
Mach Learn
DOI 10.1007/s10994-009-5110-1

Training parsers by inverse reinforcement learning

Gergely Neu · Csaba Szepesvári

Received: 29 April 2008 / Accepted: 20 March 2009
Springer Science+Business Media, LLC 2009

Abstract One major idea in structured prediction is to assume that the predictor computes
its output by finding the maximum of a score function. The training of such a predictor can
then be cast as the problem of finding weights of the score function so that the output of
the predictor on the inputs matches the corresponding structured labels on the training set.
A similar problem is studied in inverse reinforcement learning (IRL) where one is given
an environment and a set of trajectories and the problem is to find a reward function such
that an agent acting optimally with respect to the reward function would follow trajectories
that match those in the training set. In this paper we show how IRL algorithms can be
applied to structured prediction, in particular to parser training. We present a number of
recent incremental IRL algorithms in a unified framework and map them to parser training
algorithms. This allows us to recover some existing parser training algorithms, as well as to
obtain a new one. The resulting algorithms are compared in terms of their sensitivity to the
choice of various parameters and generalization ability on the Penn Treebank WSJ corpus.

Keywords Reinforcement learning · Inverse reinforcement learning · Parsing · PCFG ·
Discriminative parser training · Parser training · Parsing as behavior

Editor: Charles Parker.

G. Neu (�)
Department of Computing Science, Budapest University of Technology and Economics,
Műegyetem rakpart 3-9, 1111 Budapest, Hungary
e-mail: neu.gergely@gmail.com

G. Neu · C. Szepesvári
Computer and Automation Research Institute of the Hungarian Academy of Sciences,
Kende utca 13-17, 1111 Budapest, Hungary

C. Szepesvári
Department of Computing Science, University of Alberta, Edmonton T6G 2E8, Alberta, Canada

mailto:neu.gergely@gmail.com

Mach Learn

1 Introduction

In many real world problems the problem is to predict outputs with a non-trivial structure
given some inputs (Bakir et al. 2007). A popular approach for training such predictors is to
assume that given some input, the structured output is obtained by solving an optimization
problem, where the optimization problem depends on the input and a set of tunable weights.
The predictor then is learn by tuning the weights so that the predictor’s outputs match the
targets in a training data available as input-output pairs. Oftentimes dynamic programming is
used to solve the optimization problem, e.g., in the classical examples of sequence labeling
using HMMs or PCFG parsing (Manning and Schütze 1999), but also in more complex
domains such as RNA structure prediction (Rivas and Eddy 1999) or image segmentation
(Elliott et al. 1984).

Dynamic programming is also one of the main techniques to find optimal policies in
Markov Decision Processes (MDPs). In inverse reinforcement learning (IRL) the goal is to
build a model of the behavior of an expert that optimizes the expected long-term cumulated
reward in a Markovian environment given a set of trajectories that the expert followed (Ng
and Russell 2000). In this framework the expert takes actions that result in (stochastic) state-
changes and in each time step the expert incurs some immediate reward which depends
on the state of the process and the action taken. The dynamics (of how the states change
as a result of executing some action) is assumed to be known, but the immediate rewards
are unknown. The IRL task is to find the immediate rewards so that the trajectories that
result from following an optimal policy corresponding to the identified rewards matches the
observed trajectories.

Returning to structured prediction problems let us assume that the structured outputs are
built up in a step-by-step manner. Then the stages of this building process can be viewed
as states that the “expert builder” goes through when building the output. Assume that each
building step of this process contributes some elementary value to a total score and that the
aim of the expert is to maximize this total score. The problem of finding these elementary
values can then be viewed as an IRL problem: The unknown values can play the role of im-
mediate rewards, while the rules governing the building process correspond to the dynamics
of a controllable process. The main motivation of this paper is to make this connection
explicit, allowing one to derive algorithms to train structured predictors from existing IRL
methods. For the sake of specificity in this paper we focus on the problem of training parsers
that use probabilistic context free grammars (PCFGs).

We will make the connection between IRL and parser training explicit by mapping pars-
ing problems into episodic Markovian Decision Processes (MDPs). In fact, a parse in this
framework is obtained as the trajectory when an optimal policy is followed in an appropri-
ately defined MDP. This idea is not completely new: The reverse connection was exploited
by Ratliff et al. (2006) who derived an algorithm for inferring rewards using the large margin
approach of Taskar et al. (2005). Maes et al. (2007) have used reinforcement learning for
solving the structured prediction problem of sequence labeling. The Ph.D. thesis of Daumé
III (2006) (and the unpublished work of the same author) presents the more general idea
of producing structured outputs by making sequential decisions by decomposing the struc-
tured outputs to variable length vectors. Once parsing is represented as a search problem
(or sequential decision making problem) one can use any search technique to find a good
parse tree (depending on the search problem, dynamic programming might be impractical).
This has been recognized long ago in the parsing community: Klein and Manning (2003)
proposes an A∗ algorithm for retrieving Viterbi parses, Collins and Roark (2004) proposes
incremental beam-search, while Turian and Melamed (2006) proposes a uniform-cost search

Mach Learn

approach. Note that the problem of finding an optimal policy given an MDP is called plan-
ning and has a large literature. In this paper, to make the parallel with IRL algorithms clear,
we nevertheless restrict ourselves to PCFG parsing when dynamic programming is suffi-
ciently powerful. However, we would like to emphasize once again that the issue of how a
good (or optimal) plan (policy) is obtained is independent of the problem of designing an
algorithm to find a good reward function for this MDP based on some training data (which
corresponds to parser training).

In this paper we consider five IRL algorithms: The first algorithm is the Projection al-
gorithm of Abbeel and Ng (2004), the second is the IRL algorithm of Syed and Schapire
(2008), called the Multiplicative Weights for Apprenticeship Learning (MWAL) algorithm
and the third is the Policy Matching (PM) algorithm of Neu and Szepesvári (2007). The
fourth algorithm considered is the Max-Margin Planning method of Ratliff et al. (2006)
which has already been mentioned previously. This algorithm uses the same criterion as
Taskar et al. (2004), but instead of using the so-called structured SMO method used by
Taskar et al. (2004), following the suggestion of Ratliff et al. (2006) we implement the opti-
mizer using a subgradient method. The last algorithm is the recently proposed IRL method
of Ziebart et al. (2008) which turns out to be a close relative to the Maximum Entropy
discriminative reranking method proposed by Charniak and Johnson (2005).

One major contribution of the paper is that the IRL algorithms are presented using a
unified notation. This allows us to elaborate on similarities and differences between them. In
particular, we show how the IRL version of the Perceptron algorithm (Freund and Schapire
1999; Collins 2002; Collins and Roark 2004) can be derived from Max-Margin Planning or
that MWAL is the “exponentiated gradient” version of this algorithm. We will also show that
the Projection algorithm of Abbeel and Ng (2004) can also be regarded as a special instance
of Max-Margin Planning.

