to all the above works is that they all provide rather conservative
performance guarantees: On one hand, Wen et al. [29] and Carpentier and Valko [7] are concerned
with worst-case regret bounds that uniformly hold for all problem instances for a fixed time horizon
T . On the other hand, the bounds of Wang and Chen [28] depend on topological (rather than
probabilistic) characteristics of the underlying graph structure, which inevitably leads to conservative
results. For example, their bounds instantiated in our graph model lead to a regret bound of order
n3 log T , which is virtually void of meaning in our regime of interest where n is very large (e.g, in
the order of billions). In contrast, our bounds do not show explicit dependence on n. In this light, our
work can be seen as the first one that takes advantage of a specific graph structure to obtain strong
instance-dependent global performance guarantees, all while having access to only local observations.
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The rest of the paper is organized as follows. In Section 2 we formally introduce the regret minimiza-
tion problem and the notation. In Section 3, we introduce our key technical results that show the
connection between local and global influence maximization. We describe our algorithm and state its
performance guarantees in Section 4. We describe the main structure of the analysis in Section 5 and
discuss our results in Section 6.

2 Preliminaries

We now describe our problem and model assumptions more formally. We consider the problem of
sequential influence maximization on a fixed finite graph (V,E), formalized as a repeated interaction
scheme between a learner and its environment. In this setup, the following steps are repeated for each
round t = 1, 2, . . . :

1. the learner picks a vertex At ∈ V ,
2. the environment generates a subgraph Gt of (V,E),
3. the learner observes the degree of the node At, denoted as YAt,t,
4. the learner earns the reward rAt,t = |CAt,t|, where the set Ca,t is the connected component

associated with vertex a:

Ca,t = {v ∈ V : v is connected to a by a path in Gt} .

We stress that the learner does not observe the reward, only the number of its immediate neighbors.
Define ca as the expected size of the connected component associated with the node a: ca = E|Ca,t|.
Ideally, we would be interested in designing algorithms that minimize the expected regret defined as

RT = max
a∈V

T∑
t=1

(ca − cAt) . (1)

We would ideally aspire to design algorithms guaranteeing that the regret grows sublinearly in T .
However, as we are interested in settings where the total number of nodes n is very large, this
goal can be seen as far too ambitious: even with a fully known random graph model, finding the
optimal node maximizing ca is computationally infeasible. Such computational issues have lead to
alternative definitions of the regret such as the approximation regret [17, 11, 25] or the quantile regret
[8, 12, 22, 19].

In the present paper, we consider the α-quantile regret as our performance measure, which, instead of
measuring the learner’s performance against the single best decision, uses a near-optimal action as a
baseline. For a more technical definition, let a1, a2, . . . , an be an ordering of the nodes satisfying
ca1 ≤ ca2 ≤ · · · ≤ can , and denote the α-quantile over the mean rewards as c∗α = cad(1−α)ne . Then,
also defining the set V ∗α = {ad(1−α)ne, . . . , an} as the set of α-near-optimal nodes, we define the
α-quantile regret as

RαT = min
a∈V ∗α

T∑
t=1

(ca − cAt) =

T∑
t=1

(c∗α − cAt) . (2)

We will make the assumption that each Gt is drawn from a fixed (and unknown) distribution
of inhomogeneous random graphs (IRG, see, e.g.,[4]). In this model, we assume that (V,E) is
the complete graph over n vertices and each edge (i, j) is present with probability pij(= pji),
independently of all other edges. The inhomogeneous random graph can be parametrized by the
symmetric positive matrix A, such that the probability of i and j being connected is given by
pij = Aij/n. We will assume that each element Aij of the matrix is O(1) as n grows large. This
assumption corresponds to assuming that the graphs Gt are sparse, meaning that the expected degree
of each vertex remains bounded as n grows. This assumption makes the problem both more realistic
and challenging: denser graphs are connected with high probability, making the problem essentially
vacuous. We will also use the notation A = A/n. The random graph from the above distribution is
denoted as G(n,A).

We consider two fundamentally different regimes of the parameters G(n,A): the subcritical case in
which the size of the largest connected component is sublinear in n (with high probability), and the
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supercritical case where the largest connected component is at least of size cn for some c > 0 with
high probability. (We say that an event holds with high probability if its probability converges to one
as n→∞.) Such a connected component of linear size is called a giant component. These regimes
can be formally characterized with the help of the matrix A. Letting λ be the the largest eigenvalue
of A, we call G(n,A) subcritical if λ < 1 and supercritical if λ > 1. It follows from [4, Theorem
3.1] that, with high probability, G(n,A) has a giant component if it is supercritical, while the number
of vertices in the largest component is o(n) with high probability if it is subcritical.

Within the class of inhomogeneous random graphs, we will focus on two families of random graphs:
stochastic block models and Chung–Lu models, as discussed below.

2.1 Stochastic block models

First, we make the assumption that each Gt is drawn from a stochastic block model (SBM). In this
random-graph model, the probabilities pij are defined through the notion of communities, defined
as elements of a partition H1, . . . ,HS of the set of vertices V . We will refer to the index m of
community Hm as the type of vertices belonging to Hm. Each community Hm contains αmn
nodes (assuming without loss of generality that αmn is an integer). With the help of the community
structure, the probabilities pij are constructed as follows: if i ∈ H` and j ∈ Hm, the probability of i
and j being connected is given by pij =

K`,m
n , where K is a symmetric matrix of size S × S, with

positive elements. The random graph from the above distribution is denoted as G(n, α,K).

In an SBM, identifying a node with maximal reward amounts to finding a node from the most
influential community. Consequently, it is easy to see that choosing α such that α > minm αm, the
near-optimal set V ∗α will exactly correspond to the set of optimal nodes, and thus the quantile regret
(2) will coincide with the regret (1).

Throughout the paper, we will consider SBM’s satisfying the following assumption:
Assumption 1. Ki,j = k > 0 for all i 6= j.

Intuitively, this assumption requires that nodes i, j belonging to different communities are connected
with the same probability, regardless of the exact identity of m(i) or m(j). Additionally, our analysis
in the supercritical case will make the following natural assumption:
Assumption 2. For all i, Ki,i ≥ k.

In plain words, this assumption requires that the density of edges within communities is larger than
the density of edges between communities.