The algorithms are compared in extensive experiments on the parser training task using
the Penn Treebank WSJ corpus: The experiments were run on a cluster in our institute and
took a total of approximately 30,000 hours of CPU time. We test the algorithm’s sensitivity
to the selection of the step-size sequence and the regularization parameter. We also inves-
tigate their generalization ability as a function of the size of the training set. In addition to
reporting results on a single hold-out test set (as it is typically done in the parser training
literature), we also report results when performance is measured with cross-validation, al-
lowing us to reason about the robustness of the results obtained in the “standard” way. The
experiments show that the Max-Margin, MaxEnt and the Policy Matching algorithms (the
latter of which is introduced here for parser training for the first time) lead to significantly
better results than the other three algorithms (i.e., the Perceptron algorithm, MWAL and the
Projection algorithm), while the performance of these latter three algorithms are essentially
indistinguishable from each other. We also find that reporting results on a single hold-out
test set might lead to conclusions that cannot be supported when testing is done using cross-
validation. In particular, when measured on a single hold-out set, the F1 error reduction of
Policy Matching was found to be 26.46%, while the error reduction of the Maximum En-
tropy method was found to be 20.73%, while when their performances were compared using
cross-validation then no statistically significant differences were found.

We have found significant differences between the performance of the training algo-
rithms. This shows that the choice of the parser training method can be crucial for achieving
good results. In this paper we decided to deal only with a relatively simple grammatical
model. The consequence of this is that in absolute terms our results are not as good as those
obtained with more sophisticated grammatical models such those in (Charniak and Johnson

Mach Learn

2005; Turian and Melamed 2006; Titov and Henderson 2007). We have made this choice de-
liberately as this allowed us to compare the methods studied in a thorough manner, hoping
the results can serve as a useful guideline for future studies.

The paper is organized as follows: In Sect. 2 we briefly present the required background
in parsing (most notably on PCFGs) and the basic concepts of Markov Decision Processes
(MDPs). The reduction of PCFG parsing to solving MDPs is presented in Sect. 3. In Sect. 4
we present IRL algorithms in a unified framework. The parser training algorithms derived
from the IRL algorithms are presented in Sect. 5. Finally, experimental results are given in
Sect. 6 and our conclusions are drawn in Sect. 7.

2 Background

The purpose of this section is to provide a quick introduction to PCFG parsing and MDPs.

2.1 PCFG parsing

In this section we present the formalism used to describe probabilistic context free grammars
(PCFGs) in the rest of the paper. The material presented here is based on Manning and
Schütze (1999).

A PCFG is a 5-tuple G = (W, N , S, R, σ), where

1. W is set with nt elements, called the terminal vocabulary (i.e., the set of terminal sym-
bols).

2. N is a set with nnt elements, called the nonterminal vocabulary (i.e., the set of nonter-
minal symbols).

3. The sets W and N are disjoint.
4. S ∈ N is a start symbol.
5. R is a subset of the set of all possible production rules,

R0 = {R : R ≡ N → ξ,N ∈ N , ξ ∈ (N ∪ W)+},
where (N ∪ W)+ denotes the set of non-empty words over N ∪ W .

6. σ : R → (−∞,0] is the scoring function that satisfies

∑

{R∈R:lhs(R)=N}
exp(σ (R)) = 1, ∀N ∈ N ,

where for R ∈ R, R = N → ξ , lhs(R) = N , i.e., for any given N , exp(σ) is a probability
distribution when it is restricted to production rules with left-hand side N .

From now on we will focus on grammars that are in Chomsky normal form, i.e., all rules
are either of the form R ≡ N → Nleft Nright (Nleft, Nright ∈ N) or of the form R ≡ N → w

(w ∈ W).
A PCFG generates a countable set T of parse trees or parses. A parse tree τ ∈ T is a set

of constituents, i.e., triples of form c = (Nc, startc, endc) ∈ (N ∪ W) × N × N, where startc
and endc are the respective indices of the first and last words forming the constituent. For-
mally, τ ⊂ T0, where T0 = {(N, i, j) : N ∈ N , i, j ∈ N, i ≤ j} ∪ {(w, i, i) : w ∈ W, i ∈ N} is
the set of all possible constituents. In order to qualify as a parse tree a set of constituents has
to meet a number of requirements. Before specifying these, we need a few definitions: For in-
tegers i, j , let [i, j] = {n ∈ N : i ≤ n ≤ k}. Let (N, i, j), (N ′, i ′, j ′) be two constituents. We

Mach Learn

say that (N, i, j) is an ancestor of (N ′, i ′, j ′) (and (N ′, i ′, j ′) is a descendant of (N, i, j))
if [i ′, j ′] ⊂ [i, j]. Now, fix a set of consituents τ . We say that (N, i, j) ∈ τ is a parent of
(N ′, i ′, j ′) ∈ τ in τ (and (N ′, i ′, j ′) is a child of (N, i, j) in τ) if (N, i, j) is an ancestor of
(N ′, i ′, j ′) and for every descendant (N ′′, i ′′, j ′′) ∈ τ of (N, i, j), either [i ′′, j ′′]∩ [i ′, j ′] = ∅
or [i ′′, j ′′] ⊂ [i ′, j ′]. Now, a set of constituents, τ , is called a parse-tree if the following hold:

1. There is a single constituent in the parse tree, called the root, that has the form (S,1, n).
2. For all i (1 ≤ i ≤ n) a constituent of the form (w, i, i) is in the parse tree, where w ∈ W .
3. The constituent set τ is linearly ordered, binary and consistent, i.e.,

(a) Every constituent in τ except the root has a unique parent in τ and is the descendant
of the root.

(b) Every constituent (N, i, j) ∈ τ has at most two children in τ .
(c) If (N, i, j) has a single child c′ then it must hold that i = j and c′ = (w, i, i) for

some w ∈ W and N → w ∈ R.
(d) If (N, i, j) has two children, cleft and cright, then it must holds that i < j , cleft =

(Nleft, i, k), cright = (Nright, k + 1, j), and N → NleftNright ∈ R.

A tree is called a partial parse tree if it satisfies all the previous properties except item 2.
The set of partial parse trees will be denoted by T1, while the set of parse trees will be
denoted by T2. A constituent c = (N, startc, endc) is called unexpanded in τ if it has no
child in τ . The set of unexpanded constituents of τ is denoted by U(τ). We say that the rule
R ≡ N → NleftNright occurs in τ if there exists a constituent c = (N, i, j) in τ such that c

has two children, cleft and cright with non-terminals Nleft and Nright, respectively. The number
of occurrences of R in τ is defined as

f (R, τ) =
∑

(N,i,j)∈τ

I(∃i ≤ k < j : (Nleft, i, k), (Nright, k + 1, j) ∈ τ). (1)

Each parse tree τ ∈ T represents the grammatical structure of a valid sentence in the
language generated by the grammar. This sentence is called the yield of the tree and will be
denoted by yτ and is defined as w1 · · ·wn, where n is the unique integer such that (S,1, n) ∈
τ and wi ∈ W is the unique terminal symbol such that (wi, i, i) ∈ τ . If s ∈ W + is the yield
of τ we also say that τ is a parse-tree of s and s is generated by the grammar G. We will
use the notation wab for the sequence of words wawa+1 · · ·wb .

A PCFG defines a probability distribution p over all generated parse trees:

p(τ |G) ∝
∏

R∈R

exp(f (R, τ)σ (R)), (2)

where f (R, τ) is the number of occurrences of rule R in parse tree τ .1 This way we can
also define the probability of a sentence s ∈ W + as

p(s|G) =
∑

{τ∈T :yτ =s}
p(τ |G) =

∑

τ∈T

p(τ, s|G), (3)

1If there are non-terminals in G whose expansion cannot produce valid sentences of the terminals then it can
happen that

∑
τ∈T p(τ |G) < 1. However, in this case G is in some way incomplete. In this paper we shall

not deal with grammars with such “dangling” non-terminals, so we can safely disregard this issue.

Mach Learn

where p(τ, s|G) = I(yτ = s)p(τ |G). The probability that τ is a parse-tree for sentence s is
given by:

p(τ |s,G) = p(τ, s|G)

p(s|G)
.

The problem of parsing is to find the most probable parse for a sentence s, given a gram-
mar G. This can be formalized as finding the parse

τ ∗ = arg max
τ∈T

p(τ |s,G) = arg max
τ∈T

p(τ, s|G)

p(s|G)
= arg max

τ∈T
p(τ, s|G),

which can be further written as

τ ∗ = arg max
τ∈T

{
I(yτ = s)

∏

R∈R

exp(f (R, τ)σ (R))

}

= arg max
τ∈T

{
log I(yτ = s) +

∑

R∈R

f (R, τ)σ (R)

}
. (4)

Then, parsing can be viewed as finding the parse tree with maximal score among the trees
that yield s. The tree τ ∗ is called the maximum scoring tree.

2.2 Markovian decision processes

Markov decision processes (MDPs) are a widely studied, general mathematical framework
for sequential decision problems (e.g., Bertsekas and Tsitsiklis 1996). The essential idea
is that an agent interacts with its environment, changing the state of the environment and
receiving a sequence of rewards. The goal of the agent is to maximize the cumulative sum
of the rewards received. Here, we shall only deal with episodic MDPs, i.e., MDPs that
have terminal states. Formally, a countable episodic MDP is defined with a 5-tuple M =
(X , A, T , XT , r), where

X is a countable set of states.
A is a finite set of actions.
T is the transition function; T (x ′|x, a) stands for the probability of transitioning from

state x to x ′ upon taking action a (x, x ′ ∈ X , a ∈ A).
XT is the set of terminal states: upon reaching a state in this set the process terminates.
r is the reward function; r : X × A �→ R. This function determines the reward upon se-

lecting action a ∈ A at state x ∈ X .

An MDP is called deterministic if all the transitions are deterministic, i.e., if for any (x, a) ∈
X × A, T (x ′|x, a) = 0 holds for all next states x ′ ∈ X except one state. In such cases, by
slightly abusing the notation, we write T (x, a) to denote the one next state.

A stochastic stationary policy (in short: policy) is a mapping π : A × X → [0,1] satis-
fying

∑
a∈A π(a|x) = 1, ∀x ∈ X .2 The value of π(a|x) is the probability of taking action a

in state x. For a fixed policy, the value of a state x ∈ X is defined by

V π
r (x) = Eπ

[
H−1∑

t=0

r(xt , at)

∣∣∣∣ x0 = x

]
.

2Instead of π(a, x) we use π(a|x) to emphasize that π(·, x) is a probability distribution.

Mach Learn

Here xt is a random process that is obtained by following policy π in the MDP. This means
that in each time step, xt+1 follows the distribution T (·|xt , at), where at is a random action
drawn from π(·|xt). In particular, given xt and at , xt+1 is independent of the states, actions
and rewards that were obtained prior time step t . This is called the Markov property. Further,
it is assumed that x0 is such that D(x) > 0 for some initial distribution D(x) = P (x0 = x).
The number H in the above equation is the first (random) time when the process enters
the set of terminal states (xH ∈ XT and for t < H , xt /∈ XT). (The notation Eπ is used to
signify that the expectations is taken by assuming that the transitions are generated while
following π .) The function V π

r : X → R is well-defined and is called the value function
corresponding to policy π and reward function r .

A policy that maximizes the values at all states is called an optimal policy and is denoted
by π∗

r . Thus, an optimal policy maximizes the cumulated total expected reward irrespective
of where the process starts. The values under an optimal policy define the optimal value
function. In fact, the optimal value function also satisfies

V ∗
r (x) = max

π
V π

r (x), x ∈ X .

The Q-functions (or Q-factors, action-value functions) can be defined similarly:

Qπ
r (x, a) = Eπ

[
H−1∑

t=0

r(xt , at)

∣∣∣∣ x0 = x, a0 = a

]
.

In words, the value of a at x under π is the expected total reward assuming that the first
action taken in x ∈ X is a ∈ A, and the further actions are obtained by following π . Similarly
to the optimal state-values, the optimal action-values or optimal Q-factors are given by
maximizing the action values with respect to the policies: Q∗

r = Q
π∗

r
r . Further,

Q∗
r (x, a) = max

π
Qπ

r (x, a), (x, a) ∈ X × A.

It is also useful to define the advantage functions:

Aπ
r (x, a) = Qπ

r (x, a) − V π
r (x), (x, a) ∈ X × A.

Similarly, A∗
r = Q∗

r −V ∗
r . The significance of advantage (and action-value) functions is that

knowing the optimal advantage (action-value) function allows one to behave optimally: π is
an optimal policy if it holds that for any state x, π picks an action that maximizes A∗

r (x, a).
Accordingly, such actions will be called optimal.

One variation of MDPs that we will need is when not all actions are available in each
state. In that case we use A(x) to signify the set of actions that are admissible in state x. The
rest of the definitions need then to be adjusted accordingly (i.e., policies in state x cannot
choose actions outside of A(x)).

Given a class of MDPs Mi = (Xi , {Ai (x)}, Ti, XT ,i , ri) (i = 1,2, . . .) with disjoint state
spaces the union of these MPD is defined to be M = (X , {A(x)}, T , Xt , r) as follows: X =⋃

i Xi and XT = ⋃
i XT ,i . Now pick x ∈ X . Then there exists a unique index i such that

x ∈ Xi . Pick this index i. Then A(x) = Ai (x) and for a ∈ A(x), T (·|x, a) = Ti(·|x, a) and
r(x, a) = ri(x, a).

We will also need the definition of legal trajectories: An alternating sequence of states
and actions, ξ = (x0, a0, x1, a1, . . . , xH−1), is a legal trajectory if for any 0 ≤ i ≤ H − 2, ai

is admissible in xi , T (xi+1|xi, ai) is positive and xH−1 is a terminal state. In other words,
a legal trajectory is a sequence of states and actions that can be obtained by following some
policy in the MDP. The set of legal trajectories shall be denoted by �.