2.2 Chung–Lu models

We will also consider another natural IRG model that is closely related to many random graph models.
This is the so-called Chung–Lu model (sometimes referred to as rank-1 model) as first defined by
Chung and Lu [14] (see also [13, 4]), where the edge probabilities are defined through the positive
vector w ∈ Rn, with elements of the matrix given by Aij = wiwj . In other words, the Chung–Lu
model considers rank-1 matrices of the form A = ww>.

The random graph from the induced IRG distribution is denoted as G(n,w). Such models can be
shown to exhibit several interesting properties. For instance, if w is a sequence satisfying a power
law, then G(n,w) is a power law model, which allows one to model various real world networks
including social networks [13].

3 From local to global influence maximization

Having described the setting, we can finally ask the question: is it possible to maximize global
influence using only local observations? Our main technical results show that, perhaps surprisingly,
the most influential nodes are actually identifiable from such feedback in the models discussed in
Sections 2.1 and 2.2.

To be specific, we recall that Ya,t stands for the degree of node a in the realized graph Gt, and define
µa = EYa,1 as the expected degree of node a. We also define c∗ = maxa ca and µ∗ = maxa µa. Our
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Algorithm 1 d-UCB(V0)

Parameters: A set of nodes V0 ⊆ V.
Initialization: Select each node in V0 once. Observe the degree Xa,a of vertex a in the graph Ga for
a = 1, . . . , |V0|. For each a ∈ V0, set Na(|V0|) = 1 and µ̂a(|V0|) = Xa,a.
For t = |V0|, . . . T , repeat

1. For each node, compute

Ua(t) = sup

{
µ : µ− µ̂a(t) + µ̂a(t) log

(
µ̂a(t)

µ

)
≤ 3 log(t)

Na(t)

}
.

2. Select any node At+1 ∈ arg maxa Ua(t).
3. Observe degree YAt+1,t+1 of node At+1 in Gt+1 and update

µ̂At+1
(t+ 1) =

NAt+1(t)µ̂At+1(t+ 1) + YAt+1,t+1

NAt+1(t) + 1
.

Update NAt+1(t+ 1) = NAt+1(t) + 1.

main technical result is proving that nodes with the largest expected degrees µ∗ are exactly the ones
with the largest influence c∗, in both the SBM and the Chung–Lu models, across both the subcritical
and supercritical regimes. We formally state these results below.
Proposition 1. Suppose that

1. G is generated from a subcritical G(n, α,K) satisfying Assumption 1, or

2. G is generated from a subcritical G(n,w).

Then, for any a satisfying µa < µ∗, we have c∗ − ca ≤ 2c∗ (µ∗ − µa) +O(1/n). In particular, for
n sufficiently large, we have arg maxa ca = arg maxa µa.
Proposition 2. Suppose that

1. G is generated from a supercritical G(n, α,K) satisfying Assumptions 1 and 2, or

2. G is generated from a supercritical G(n,w).

Then, for any a satisfying µa < µ∗, we have c∗ − ca ≤ c∗ (µ∗ − µa) + o(n). In particular, for n
sufficiently large, we have arg maxa ca = arg maxa µa.

These propositions are proved in Appendix B and C, respectively. To the best of our knowledge, these
results are novel and can be of independent interest. The proofs rely on the concept of multi-type
Galton–Watson branching processes, which are briefly introduced alongside some of their main
properties in Appendix A.

4 Algorithm and main results

We now present our learning algorithm, and provide its performance guarantees for the two regimes.
Inspired by the observation that in the models that we consider, it is sufficient to identify nodes
with maximal degree in order to maximize influence, we design a bandit algorithm that attempts
to maximize the degrees of the influenced nodes. We propose to achieve this goal by employing
a variant of the kl-UCB algorithm proposed and analyzed by [15, 23, 6, 21]. More precisely, we
propose to use the observed degrees as rewards, and feed them to an instance of kl-UCB originally
designed for Poisson-distributed rewards. A key technical challenge arising in the analysis is that
the degree distributions do not actually belong to the Poisson family for finite n. We overcome this
difficulty by showing that the degree distributions have a moment generating function bounded by
those of Poisson distributions, and that this fact is sufficient for most of the kl-UCB analysis to carry
through without changes.

A minor challenge is that, since we are interested in very large values of n, it is computationally
infeasible to use all nodes as separate actions in our bandit algorithm. To address this challenge, we
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Algorithm 2 d-UCB-DOUBLE(β)

Parameters: β ≥ 2.
Initialization: V0 = ∅.
For k = 1, 2 . . . , repeat

1. Sample subset of nodes Uk uniformly such that |Uk| =
⌈

log β
log(1/(1−α))

⌉
.

2. Update action set Vk = Vk−1 ∪ Uk.
3. For rounds t = βk−1, βk−1 + 1, . . . , βk − 1, run a new instance of d-UCB (Vk).

propose to subsample a set of representative nodes for kl-UCB to play on. The size of the subsampled
nodes depends on the quantile α targeted in the regret definition (2) and the time horizon T . For
clarity of presentation, we first propose a simple algorithm that assumes prior knowledge of T , and
then move on to construct a more involved variant that adds new actions on the fly.

We first present our kl-UCB variant for a fixed set of nodes V0 as Algorithm 1. We refer to this
algorithm as d-UCB(V0) (short for “degree-UCB on V0”). Our two algorithms mentioned above use
d-UCB (V0) as a subroutine: they are both based on uniformly sampling a large enough set V0 of
nodes so that the subsample includes at least one node from the top α-quantile.

To simplify the presentation of our main results, let us introduce some more notation. Analogously to
the α-optimal reward c∗α, we define the α-optimal degree µ∗α = mina∈V ∗α µa, and the corresponding
gap parameters ∆α,i = (ci − c∗α)+ and δα,i = (µi − µ∗α)+. Finally, define ∆α,max = maxi ∆α,i.
We first present a performance guarantee of our simpler algorithm that assumes knowledge of T .
This method uniformly samples a subset of size

|V0| =
⌈

log T

log(1/(1− α))

⌉
(3)

and plays d-UCB(V0) on the resulting set. This algorithm satisfies the following performance
guarantee:
Theorem 1. Let V0 be a uniform subsample of V with size given in Equation (3) and define the event
E = {V0 ∩ V ∗α 6= ∅}. If the number of vertices n is sufficiently large, then the expected α-quantile
regret of d-UCB(V0) simultaneously satisfies

RαT ≤ E

[∑
i∈V0

∆α,i

(
µ∗α (18 + 27 log T )

δ2α,i
+ 3

)∣∣∣∣∣ E
]

+ ∆α,max,

where the expectation is taken over the random choice of V0, and

RαT ≤ 18c∗

√
Tµ∗ (2 + 3 log T )

2

log(1/(1− α))
+

(
3 log T

log(1/(1− α))
+ 4

)
∆α,max.