Mach Learn

3 PCFG parsing as an MDP

The purpose of this section is to show that finding the best parse in a PCFG is equivalent to
following an optimal policy in an appropriately defined deterministic, episodic MDP.

To make the connection to MDPs clear, notice that following an optimal policy in a
deterministic, episodic MDP from a given initial state is equivalent to finding a path that
connects the initial state to a terminal state such that the total reward along the path is
maximal. Now, in PCFG parsing the aim is to construct a parse with maximal total score,
where the scores of the individual rules are additively combined (cf. (4)). The idea is that this
parse tree can be constructed in a sequential manner, i.e., starting from the sentence symbol
and then expanding the obtained partial parse trees by applying appropriate production rules
until the sentence is obtained in the leaf nodes of the tree. This process corresponds to a
top-down construction of the parse tree. (Other construction orders are also possible, but are
not considered here.) Below we illustrate the process with an example (cf. Fig. 1).

Definition 1 The top-down parsing MDP for sentence w1K and grammar G = {N , W, S,

R, σ } is a 5-tuple MG
w1K

= (X , {A(x)}, T , XT , r) defined as follows:

X is the state space consisting of states that represent partial parse trees with root
(S,1,K): X = {τ ∈ T1 : (S,1,K) ∈ τ }.

A(x) is the set of admissible actions in x, with elements that are in the form of triplets with
the following components: an unexpanded constituents of x, a rule of the grammar and
a splitting point. Formally,

A(x) = A1(x) ∪ A2(x),

A1(x) = {(c,R, split) : c = (Nc, startc, endc) ∈ U(x),

R ≡ Nc → NleftNright ∈ R, startc ≤ split < endc},
A2(x) = {(c,R, split) : c = (Nc, startc, startc) ∈ U(x),

R ≡ Nc → w ∈ R, split = startc}.
The components of a specific action a will be referred to as ca,Ra and splita (where
this is appropriate).

T the transition function is deterministic: Fix x ∈ X , a = (c,R, split) ∈ A1(x), where
R ≡ Nc → NleftNright. Then the next state x ′ = T (x, a) is obtained by adding the new
constituents cleft = (Nleft, startc, split) and cright = (Nright, split + 1, endc) to x: x ′ = x ∪
{cleft, cright}. If a = (c,R, split) ∈ A2(x), where R ≡ N → w, then the new state x ′ is
obtained by adding the constituent c′ = (w, startc, startc) to x: x ′ = x ∪ {c′}.

XT the set of terminal states are those states x where the set of admissible actions, A(x), is
empty.

r the reward function is defined as follows: It is a function r : Domr → R, where
Domr = {(x, a) : x ∈ X , a ∈ A(x)}. The reward of an action that leads to a transition to
a terminal state xT is −∞ if xT does not correspond to a full parse tree of w1K . For all
other states, r(x, a) = σ(Ra).

In what follows when the grammar is clear from the context, we will drop the super-
script G. It is easy to see that any policy in these MDPs terminates after a finite number of
steps. When needed we annotate the states of Mw1K

by w1K . If we do so, the MDPs corre-
sponding to different sentences will have disjoint state spaces. Thus, we can take the union
of these MDPs, which in turns defines the MDP corresponding to G:

Mach Learn

Definition 2 Let G = {N , W, S, R, σ } be a grammar. Then the top-down parsing MDP
corresponding to G, MG = (X , {A(x)}, T , XT , r) is obtained as the disjoint union of the
MDPs corresponding to all sentences generated by G.

Although an initial state distribution is not part of the definition of MDPs, sometimes we
will need such a distribution. Note that a PCFG naturally gives rise to an initial state dis-
tribution: In fact, the natural distribution D assigns non-zero probabilities only to states of
the form x(0,w1K) = {(S,1,K),w1K}, where w1K ∈ W + is a sentence generated by the gram-
mar G. In particular, D(x(0,w1K)) = p(w1K |G), where p(w1K |G) is determined as in (3). For
the sake of simplicity, when it is clear from the context which MDP we are in, we will use
the unannotated symbols.

The idea of state construction is illustrated in Fig. 1 which shows the state

x0 = {“It was love at first sight”, (S,1,6), (NP,1,1), (PRP,1,1), (VP,2,6)}

in the form of a tree, three actions that are admissible in this state, namely,

a1 = ((VP,2,6),VP → VBD NP,2),

a2 = ((PRP,2,2),PRP → “it”,2),

ak = ((VP,2,6),VP → VP PP,3),

and the three states resulting from applying the respective actions.

Fig. 1 Illustration of states and transitions in an MDP assigned to a CFG. The states (x0, x1, x2, . . . , xk) are
partial parse trees and the actions (a1, a2, . . . , ak) correspond to valid extensions of the parse trees where the
action is applied. For more explanation see the text

Mach Learn

The rewards associated with taking these actions in this state are:

r(x0, a1) = σ(VP → VBD NP),

r(x0, a2) = σ(PRP → “it”),

r(x0, ak) = σ(VP → VP PP).

The following result follows immediately from the above construction and hence its proof
is omitted:

Proposition 1 Let G = {N , W, S, R, σ } be a grammar and MG be the corresponding top-
down parsing MDP. Let π∗ be an optimal policy in MG. Pick some sentence w1K ∈ W + and
let x∗

w1K
= {w1K} ∪ τ be the terminal state reached by π∗ when started in MG from state

x0 = {w1K, (S,1,K)}. Then the following hold: if w1K is generated by the grammar G then
x∗

w1K
will not be a failure state and V ∗

r (x0) = logp(τ,w1K |G), otherwise x∗
w1K

will be a
failure state and V ∗

r (x0) = −∞.

An optimal policy can be recovered from the knowledge of the optimal advantages. The
next statement shows that the optimal advantages at a state can be computed if one calculates
the optimal state values in a problem with a larger state space. This new MDP for a given
sentence w1K generated by G is obtained as follows: M̂w1K

= ⋃
N∈N ,1≤i≤j≤K Mw1K,(N,i,j),

where in Mw1K,(N,i,j) the set of admissible actions, the transitions, the terminal states and
rewards are defined as it was done for Mw1K

, just the state space of Mw1K,(N,i,j) is obtained by
recursively following the transitions resulting from admissible actions and when the initial
state is taken to be {(N, i, j)}.3 The special states, {(N, i, j)}, in the state space of M̂w1K

will be called the initial states in M̂w1K
. The following proposition holds:

Proposition 2 Let w1K ∈ W ∗ and consider M̂w1K
. Pick x in the state space of M̂w1K

and
a ∈ A(x). Assume that a = (c,R, split), where R ≡ N → NleftNright and let

xN = {(N, startc, endc)},
xleft = {(Nleft, startc, split)},

xright = {(Nright, split + 1, endc)}

be states of M ′
w1K

. Let V̂ ∗
r be the optimal value function in M̂w1K

and let Â∗
r be the corre-

sponding advantage function. Then

Â∗
r (x, a) = r̂(x, a) + V̂ ∗

r (xleft) + V̂ ∗
r (xright) − V̂ ∗

r (xN), (5)

where r̂ is the reward function in M̂w1K
.

Proof We have Â∗
r (x, a) = r̂(x, a) + V̂ ∗

r (x ′) − V̂ ∗
r (x), where x ′ = T (x, a) is the state ob-

tained when a is applied in x. Then we have V̂ ∗
r (x ′) − V̂ ∗

r (x) = V̂ ∗
r (xleft) + V̂ ∗

r (xright) −

3Thus a state in the extended MDP M̂w1K
corresponds to a partial or full subtree spanning a number of words

in w1K , while a state in Mw1K
corresponds to a partial or full subtree spanning the full sentence w1K .

Mach Learn

V̂ ∗
r (xN) thanks to the additive rewards, that the effects of the actions are local and the con-

struction of xleft, xright and xN . Combining the first and last equations in the proof and re-
ordering the terms gives the result. �

As a corollary of this proposition we get that the optimal advantage function of Mw1K

can be obtained by computing the optimal values of the initial states in M̂w1K
. To see this

assume that x ∈ M = Mw1K
and consider a ∈ A(x). Let x ′ = T (x, a). Assume that a =

((N, i, j),R, split) and let M̃ = Mwij ,(N,i,j). If i = j , R ≡ N → w with some w ∈ W then
the statement holds trivially. Hence, consider the case when i < j , R ≡ N → NleftNright.
Let Ã∗

r (x, a) denote the optimal advantage function in M̃ and let Ṽ be the optimal state
value function in M̃ . Then if y denotes {(N, i, j)} ∈ M̃ then a ∈ A(y) (a is admissible in
M̃ at y). Clearly, the advantage of a at x is the same as the advantage of a at y (in M̃):
A∗

r (x, a) = Ã∗
r (y, a). Now, by the above proposition, Ã∗

r (y, a) can be obtained by from the
optimal values of the initial states in M̂w1K

, proving the claim.
In parsing the optimal values assigned to initial states of M̂w1K

are called “inside Viterbi-
scores”. In fact, Viterbi-parsers (a.k.a., CKY parsers) compute the optimal parse tree by
first computing these scores (clearly, knowing the optimal advantage function is sufficient
to recover optimal parses). It follows that the optimal advantage function in the MDP Mw1K

can be computed in O(K3n3
nt) time in the worst case, see e.g. Collins (1999).

4 A unified view of inverse reinforcement learning algorithms

In this subsection we present an overview of current Inverse Reinforcement Learning (IRL)
methods. First, we give the definition of the IRL problem and discuss some of its difficulties.
We then present five existing algorithms in a unified notation. The unified notation allows
us to compare these algorithms and elaborate on their similarities and differences.

Informally, IRL is a method to build a model for the observed behavior of an expert by
finding the definition of the task that the expert performs. Assuming that the expert acts in
an MDP, this can be stated more formally as finding the reward function that generates an
optimal behavior that is close enough to the behavior of the expert.4 This definition still
leaves one question open: how do we decide if two particular behaviors are “close enough”?
The main difference between the algorithms to be shown is this definition of closeness:
once this definition is fixed, we are left with the task of finding an algorithm to efficiently
minimize it.

IRL is a difficult problem. Besides the dilemma of selecting an appropriate feature set
we have to be aware of that the IRL problem is ill-posed: infinitely many reward functions
can give rise to a specific behavior. Even worse, this set of solutions contains degenerate
solutions as well, such as the reward function that is identically zero in all state-action pairs
(this reward makes all policies optimal). One solution is to give preference to reward func-
tions that robustly generate the observed behavior. An even stronger requirement is that the
observed behavior be the only optimal behavior with respect to the reward function. The
dissimilarity functions should be chosen to encourage such solutions.

4The earliest precursor of IRL was the inverse optimal control problem, where a linear, time-invariant system
is considered with a quadratic cost function. For details and further references, see Boyd et al. (1994).

Mach Learn

4.1 A Unified view

Here we present a unified framework for the design of IRL algorithms. An IRL algorithm
receives a rewardless MDP M \ r (an MDP without a reward function) and a list of trajec-
tories, D = {ξ1, . . . , ξNtraj}, that are obtained while an expert follows its policy in the MDP.
The task is to come up with a reward function such that trajectories that one obtains by fol-
lowing the optimal policy in the obtained MDP become “close” to the observed trajectories.
In order to specify what we mean by “close” we define a dissimilarity function J = J (r; D)

that maps reward functions and datasets into reals, assigning higher values to pairs when the
optimal behavior with respect to the selected reward function r is less similar to the expert’s
observed behavior as represented by the dataset D.

Given J , a good reward function r should minimize the dissimilarity between r and D.
Thus, one might be interested in computing

r∗ = arg min
r

J (r; D) = ?

Below we will argue that all IRL algorithms aim to solve an optimization of this form. In
particular, in all these approaches the reward function is sought in a linear form:

rθ (x, a) =
n∑

i=1

θiφi(x, a) = θT φ(x, a), (x, a) ∈ X × A, (6)

where φ : X × A → R
d is a feature extractor. Unless otherwise stated, in this paper we shall

consider linear parameterizations only. Given a parameterization the problem becomes to
find a parameter vector θ∗ such that J (θ; D) = J (rθ ; D) is minimized at θ∗.

The optimal parameter vector is typically found by incremental algorithms. We will see
that these algorithms take the form

θk+1 = g(g−1(θk) + αk
k),

where αk is the step size at iteration k, g is the so-called link-function (see Warmuth and
Jagota 1997) and
k is the parameter update used in the considered IRL method at iter-
ation k. In particular, g(x) = exp(x) leads to multiplicative, g(x) = x leads to additive
updates. The discussion of the relative advantages of these choices is out of the scope of
this paper and the interested reader is referred to Cesa-Bianchi and Lugosi (2006), where
algorithms of this form are extensively discussed in the online learning framework.

Before moving on to discussing specific IRL algorithms, we need to fix some more no-
tations: The conditional feature expectation function with respect to a reward function r is
defined by

�r(x, a) = Eπr

[
H∑

t=0

φ(xt , at)

∣∣∣∣x0 = x, a0 = a

]
, (x, a) ∈ X × A, (7)

where πr is an optimal policy w.r.t. r and (x0, a0, x1, a1, . . .) is a random trajectory ob-
tained such that (x0, a0) ∼ D for some distribution D such that D(x,a) > 0 holds for any
(x, a) ∈ X × A, and xt+1 ∼ P (·|xt , at), at ∼ πr(·|xt), t ≥ 1.5 The (unconditional) feature

5If there are multiple optimal policies, we pick one in some specific manner (i.e., randomize uniformly across
the optimal actions) to make �r well-defined.

Mach Learn

expectations are defined by taking the expectation of the conditional feature expectations:

�̄r = E[�r(x, a)|x ∼ D0, a ∼ πr(·|x)], (8)

where D0 is some initial state distribution.
For the sake of brevity, but at the price of slightly abusing the notation the optimal policy

w.r.t. r = rθ will be denoted by πθ and the corresponding state visitation frequencies will be
denoted by μθ . Similarly, the feature expectations generated by following πθ will be denoted
by �θ :

�θ
def= �rθ .