For unknown values of T , we propose the d-UCB-DOUBLE(β) algorithm (presented as Algorithm 2)
that uses a doubling trick to estimate T . The following theorem gives a performance guarantee for
this algorithm:
Theorem 2. Fix T , let kmax be the value of k on which d-UCB-DOUBLE(β) terminates, and define
the event E = {Vkmax

∩ V ∗α = ∅}. If the number of vertices n is sufficiently large, then the α-quantile
regret of d-UCB-DOUBLE(β) simultaneously satisfies

RαT ≤ E

 ∑
i∈Vkmax

∆i

((
18µ∗

δ2α,i
+ 3

)
(logβ T + 1) +

27 log β(logβ T + 1)2

2δ2α,i

)∣∣∣∣∣∣ E
+ ∆α,max logβ T,

where the expectation is taken over the random choice of the sets V1, V2, . . . , and

RαT ≤ 36c∗

√
T (µ∗ + log (βT )) log2 T

log(1/(1− α))
+

(
3 log2 T

log(1/(1− α))
+ 4

)
∆α,max.

We discuss the key features of the above regret bounds in Section 6.
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5 Analysis

This section outlines the main ideas of the proofs of our main results, Theorems 1 and 2. Having
established that, in order to minimize regret in our setting, it is sufficient to design an algorithm
that quickly identifies the nodes with the highest degree, it remains to show that our algorithms
indeed achieve this goal. We do this below by providing a bound on the expected number of times
ENa(T ) = E[

∑T
t=1 I{At=a}] that our algorithm picks suboptimal node a such that ca ≤ c∗, and

then using this guarantee to bound the regret.

Without loss of generality, we assume that V0 = {1, 2, . . . , |V0|}. The key to our regret bounds is the
following guarantee on the number of suboptimal actions taken by d-UCB(V0).

Theorem 3 (Number of suboptimal node plays in d-UCB). Define ηi = (maxj∈V0
µj − µi) /3. The

number of times that any node i ∈ {a : µa < maxj∈V0
µj} is chosen by d-UCB(V0) satisfies

ENi(T ) ≤ µ∗ (2 + 6 log T )

η2i
+ 3 . (4)

The proof is largely based on the analysis of the kl-UCB algorithm due to Cappé et al. [6], with some
additional tools borrowed from Ménard and Garivier [24], crucially using that the degree distribution
of each node is stochastically dominated by an appropriately chosen Poisson distribution. Specifically,
letting Zi be a Poisson random variable with mean EYi,t, we have EesYi,t ≤ EesZi for all s. Turns
out that this property is sufficient for the kl-UCB analysis to go through in our case, which is an
observation that may be of independent interest.

Due to space constraints, the proof of Theorem 3 is deferred to Appendix D. The remainder of the
section uses Theorem 3 to prove our first main result, Theorem 1. The proof of Theorem 2 follows
from similar ideas and some additional technical arguments, and is presented in Appendix E.

Proof of Theorem 1. We first note that, with high probability, the size of V0 guarantees that the subset
holds at least one node from the set V ∗α : P [E ] ≥ 1− 1/T . Then, the regret can be bounded as

E [RαT ] ≤ P [Ec]T∆α,max + E

[
T∑
t=1

∑
i∈V0

I[At = i]∆α,i

∣∣∣∣∣ E
]
P [E ]

≤ ∆α,max + E

[∑
i∈V0

∆α,iE [Ni(T )]

∣∣∣∣∣ E
]
.

Now, observing that δα,i ≤ 3ηi holds under event E , we appeal to Theorem 3 to obtain

RαT ≤ ∆α,max + E

[∑
i∈V0

∆α,i

(
µ∗ (18 + 27 log T )

δ2i,α
+ 3

)∣∣∣∣∣ E
]
, (5)

thus proving the first statement.

Next, we turn to proving the second statement regarding worst-case guarantees. To do this, we appeal
to Propositions 1 and 2 that respectively show ∆i ≤ 2c∗δi +O(1/n) and ∆i ≤ c∗δi + o(n) for the
sub- and supercritical settings, and we use our assumption that n is large enough so that we have
∆i ≤ 3c∗δi in both settings. Specifically, we observe that δi = Θn(1) by our sparsity assumption and
c∗ is Θn(1) in the subcritical and Θn(n) supercritical settings, so, for large enough n, the superfluous
O(1/n) and o(n) terms can be respectively bounded by c∗δi. To proceed, let us fix an arbitrary ε > 0
and split the set V0 into two subsets: U(ε) = {a ∈ V0 : δα,i ≤ ε} and W (ε) = V0 \ U(ε). Then,
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under event E , we have∑
i∈V0

∆α,iE [Ni(T )] =
∑
i∈U(ε)

∆α,iE [Ni(T )] +
∑

i∈W (ε)

∆α,iE [Ni(T )]

≤ 3c∗ε
∑
i∈U(ε)

E [Ni(T )] + 3c∗
∑

i∈W (ε)

δα,i

(
µ∗ (18 + 27 log T )

δ2α,i

)
+ 3|W (ε)|∆α,max

≤ 3c∗εT + 3c∗
∑

i∈W (ε)

µ∗ (18 + 27 log T )

δα,i
+ 3|V0|∆α,max

≤ 3c∗
(
εT + |V0|

µ∗ (18 + 27 log T )

ε

)
+ 3|V0|∆α,max

≤ 6c∗
√
T |V0|µ∗ (18 + 27 log T ) + 3|V0|∆α,max,

where the last step uses the choice ε =
√
|V0|µ∗ (18 + 27 log T ) /T . Plugging in the choice of |V0|

concludes the proof.

6 Discussion

Here we highlight some features of our results and discuss directions for future work.

Instance-dependent and worst-case regret bounds. Both of our main theorems establish two
types of regret bounds. The first set of these bounds are polylogarithmic1 in the time horizon T , but
show strong dependence on the parameters of the distribution of the graphs Gt. Such bounds are
usually called instance-dependent, and they are typically interesting in the regime where T grows
large. However, these bounds become vacuous for finite T as the gap parameters δα,i approach zero.
This issue is addressed by our second set of guarantees, which offers a bound of Õ

(
c∗
√
|U |µ∗T

)
for some set U ⊆ V that holds simultaneously for all problem instances without becoming vacuous
in any regime. Such bounds are commonly called worst-case, and they are typically more valuable
when optimizing performance over a fixed horizon T .

Dependence on graph parameters. A notable feature of all our bounds is that they show no
explicit dependence on the number of nodes n. This is enabled by our notion of α-quantile regret,
which allows us to work with a small subset of the total nodes as our action set. Instead of n,
our bounds depend on the size of some suitably chosen set of nodes U , which is of the order
polylogT/ log(1/(1 − α)). Notice that this gives rise to an interesting tradeoff: choosing smaller
values of α inflates the regret bounds, but, in exchange, makes the baseline of the regret definition
stronger (thus strengthening the regret notion itself). While the exact tradeoff seems very complicated
to quantify in general, it is clear that setting α as the proportion of the smallest community in SBMs
strengthens the regret baseline as much as possible.

Of course, having no explicit dependence on n does not mean that our bounds are completely
independent of the size of the graph. In fact, it is natural to expect that the regret scales with the
general magnitude of the rewards. Our bounds precisely achieve such a natural dependence: all our
bounds scale linearly with the maximal expected reward c∗, which is of Θn(1) in the subcritical case,
but is Θn(n) in the supercritical case.

Tightness of our bounds. In terms of dependence on T , both our instance-dependent and worst-
case bounds are near-optimal in their respective settings: even in the simpler stochastic multi-armed
bandit problem, the best possible regret bounds are ΩT (log T ) and ΩT (

√
T ) in the respective settings

[2, 3, 5]. The optimality of our bounds with respect to other parameters such as c∗, µ∗ and n is
less clear, but we believe that these factors cannot be improved substantially for the models that we
studied in this paper. As for the subproblem of identifying nodes with the highest degrees, we believe
that our bounds on the number of suboptimal draws is essentially tight, closely matching the classic
lower bounds by Lai and Robbins [20].

1Upon first glance, the bound of Theorem 1 may appear to be logarithmic, however, notice that the sum
involved in the bound has log T elements, thus technically resulting in a bound of order log2 T .
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Our assumptions. One may wonder how far our argument connecting local and global influence
maximization can be stretched. Clearly, not every random graph model enables establishing such a
strong connection. In fact, even within the class of stochastic block models, one can construct an
instance (not satisfying Assumption 1) that does not have the property we desire. It is a challenging
problem to characterize the class of inhomogeneous random graphs in which maximizing local and
global influences are equivalent. Nevertheless, we believe that our techniques can be generalized
to maximize global influence with more informative local feedback structures (e.g., working with
observations from a slightly broader neighborhood of the chosen nodes).

Finally, let us comment on our condition that the number of vertices n needs to be “sufficiently large”.
We regard this condition as a technical artifact due to our proofs relying on asymptotic analysis. We
expect that the required monotonicity property holds for small values of n under mild conditions.
Whenever this is the case, the regret bounds of Theorems 1 and 2 remain valid.
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A Multi-type branching processes

One of the most important technical tools for analyzing the component structure of random graphs
is the theory of branching processes, see [26]. Indeed, while the connected components Ca of an
inhomogenous random graph G(n,A) have a complicated structure, many of their key properties may
be analyzed through the concept of multi-type Galton–Watson processes. Specifically, we use Poisson
multi-type Galton–Watson branching processes with n types, parametrized by an n × n matrix A
with strictly posive elements. The branching process tracks the evolution of a set of individuals of
various types. Starting in round n = 0 from a single individual of type i, each further generation
in the Galton–Watson process WA(i) is generated by each individual of each type i producing
Xk,i ∼ Poi(Ai,j) new individuals of each type j. Therefore, the size of the offspring of the individual
of type i is

∑n
j=1Xi,j ∼ Poi(

∑n
j=1Ai,j). We also define the vector b ∈ Rn with coordinates

bi = E
[∑n

j=1Xi,j

]
=
∑n
j=1Ai,j , i = 1, . . . , n.

Our analysis below makes use of the following quantities associated with the multi-type branching
process:

1. Zn(i) is the number of individuals in generation n of WA(i) (where Z0(i) = 1);

2. X(i) is the total progeny, that is, the total number of individuals generated by WA(i) and
its expectation is denoted by xi = E [X(i)];

3. ρi is the probability of survival, that is, the probability that X(i) is infinite.

We finally define a non-linear operator ΦA : Rn → Rn that plays a central role in our analysis: for a
vector f ∈ Rn, define each coordinate of ΦA(f) as(

ΦA(f)
)
j

= 1− e−(Af)j , j = 1, . . . , n , (6)

where (Af)j denotes the j-th coordinate of Af . Abusing notation, we use the shorthand form
ΦA(f) = 1− e−Af . Clearly, if f has nonnegative components, then (ΦA(f))j ∈ [0, 1] for all j.

Bollobás, Janson, and Riordan [4] establish a connection between the sizes of connected components
of IRG, the survival probability of a branching process WA(i), and the norm of the matrix A.

As shown in [4], the operator ΦA can be directly used for characterizing the probability ρi of survival
of the process WA(i) for all i. By their Theorem 6.2, the vector ρ = (ρ1, . . . , ρn) is one of the
solutions of the non-linear fixed-point equation ΦA(f) = f . Furthermore, if the largest eigenvalue of
the matrix A satisfies λmax(A) < 1, then ρi = 0 for all i = 1, . . . , n. On the other hand, λmax > 1
implies that the vector ρ is the maximal fixed point of the operator ΦA [4, Lemma 5.8.] also implies
that when λmax > 1, all components of ρ are positive.

B The proof of Proposition 1

The proof consists of the following steps:

• proving that ci − cj = xi − xj +O(1/n) (Lemmas 3, 4),

• proving that xi > xj implies bi > bj (Lemma 1, 2),

• observing that bi = µi +O(1/n).

These facts together lead to Proposition 1, given that n is large enough to suppress the effects of the
residual terms. Before stating and proving the lemmas, we state some useful technical tools. Since
we suppose that G(n,A) is subcritical, we have P [X(i) =∞] = 0 and xi = EX(i) is finite. First
observe that the vector x of expected total progenies satisfies the system of linear equations

x = e+Ax ,

where e is the vector with ei = 1 for all i. Notice that, by its definition, the vector b can be succinctly
written as b = Ae.