4.2 Some IRL algorithms

In this section we will examine five different algorithms in the above framework. We shall
not deal with the derivation of these algorithms or their convergence properties.

4.2.1 Projection

The Projection algorithm was proposed in Abbeel and Ng (2004). This is the earliest IRL
algorithm discussed in this paper.6

Dissimilarity Assume that the length of the j th trajectory of D is Hj and in particular
ξi = (xti+j , ati+j)

Hi

j=1, where ti = ∑i−1
k=0 Hk . The estimate of the expert’s feature expectation

vector is then

�̄E := 1

Ntraj

Ntraj∑

i=1

Hi∑

j=1

φ(xti+j , ati+j).

Using this notation, the dissimilarity is

J (θ; D) = ‖�̄θ − �̄E‖2, (9)

i.e., the goal of the algorithm is to match the feature expectations underlying the optimal
policy and the observed feature expectations.

As noted by Abbeel and Ng (2004), the problem with this dissimilarity is that it can be
sensitive to the scaling of the features (see also the discussion by Neu and Szepesvári 2007).
Since the algorithm can lead to wildly differing reward functions (and policies) depending
on the scaling of the features, this algorithm should be used carefully when the scaling of
the features is unknown initially. This remark applies to all the other algorithms presented
here, except Policy Matching and the MaxEnt methods which avoid this issue by measuring
distances between distributions. In parsing binary features are a natural choice, hence the
scaling issue is less of a problem.

6The term “inverse reinforcement learning” was first used by Ng and Russell (2000), but that paper did not
present a practical IRL algorithm, its aim is mainly to characterize the solution set for the IRL problem.

Mach Learn

Update step The parameter updates are done additively at each step (g(x) = x), the update
vector at the k-th step is

k = βk(�̄E − �̄θk
) − βkθk (10)

where βk is a special step-size parameter (and the global step-size parameter αk is kept con-
stant at a value of 1). To compute this step size, we need to maintain a vector k throughout
the training steps. By setting 0 = �̄θ0 , the values of βk and k (k ≥ 0) are computed incre-
mentally in the following way:

βk = (�̄θk
− k−1)

T (�̄E − k−1)

(�̄θk
− k−1)T (�̄θk

− k−1)
, (11)

k = k−1 + βk(�̄θk
− k−1). (12)

The original algorithm includes a post-processing step, when a mixed policy is con-
structed that produces feature expectations with minimal distance to the expert’s observed
feature expectations. As we want to use this algorithm for parser training, we will not apply
this step, as we are interested in only deterministic parsers (i.e., parsers that return the same
parse tree for a specific sentence every time it is queried). Instead, as with the other algo-
rithms, we will monitor the performance on a validation set and choose the parameter that
gives the best results there.

4.2.2 MWAL

The multiplicative weights algorithm for apprenticeship learning (MWAL) was proposed
by Syed and Schapire (2008) with the aim to improve the Projection algorithm of Abbeel
and Ng (2004).

Dissimilarity In this case the dissimilarity is

J (θ; D) = θT (�̄rθ − �̄E), (13)

where θ is restricted to nonnegative values, corresponding to the assumption that the features
are positively correlated with the rewards.7

The rationale underlying this criterion is that θT �̄rθ can be shown to be the average
expected reward under the optimal policy corresponding to rθ and if the initial states are
selected from the distribution D. Further, θT �̄E can be viewed as an approximation to the
average reward that would have been collected by the expert if the reward function was rθ .
The minimization problem corresponds to a robust (minimax) approach: The optimal choice
of θ makes the performance of the optimal policy the least favorable compared with that of
the expert. Syed and Schapire (2008) show that by von Neumann’s minmax theorem the
value of J at the minimum is positive. It follows that the found behavior will be better than
the expert’s behavior even when the least favorable parameters are taken. This makes the
algorithm more robust.

7Abbeel and Ng (2004) also propose a Max-Margin algorithm that attempts to minimize the same criterion.

Mach Learn

Update step The updates proposed to solve this optimization are multiplicative, i.e.,
g(x) = exp(x). Further,

k = �̄E − �̄rθk
. (14)

As it is well-known, multiplicative weights algorithms can be sensitive to the choice of
step sizes, hence in this work we will compare several choices.8 The algorithm as proposed
originally has performance guarantees for a randomized policy which is obtained by ran-
domizing over the policies obtained in the iterations. Again, instead of randomizing, we
will use the optimal policy (parser) corresponding to the final parameter vector found by the
algorithm when testing its performance.

4.2.3 Max-Margin Planning

This algorithm was published in Ratliff et al. (2006) and is derived from the Max Margin
Planning algorithm of Taskar et al. (2005). Note that Ratliff et al. (2006) argue that their
problem is distinct from IRL since it concerns a series of planning problems. However, by
assuming that the state spaces are disjoint we can take the union of the resulting MDPs (as
was done in setting up the top-down parsing MDP corresponding to a grammar). This way
solving a sequence of planning problems becomes equivalent to solving a single MDP.

Dissimilarity Let the state-action visitation frequencies, μE , and a loss function, � : X ×
A → R

+, be defined as follows:

μE(x, a) :=
∑N

t=1 I(xt = x ∧ at = a)

N
, (x, a) ∈ X × A,

�(x, a) := c�μE(x, a), (x, a) ∈ X × A.

In the above formula, c� is a positive loss constant, which is a parameter of the algorithm.
The chosen dissimilarity is the following:

J (θ; D) =
(∑

x,a

(rθ (x, a) − �(x, a))μθ,�(x, a) −
∑

x,a

rθ (x, a)μE(x, a)

)
+ λ

2
‖θ‖2

2.

Here μθ,� is the stationary distribution (visitation frequencies/counts in episodic MDPs)
generated by the policy that is optimal w.r.t. rθ − �, and λ ≥ 0 is a regularization constant
whose role is to control the complexity of the solutions. The role of the loss function is to
enforce that the solution found is better (cf. (13)) than other solutions by at least a mar-
gin proportional to this loss. Accordingly, here the average expected payoff of the optimal
policy corresponding to rθ − � (and not to rθ) is compared with the average payoff of the ex-
pert. By choosing the loss proportional to the state-visitation frequencies we force rewards
of highly visited state-action pairs to take on larger values, encouraging the learn policy to
visit such states more oftern. This also has an effect of enforcing meaningful solutions to
the IRL problem. In particular, the degenerate solution θ = 0 does not minimize the crite-
rion.

8Note that Syed and Schapire (2008) propose a specific step-size sequence for which they can derive theoret-
ical guarantees. However, as shown by our preliminary experiments, in practice this step-size sequence does
not perform very well and hence we will not include it in our comparison.

Mach Learn

Update step The update of the subgradient algorithm of Ratliff et al. (2006) uses g(x) = x

and

k =
∑

x,a

φ(x, a)[μE(x, a) − μθk,�(x, a)] − λθk = �̄E − �̄rθk
−� − λθk. (15)

4.2.4 Policy matching

This algorithm directly aims to minimize the distance to the expert’s policy (Neu and
Szepesvári 2007).