Armed with this notation, we can analyze the relation between bi and xi in a straightforward way:
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Lemma 1 (Coordinate order for mean of the total progeny in the SBM). Assume that G(n, α,K) is
subcritical and that Km` = k > 0 holds for all m 6= `. If two coordinates of b are such that bi > bj ,
then we have xi > xj , and xi − xj ≤ 2x∗ (bi − bj).

Proof. For and SBM with S blocks, the system of equations x = e+Ax can be equivalently written
as x′ = e+Mx′, forM = Kdiag(α) ∈ RS×S , and x′ ∈ RS , with x′m now standing for the expected
total progeny associated with any node of type m. Similarly, we define b′m as the expected degree
of any node of type m. Notice that the system of equations x′ = e + Mx′ satisfied by x′ can be
rewritten as (I −M)x′ = e, where I is the S × S identity matrix. By exploiting our assumption on
the matrix K and defining γm = Km,m − k, this can be further rewritten as

1− α1γ1
. . .

1− αSγS

− k

α1 α2 · · · αS
α1 α2 · · · αS
...

...
. . .

...
α1 α2 · · · αS


x′ = e,

which means that for any m, x′m satisfies

x′m =
1 + k(α>x′)

1− αmγm
.

Also observe that
b′m = k(αT 1̄) + αmγm,

so, for any pair of types m and `, we have

x′m − x′` =
(1 + k(α>x′))(αmγm − α`γ`)

(1− αmγm)(1− α`γ`)
,

which proves the first statement.

To prove the second statement, observe that for any pair ` and m of communities, we have either
αm ≤ 1

2 or α` ≤ 1
2 (otherwise we would have αm + α` > 1). To proceed, let ` and m be such that

x′m ≥ x′`, and let us study the case α` ≤ 1
2 first. Here, we get

x′m − x′` ≤
(1 + k(α>x′))(αmγm − α`γ`)

(1− αmγm)(1− α`γ`)
=

(αmγm − α`γ`)
(1− α`γ`)

x′m

≤ (αmγm − α`γ`)
(1− γ`/2)

x′m ≤ 2x′m(b′m − b′`).

In the other case where αm ≤ 1
2 , we can similarly obtain

x′m − x′` ≤ 2x′`(b
′
m − b′`) ≤ 2x′m(b′m − b′`).

This concludes the proof.

Lemma 2 (Coordinate order for mean of the total progeny in the Chung–Lu model). Assume that
G(n,w) is subcritical. If two coordinates of b are such that bi > bj , then we have xi > xj and
xi − xj ≤ x∗(bi − bj).

Proof. For the system of equations x = e+Ax the coordinates xi have the form

xi = 1 +
1

n
· wi

 n∑
j=1

wjxj

 ,

which implies that wi ≥ wj holds if and only if xi ≥ xj . This observation implies for x∗ = maxi xi

xi − xj ≤
1

n
· (wi − wj)

 n∑
j=1

wj

x∗ = (bi − bj)x∗,

thus concluding the proof.
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The next two lemmas establish the relationship between the expected component size ci of vertex i
and the expected total progeny xi of the multi-type branching process seeded at vertex i.

Lemma 3. For any i, the mean of the connected component associated with type i is bounded by the
mean of the total progeny: ci ≤ xi.

Proof. The proof of the lemma uses the concept of stochastic dominance between random variables.
We say that the random variable X is stochastically dominated by the random variable Y when, for
every x ∈ R, the inequality P [X ≤ x] ≥ P [Y ≤ x] holds. We denote this by X � Y .

Now fix an arbitrary i ∈ [n] and let Yi,1, Yi,2, . . . , Yi,n be independent Bernoulli random variables
with respective parameters (Ai,1/n,Ai,2/n, . . . , Ai,i/n, . . . , Ai,n/n). Consider a multitype bino-
mial branching process where the individual of type i produce Yi,j individuals of type j, and
let XBer(i) denote its total progeny when started from an individual of type i. Recalling the
Poisson branching process defined in Section A with offspring-distributions Xi,j , we can show
XBer(i) � X(i) using the relation Yi,j � Xi,j .

Considering a node a of type i, we can use Theorem 4.2 of [26] to bound the size of the the connected
component Ca as |Ca| � XBer(i), which implies by transitivity of � that |Cai | � X(i). The proof is
concluded by appealing to Theorem 2.15 of [26] that shows that stochastic domination implies an
ordering of the means.

Next we upper bound the surplus that appears in the domination by the branching process:

Lemma 4. xi − ci = O( 1
n ) .

Proof. Consider an exploration process in the realization Gt of a random graph G(n,A) starting
from a node a of type i. The process explores the nodes in a sequential way, by first visiting the
neighboring nodes of the initial node, then moving on to the neighbors of the neighbors, and so on.
The process stops after having explored the whole connected component Ca.

Also the Bernoulli multitype branching process WBer(i) with the set of parameters Bj , for j ∈ [n],
where parameters B correspond to the G(n,A). Denote the tree naturally defined by the exploration
process of the connected component by T , and also the tree defined by the analogously defined
Poisson exploration process of the branching process tree by TPoi. The proof relies on the fact that the
total number of nodes visited by the exploration process can be upper bounded by the total progeny
of the corresponding branching process [26, Section 4.1].

In order to estimate the difference |T | − |Ca|, note that for each step of the exploration process,
the number of nodes that have been already explored can be upper bounded by |Ca| so we have
|Ca| ≤ |T |. Let S be a set of nodes counted more than once. We call |S| the surplus whose
expectation may be written as follows:

E [|S|] = E

[∑
v∈V

I{v ∈ S}

]
=
∞∑
k=1

P [|T | = k]
∑
v∈Ca

E [ I{v ∈ S}| |T | = k] .

Define Amax = maxi,j Ai,j be the maximal element of the matrix A.

Then, by the union bound, the probability of an arbitrary node a′ is counted more than once can be
upper bounded as

P [a′ ∈ S] ≤ Amax|Ca|
n

,

and we also have

E [ I{a′ ∈ S}| |T | = k] ≤ Amaxk

n
.

Since |Ca| ≤ |T |, we may upper bound the sum as∑
v∈Ca

E [ I{v ∈ S}| |T | = k] ≤ Amaxk
2

n
.

13



Using our expression for E|S|, we get

E|S| ≤
∞∑
k=1

P [|T | = k]
Amaxk

2

n
=
AmaxE|T |2

n
.

Now we notice that, by the Le Cam’s theorem, the total variation distance between the sum of
Bernoulli distributed random variables with parameters (Ai,1/n, . . . , Ai,n/n) and the Poisson distri-

bution Poi(
∑n
j=1Ai,j/n) is at most 2(

∑n
j=1A

2

i,j)/n. Using this fact and that the moments of the
total progeny do not scale with n (cf. Theorem 1 of 16), we obtain the result as

E|S| ≤ AmaxE|T |2

n
≤ AmaxE|TPoi|2

n
+O

(
1

n

)
= O

(
1

n

)
.

C The proof of Proposition 2

The proof relies on some known properties of the largest connected component in G(n,A) in the
supercritical regime. We denote the largest and second-largest connected components of Gt by
C1(Gt) and C2(Gt), respectively. Recall that the survival probability of the branching process WA(i)
is denoted as ρi. The following properties are proved by [4]:

• If G(n,A) is supercritical, then, with high probability, C1 = Θ(n);
• C1(Gn)/n→

∑
i∈S αiρi in probability;

• C2(Gn) = o(n) with high probability.

The expected size of the connected component of a vertex i is
ci = ρiE [C1(G)] + o(n) . (7)

Proposition 2 follows from the following lemmas for the SBM and the Chung–Lu models.
Lemma 5 (Coordinate order preserving in the SBM). Assume the conditions of Proposition 2 and
let i∗ = arg maxi bi. Let a = (a1, . . . , aS) be such that aj ∈ [0, ai∗ ] for all j. Then (ΦA(a))i∗ ≥
(ΦA(a))j .

Proof. Let us fix two arbitrary indices i and i′. By the definition of ΦM , we have

(ΦA(a))i = 1− e−((
∑
j 6=i αjaj)k+αiki,iai) ,

(ΦA(a))i′ = 1− e−((
∑
j 6=i′ αjaj)k+αi′ki′,i′ai′ ) .

Notice that if i and i′ satisfy∑
j 6=i

αjaj

 k + αiki,iai ≥

∑
j 6=i′

αjaj

 k + αi′ki′,i′ai′ ,

we have (ΦA(a))i ≥ (ΦA(a))i′ . Now, using the facts that

•
∑
j 6=i αjaj −

∑
j 6=i′ αjaj = αi′ai′ − αiai,

• αiki,i ≥ αik,

• αiki,i + αi′k ≥ αi′ki′,i′ + αik and

• ai − ai′ ≥ 0,

we can verify that

αiki,iai + αi′kai′ − αikai − αi′ki′,i′ai′
= (αiki,i + αi′k)ai′ + (ai − ai′)αiki,i − (αi′ki′,i′ + αik)ai′ − (ai − ai′)αik ≥ 0,

thus proving the lemma.
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Lemma 6 (Order of coordinates of eigenvector in the SBM). Let a be the eigenvector corresponding
to the largest eigenvalue λ of the matrix M = Kdiag(α). Then if i∗ = arg maxm bm, we have
ai∗ ≥ aj for j 6= i∗.

Proof. If a is an eigenvector of M , then for coordinates i, i′:
(∑

j 6=i αjaj

)
k + αiki,iai = λai,(∑

j 6=i′ αjaj

)
k + αiki′,i′ai′ = λai′

By the Perron-Frobenius theorem and our conditions on matrix M , λ is a real number larger than one.
Denote C = k

∑
j 6=i,j 6=i′ αjaj , x = ai, y = ai′ , a = αiki,i, b = αi′k, c = αik, d = αi′ki′,i′ . Then,{

C + ax+ by = λx,

C + cx+ dy = λy
(8)

Let r = 1 + ε be such that y = rx = (1 + ε)x. Then{
C
x + a+ b+ bε = λ,
C
x + c+ d+ dε = λ+ λε

and therefore
C

x
+ c+ d+ dε =

C

x
+ a+ b+ bε+ λε .

Rearranging the terms and using the fact that a+ b ≥ c+ d, we have

0 ≤ (a+ b)− (c+ d) = (d− b− λ)ε .

Since ki,i ≥ k, we have αiki,i ≥ αik and a ≥ c.
We consider two cases separately: First, if b ≥ d, we have d− b− λ < 0, which implies ε < 0 and
y < x, therefore proving ai > ai′ for this case. In the case when b < d, we have a+ b ≥ c+ d and
d−b
a−c ≤ 1. Subtracting the two equalities of the linear system 8, we get

λ(1− r) = (a− c)
(

1− d− b
a− c

r

)
.

Now, since d−b
a−c ≤ 1, we have λ ≥ a− c, which implies λ ≥ d− b and d− b− λ ≤ 0, thus leading

to ε ≤ 0 and y ≤ x, therefore proving ai ≥ ai′ for this case.

Lemma 7 (Order of coordinates of eigenvector in the Chung–Lu model). Let a be the eigenvector
corresponding to the largest eigenvalue λ of the matrix A. Then if i∗ = arg maxm bm, we have
ai∗ ≥ aj for j 6= i∗.

Proof. It is easy to see that the only eigenvector of A corresponding to a non-zero eigenvalue is
a = w with λmax = w>w/n:

Aw =
1

n
· (ww>)w =

w>w

n
· w.

The proof is concluded by observing that the maximum coordinate of the vector b corresponds to the
maximum coordinate of w, due to the equality

bi =
1

n
· wi

n∑
j=1

wj .

Lemma 8 (Coordinate order preserving in the Chung–Lu model). Assume the conditions of Propo-
sition 2 and let i∗ = arg maxi bi. Let a = (a1, . . . , an) be such that aj ∈ [0, ai∗ ] for all j. Then
(ΦA(a))i∗ ≥ (ΦA(a))j .
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Proof. Let us fix two arbitrary indices i and i′. By the definition of ΦA, we have

(ΦA(a))i = 1− e−wi(
∑n
j=1 wjaj) ,

(ΦA(a))i′ = 1− e−wi′ (
∑n
j=1 wjaj) .

Then we have (ΦA(a))i ≥ (ΦA(a))i′ thus proving the lemma.