Dissimilarity Assume that D = {(x1, a1), . . . , (xN , aN)}. Let us build an estimate π̂E of
the expert’s policy:

π̂E(a|x) =
∑N

t=1 I(xt = x ∧ at = a)
∑N

t=1 I(xt = x)
, (x, a) ∈ X × A

(if a state is not visited by the expert, π̂E(·|x) could be defined arbitrarily). We will also need
the empirical state visitation frequencies of the expert:

μ̂E(x) = 1

N

N∑

t=1

I(xt = x), x ∈ X .

Then the dissimilarity is given by the formula

J (θ; D) = 1

2

∑

(x,a)∈X ×A

μ̂E(x)[πθ(a|x) − π̂E(a|x)]2. (16)

Clearly, this objective function is very different from the previous ones: The aim here is to
directly match the behavior and the rewards are used only for parameterizing the class of
policies available. Thus one expects this objective to work better when there is not much
noise in the observed behavior. One problem with this objective function is that the opti-
mization is convex only in the special case when the expert behavior is deterministic and
μE(x) �= 0 holds for all state x. In such a case one can write up an equivalent quadratic
program with linear constraints.

Update step We apply a gradient algorithm for minimizing the distance (16). We chose πθ

to be the so-called Boltzmann-policy with respect to Q∗
θ :

πθ(·|x) = B(Q∗
θ (x, ·), η), B(Q∗

θ (x, ·), η)(a) = exp(
Q∗

θ (x,a)

η
)

∑
b∈A(x) exp(

Q∗
θ (x,b)

η
)
, (17)

where η > 0 is a “temperature” parameter. The smaller η is, the closer πθ is to an optimal
policy. The reason of not relying on the optimal policy is to make the policy a differentiable
function of Q∗

θ (x, ·). The update is additive (g(x) = x) and uses

k =
∑

(x,a)∈X ×A

μ̂E(x)(π̂E(a|x) − πθk
(a|x))∂θπθk

(a|x), (18)

Mach Learn

where ∂θπθ (a|x) is the gradient of πθ(a|x). As shown by Proposition 4 in Neu and
Szepesvári (2007), for almost all θ , the gradient of πθ can be computed as

∂θπθ (a|x) = πθ(a|x)

η

(
�θ(x, a) −

∑

b∈A(x)

πθ (b|x)�θ(x, b)

)
. (19)

In some cases computing the advantage function A∗
θ = Q∗

θ − V ∗
θ is easier than computing

the action-values. Luckily, B(A∗
θ (x, ·), η) = B(Q∗

θ (x, ·), η), hence in order to compute πθ it
suffices to compute the advantage function.

4.2.5 Maximum entropy IRL

This method was recently proposed by Ziebart et al. (2008). It works by minimizing an
empirical approximation to the Kullback-Leibler (KL) divergence between the distribution
of trajectories generated by the expert’s behavior and Pθ , a distribution of the form

Pθ(ξ) = eθT �ξ

Z(θ)
, Z(θ) =

∑

ξ ′∈�

e
θT �ξ ′ .

Here � is the set of all legal trajectories in the MDP considered, ξ, ξ ′ represent individual
trajectories in �, and for ξ = (x0, a0, x1, a1, . . . , xH−1), �ξ is its feature count:

�ξ =
H−1∑

i=0

φ(xi, ai).

Dissimilarity The Kullback-Leibler (KL) divergence of distributions P,Q defined over
the countable domain � is

DKL(P ‖Q) =
∑

ω∈�

P (ω) log
P (ω)

Q(ω)
.

Note that minimizing DKL(P ‖Q) in Q is equivalent to minimizing H(P,Q) =
−∑

ω∈� P (ω) logQ(ω), the so-called cross-entropy of P and Q.
Let Q = Pθ and, as before, assume that we are given an i.i.d. sample D = {ξ1, . . . , ξNtraj}

from PE , the distribution over the trajectories underlying the expert’s behavior. Thus, min-
imizing DKL(PE‖Pθ) in θ gives the best match in the family (Pθ) to PE (as in density
estimation). By our previous remark this is equivalent to minimizing H(PE,Pθ), which can
be approximated by

J (θ, D) = − 1

Ntraj

Ntraj∑

i=1

logPθ(ξi)

= −θT �E + logZ(θ).

This defines the dissimilarity function to be minimized. Note that this is a convex dissim-
ilarity function, hence gradient methods can be expected to perform well. It is somewhat
disputable if this method could be called a method for inverse reinforcement learning prob-
lem since the dissimilarity does not use optimal policies.

Mach Learn

Update step The negated gradient of the proposed dissimilarity function gives the update
step of the algorithm:

k = �̄E −
∑

ξ∈�

Pθk
(ξ)�ξ .

Clearly, the above summation is intractable as the number of trajectories is in general infi-
nite. One trick proposed by Ziebart et al. (2008) is to replace the above sum by a sum over
the states. Unfortunately, in our case the state space is countably infinite, so this trick is not
applicable. Instead, we will follow the approach of Charniak and Johnson (2005): we pick
the paths from � that have the largest probabilities and approximate the sum with the sum
computed with the help of these paths. This approach is known as n-best reranking in the
parsing literature, see e.g. Collins (2000).

A notable property of this approach is that when the dissimilarity is minimized (i.e.,
when
k = 0) the feature expectations are exactly matched under the distribution found.
In fact, the equilibrium distribution is the one that has the largest entropy amongst all the
distributions that satisfy this constraint on the feature expectations (Jaynes 1957), hence the
name of the method.

4.3 Regularization

Regularization has already been mentioned in the context of the Max-Margin algorithm as a
tool to facilitate model selection. Clearly, as such it can also be applied to other dissimilarity
functions if one switches from minimizing J to minimizing the regularized dissimilarity Jλ

defined by

Jλ(D; θ) = J (D; θ) + λ‖θ‖2
2,

where λ is some small positive constant. As all of the described methods (except the Projec-
tion algorithm) can be regarded as steepest descent methods, this regularization factor will
appear as an additive term in the update steps:

λ =
 − λθ.

An alternative to regularization with ‖θ‖2
2 would be to regularize with ‖θ‖1. Such a regular-

ization could be useful if one expects θ to be sparse. However, this direction is not pursued
any further here.

4.4 Relationships between the methods

The purpose of this section is to further explore the connections between the IRL methods
discussed above.

First, one may notice that the Max-Margin method “interpolates” between MWAL and
the Projection method in some sense. When setting � = 0 and λ = 0, the dissimilarity is
the same as in the MWAL method, as

∑
x,a rθ (x, a)μθ(x, a) = θT

∑
x,a φ(x, a)μθ (x, a) =

θT �̄θ . Then the update of the Max-Margin algorithm becomes

k = �̄E − �̄rθk
.