We finally study the maximal fixed point of the operator ΦA, keeping in mind this fixed point is
exactly the survival-probability vector ρ of the multi-type Galton–Watson branching process [4]. By
Lemma 5.9 of [4], this is the unique fixed point satisfying ρi > 0 for all i. The following lemma
shows that ρi takes its maximum at i∗ = arg maxi bi, concluding the proof of Proposition 2.
Lemma 9 (Fixed point coordinate domination). Let ρ be the unique non-zero fixed point of ΦA, and
let i∗ = arg maxi bi. Then, ρi∗ ≥ ρj and ρi∗ − ρj ≤ ρ∗ (bi∗ − bj) holds for all j 6= i∗.

Proof. Letting a be the eigenvector of A that corresponds to the largest eigenvalue λ, Lemma 7, 6
guarantees ai∗ ≥ aj for j 6= i∗. Let ε > 0 be such that ε ≤ 1−1/λ

a∗ , where a∗ = maxi=1,...,S ai.
Then by Lemma 5.13 of [4], ΦM (εa) ≥ εa holds elementwise for the two vectors.

Since the coordinates of the vector εa are positive, we can appeal to Lemma 5.12 of [4] to show that
iterative application of ΦA converges to the fixed point ρ: letting ΦmA be the operator obtained by
iterative application of ΦA form times, we have limm→∞ ΦmA (εa) = ρ, where ρ satisfies ρ ≥ εa ≥ 0
and ΦA(ρ) = ρ > 0. By the respective Lemmas 7, 6 we have ρi∗ ≥ ρj , for i∗ 6= j for both the SBM
and the Chung–Lu models, proving the first statement.

The second statement can now be proven directly as

ρi∗ − ρi = e−(Aρ)j − e−(Aρ)i∗ = e−
∑n
j Ai∗jρj − e−

∑n
j Aijρj

= e−
∑n
j Ai∗jρj (1− e−

∑n
j Aijρj−Ai∗jρj ) ≤ e−

∑n
j Ai∗jρj

 n∑
j

(Ai∗j −Aij)ρi∗


≤ ρ∗(bi∗ − bi),

where the first inequality uses the relation 1− e−z ≤ z that holds for all z ∈ R, and the last step uses
the fact that Aρ has positive elements.

D The proof of Theorem 3

Before delving into the proof, we introduce some useful notation. We start by defining
Ya,1, Ya,2, . . . , Ya,n as independent Bernoulli random variables with respective parameters B =
(Aa,1, Aa,2, . . . , Aa,n), and noticing that the degree Yt,a can be written as a sum Ya =

∑
i 6=a Ya,i.

The following lemma, used several times in our proofs, relates this quantity to a Poisson distribution
with the same mean.
Lemma 10. Let i ∈ [S] and let Yi,1, Yi,2, . . . , Yi,n be independent Bernoulli random variables with
respective parameters ki,1/n, ki,2/n, . . . , ki,n/n, and let Xi be a Poisson random variable with
parameter µi =

∑
j 6=i ki,j/n. Defining Yi =

∑
j 6=i Yi,j , we have E

[
esYi

]
≤ E

[
esXi

]
for all s ∈ R.

Proof. Fix an arbitrary s ∈ R and i ∈ [n]. By direct calculations, we obtain

EesYi =

n∏
j=1

(
EesYi,j

)
≤

n∏
j=1

(
1 +

ki,j
n

(es − 1)

)
≤

n∏
j=1

exp ((ki,j/n) · (es − 1)) ,

where the last step follows from the elementary inequality 1 + x ≤ ex that holds for all x ∈ R. The
proof is concluded by observing that EesXi = exp (µ (es − 1)) and using the definition of µ.

For simplicity, we also introduce the notation ψB(s) = logEesYi and φλ(s) = logEesXi = λ(es−1).
The proof below repeatedly refers to the Fenchel conjugate of φλ defined as

φ∗λ(z) = sup
s∈R
{sz − φ(s)} = z log

( z
λ

)
+ λ− z
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for all z ∈ R. Finally, we define d(µ, µ′) = µ′ − µ + µ log
(
µ
µ′

)
for all µ, µ′ > 0, noting that

φ∗λ(z) = d(z, λ).

As for the actual proof of the theorem, the statement is proven in four steps. Within this proof, we
refer to nodes as arms and use K to denote the size of V0. We use the notation f(t) = 3 log t.

Step 1. We begin by rewriting the expected number of draws ENa for any suboptimal arm a as

ENa = E

[
T−1∑
t=K

I{At+1 = a}

]
=

T−1∑
t=K

P{At+1 = a}.

By definition of our algorithm, at rounds t > K, we have At+1 = a only if Ua(t) > Ua∗(t). This
leads to the decomposition:

{At+1 = a} ⊆ {µ∗ ≥ Ua∗(t)} ∪ {µ∗ < Ua∗(t) and At+1 = a}
⊆ {µ∗ ≥ Ua∗(t)} ∪ {µ∗ < Ua(t) and At+1 = a}

Steps 2 and 3 are devoted to bounding the probability of the two events above.

Step 2. Here we aim to upper bound

T−1∑
t=K

P [µ∗ ≥ Ua∗(t)] . (9)

Note, that {Ua∗(t) ≤ µ∗} = {µ̂a∗(t) ≤ Ua∗(t) ≤ µ∗} . Since d(µ, µ′) = µ′ − µ+ µ log( µµ′ ) is non-
decreasing in its second argument on [µ,+∞), and by definition of Ua∗ = sup{µ : d(µ̂a∗(t), µ) ≤
f(t)
Na∗(t)

} we have

{µ∗ ≥ Ua∗(t)} ⊆
{
µ̂a∗(t) ≤ Ua∗(t) ≤ µ∗ and d(µ̂a∗(t), µ

∗) ≥ f(t)

Na∗(t)

}
,

Taking a union bound over the possible values of Na∗(t) yields

{µ∗ ≥ Ua∗(t)} ⊆
t−K+1⋃
n=1

{
µ∗ ≥ µ̂a∗,n and d(µ̂a∗,n, µ

∗) ≥ f(t)

n

}
=

t−K+1⋃
n=1

Dn(t),

where the event Dn(t) is defined through the last step. Since d(µ, µ∗) is decreasing and continuous
in its first argument on [0, µ∗), either d(µ̂a∗,n, µ

∗) < f(t)
n on this interval and Dn(t) is the empty set,

or there exists a unique zn ∈ [0, µ∗) such that d(zn, µ
∗) = f(t)

n . Thus, we have

t−K+1⋃
n=1

Dn(t) ⊆
t−K+1⋃
n=1

{µ̂a∗,n ≤ zn} .

For λ < 0, let us define ψ(λ) as the cumulant-generating function of the sum of binomials with
parameters B, and let φ(λ) be the cumulant-generating function of a Poisson random variable with
parameter µ∗. With this notation, we have for any λ < 0 that

P [µ̂a∗,n ≤ zn] = P [exp(λµ̂a∗,n) ≥ exp(λzn)]

= P

[
exp

(
λ

n∑
i=1

Ya∗,i − nψ(λ)

)
≥ exp(nλzn − nψ(λ))

]

≤
(
EeλYa∗,1
eψ(λ)

)n
e−n(λzn−ψ(λ)) ≤ e−n(λzn−ψ(λ)),

where the last step uses the definition of ψ(λ). Now fixing λ∗ = arg maxλ{λzn − φ(λ)} =
log(zn/µ

∗) < 0, we get by Lemma 10 that

e−n(λ
∗zn−ψ(λ∗)) ≤ e−n(λ

∗zn−φ(λ∗)) = e−nφ
∗
µ∗ (zn) = e−nd(zn,µ

∗) .
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In view of the definition of zn and f(t), this gives the bound

e−nd(zn,µ
∗) = e−f(t) =

1

t3
,

which leads to

T−1∑
t=K

P [µ∗ ≥ Ua∗(t)] ≤
T−1∑
t=K

t−K+1∑
n=1

1

t3
< 2,

thus concluding this step.

Step 3. In this step, we borrow some ideas by [24, Proof Theorem 2, step 2] to upper-bound the
sum

B =

T−1∑
t=K

P [µ∗ < Ua(t) and At+1 = a] . (10)

Writing η = ηa = {µ∗ − µa}/3 for ease of notation, we have

{µ∗ < Ua(t) and At+1 = a} ⊆ {µ∗ − η < Ua(t) and At+1 = a}
⊆ {d(µ̂a(t), µ∗ − η) ≤ f(t)/Na(t) and At+1 = a} .

Thus, we have

B ≤
T−1∑
t=K

P [d(µ̂a(t), µ∗ − η) ≤ f(t)/Na(t) and At+1 = a]

≤
T∑
n=1

P [d(µ̂a,n, µ
∗ − η) ≤ f(T )/n]

Defining the integer n(η) as

n(η) =

⌈
f(T )

d(µa + η, µ∗ − η)

⌉
,

we have f(T )/n ≤ d(µa + η, µ∗ − η) for all n ≥ n(η). Thus, we may further upper-bound B as

B ≤ n(η)− 1 +

T∑
n=n(η)

P [d(µ̂a,n, µ
∗ − η) ≤ f(T )/n]

≤ f(T )

d(µa + η, µ∗ − η)
+

T∑
n=n(η)

P [d(µ̂a,n, µ
∗ − η) ≤ d(µa + η, µ∗ − η)] .

By definition of η, we have

{µ̂a,n, µ∗ − η) ≤ d(µa + η, µ∗ − η)} ⊆ {µ̂a,n ≥ µa + η} ,

which implies

T∑
n=n(η)

P [d(µ̂a,n, µ
∗ − η) ≤ d(µa + η, µ∗ − η)] ≤

T∑
n=n(η)

P [µ̂a,n ≥ µa + η] .

18



By an argument analogous to the one used in the previous step, we get for a well-chosen λ that
T∑

n=n(η)

P [µ̂a,n ≥ µa + η] ≤ P [exp(λµ̂a,n) ≥ exp(λ(µa + η))]

=

T∑
n=n(η)

P

[
exp(λ

n∑
i=1

Ya,i − nψ(λ)) ≥ exp(nλ(µa + η)− nψ(λ))

]

≤
T∑

n=n(η)

(
E
[
eλYa,i

]
eψ(λ)

)n
e−n(λ(µa+η)−ψ(λ))

≤
T∑

n=n(η)

e−n(λ(µa+η)−φ(λ)) =

T∑
n=n(η)

e−nd(µa+η,µa)

≤
∞∑

n=n(η)

e−nd(µa+η,µa) ≤ 1

ed(µa+η,µa) − 1
≤ 1

d(µa + η, µa)
,

where the last step uses the elementary inequality 1 + x ≤ ex that holds for all x ∈ R.

Step 4. Putting together the results from the first three steps, we get

ENa ≤ 3 +
1

d(µa + η, µa)
+

3 log T

d(µa + η, µ∗ − η)
.

We conclude by taking a second-order Taylor-expansion of d(µa + η, µa) in η to obtain for some
η′ ∈ [0, η] that

d(µa + η, µa) =
η2

2(µa + η′)
≥ η2

2(µa + η)
.

Taking into account the definition of η, we get
1

d(µa + η, µa)
≤ 2µ∗

η2
.

An identical argument can be used to bound (d(µa + η, µ∗ − η))
−1 ≤ 2µ∗/η2.

E The proof of Theorem 2

We start by assuming that α < 1/2. Also notice that for a uniformly sampled set of nodes U , the
probability of U not containing a vertex from V ∗α is bounded as

P [U ∩ V ∗α = ∅] ≤ (1− α)|U |.

By the definition of Vk, this gives that the probability of not having sampled a node from V ∗α in period
k of the algorithm is bounded as

P [Vk ∩ V ∗α = ∅] ≤ (1− α)|Vk| ≤ β−k.

For each period k, the expected regret can bounded as the weighted sum of two terms: the expected
regret of d-UCB (Vk) in period k whenever Vk ∩ V ∗α is not empty, and the trivial bound ∆α,maxβ

k in
the complementary case. Using the above bound on the probability of this event and appealing to
Theorem 3 to bound the regret of d-UCB (Vk), we can bound the expected regret as

E [RαT ] ≤
kmax∑
k=1

(
βk

1

βk
∆α,max +

∑
i∈Vk

∆α,i

(
µ∗
(
2 + 3 log βk

)
δ2α,i

+ 3

))

≤ kmax∆α,max +

kmax∑
k=1

(∑
i∈Vk

∆α,i

(
µ∗ (2 + 3k log β)

δ2α,i
+ 3

))

≤ kmax∆α,max +
∑
i∈V

∆α,i

((
3 +

2µ∗

δ2α,i

)
(kmax + 1) +

3 log β(kmax + 1)2

2δ2α,i

)
.
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The proof of the first statement is concluded by upper-bounding the number of restarts up to time T
as kmax ≤ log T

log β .

The second statement is proven by an argument analogous to the one used in the proof of Theorem 1,
and straightforward calculations.
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