We will refer to the method that uses these updates as the Perceptron algorithm, due to its
analogy with the classical Perceptron algorithm (e.g., Freund and Schapire 1999). If we

Mach Learn

apply these updates multiplicatively, and assume that the signs of the optimal parameters
are known, we get the MWAL algorithm. Furthermore, if we set λ = 1, � = 0, and use the
special step sizes computed using (11) and (12), we get the update step of the Projection
algorithm.

The MaxEnt method can also be related to the Perceptron method. While in the Percep-
tron algorithm, the updates are computed solely based on the difference between the feature
expectations of the expert and that of the current optimal policy, MaxEnt proposes updates
that are computed using a mixture over trajectories. If the probability assigned to the path
underlying the optimal policy πθ is large compared to the probability assigned to other paths
then the update direction of the MaxEnt method will be close to that of the Perceptron update
direction.

MaxEnt IRL is also related to the Policy Matching to some extent: they both employ
an exponential family distribution to smooth their dissimilarity functions. The difference
is that Policy Matching does smoothing at the action level (πθ(a|x)), while MaxEnt does
smoothing on the trajectory level (Pθ(ξ)). Ziebart et al. (2008) illustrate through an example
that Policy Matching suffers from a so-called label bias (see Lafferty et al. 2001): if there
are multiple optimal actions in one or more states, the behavior returned by matching the
expert’s policy will not necessarily reproduce the distribution over paths generated by the
expert. However, in many applications (such as in parsing) reproducing the path distribution
is not necessary to produce a good behavior.

Note that the methods differ substantially in the choice of the dissimilarity: Both the
Projection method and MaxEnt aim to match feature expectations, while Policy Matching
aims to match the expert’s decisions at the level of the individual states. In the case of
MWAL and Max-Margin the dissimilarity is specified by comparing the payoff for the expert
and the payoff for the optimal policy, which is a somewhat less direct measure of how
well the trajectories underlying the found policy match the observed trajectories. In fact,
because of this approach may also suffer from the label bias problem: if the reward function
found allows multiple optimal policies then there is no guarantee that the trajectories of the
underlying optimal policy will match the observed trajectories. In the Max-Margin approach
this problem is mitigated by the introduction of the loss function that encourages solutions
that visit state-action pairs that are frequently visited by the expert.

5 Using inverse reinforcement learning to learn to parse

In this section we first present the common ideas underlying applying IRL techniques to
parser training, followed by the description of the resulting parser training algorithms.

5.1 Common ideas

A crucial question in applying IRL to parsing is how to set up the features of the reward
function. Although in theory the rewards could depend on the full partial parse tree, in order
to facilitate comparison with standard PCFG training we chose (in line with Definition 1)

φi(x, a) = I(Ri = Ra), i = 1,2, . . . , nR,

where {Ri}nR

i=1 is the list of all rules, i.e., the features are nR dimensional and binary.
Trees from the treebank � are viewed as trajectories of an “expert”. A single treebank

tree will be denoted by τE ∈ �. Although the trees do not allow us to know the exact se-
quence of “actions” taken by the expert (i.e., the ordering in which the human parser applied

Mach Learn

the production rules), luckily this information is not needed by the algorithms, since any
admissible ordering of the rules giving rise to τE define the same tree and since the features
depend only on what rules are taken and not on when these rules are taken. One simple
approach then is to assume that the expert always chooses the leftmost unexpanded nonter-
minal and this is indeed the approach that we take. This yields a data set in the form of a
series of state-action pairs, allowing us to apply IRL algorithms.

It might seem that this approach is problematic since there could be multiple optimal
policies, leading to the label bias problem. However, the problem can be overcome if the
set of admissible actions is restricted to those actions that expand the leftmost unexpanded
nonterminal. This is exactly the approach followed here, for all the methods discussed pre-
viously. Note that this restriction does not change the optimal values, hence there is no loss
of generality because of it.

In order to apply the presented IRL algorithms, we will need to compute feature expecta-
tions. The (approximate) computation of the expert’s unconditional feature expectations �̄E

is straightforward: it is the average feature count given the treebank trees:

(�̄E)i = 1

|�|
∑

τE∈�

f (Ri, τE), i = 1,2, . . . , nR, (20)

where f (R, τE) means the total count of rule R in the parse tree τE (cf. (1)). The feature
expectation for the policy optimal w.r.t. the reward function r (�̄r) can be computed for all
MDPs MG

yτE
as the feature count in the respective maximum scoring tree τ ∗. The estimated

feature expectations in the final MDP MG is obtained by averaging over all treebank trees.
The computation of conditional feature expectations, �r(x, a), is a bit more involved.

Take a single MDP corresponding to some sentence and let x be a state in this MPD
and a ∈ A(x). Let ca = (N, i, j). Let τ(x, a) be the terminal state when the optimal pol-
icy is followed in Mwij ,(N,i,j) from the root of this MDP (cf. Sect. 3 for the definition of
Mwij ,(N,i,j)). Then, up to an additive constant, �r(x, a) equals9 the feature counts in tree
τ(x, a): (�r(x, a))k = f (Rk, τ (x, a)), k = 1, . . . , nR . Note that the trees τ(x, a) (and hence
the rule counts) are computed when computing the inside scores in Viterbi parsing.

5.2 Parser training algorithms

In this section we present the five parser training algorithms resulting from the respective
IRL algorithms. A generic form of the algorithms is shown as Algorithm 1. The individ-
ual methods differ in the implementation of the computeStepSize and computeUpdates
functions and the choice of the link function g. Here computeStepSize(k,
,�) computes
the step size to apply for the next parameter update. Note that this computation is generally
trivial, except for the Projection method and the adaptive step-size rule that we will study.
The function computeUpdates should return the vector
k and it will be given separately
for each of the parser training methods.

In these updated we will assume that a Viterbi parser is used for obtaining a parse. Note,
however, that all algorithms except Policy Matching can be implemented efficiently even if
some other (efficient) parsing method is used. We will use the following subroutines in the
description of the respective computeUpdates function:

9This additive constant vector will drop out when we will substitute into (19).

Mach Learn

Algorithm 1 Generic incremental parser training algorithm
Input: corpus �, grammar Gθ , iteration limit kmax, update methods computeUpdate,
computeStepSize, regularization coefficient λ ≥ 0, link function g

for k in 1, . . . , kmax do

 ← 0
for τE ∈ � do

 =
 + computeUpdate(τE,Gθ , k) − λθ

end for
αk ← computeStepSize(k,
,�,Gθ)

for i in 1, . . . , nR do
θi ← g(g−1(θi) + αk

1
|�|
i)

end for
end for

insideScores(w1K,G) returns the table of Viterbi inside scores for the sentence w1K com-
puted using the PCFG G.

viterbiParse(w1K,V) returns the maximum scoring tree for sentence w1K given the pre-
computed Viterbi scores V .

score(τ,G) returns the score of the tree τ in the grammar G.
maximumScoringTrees(w1K,G,ntrees) returns a set of ntrees trees with highest total scores
for sentence w1K in the grammar G.

viterbiParseStartingWith(xw1K
, a,V) returns the maximum scoring subtree rooted at the

constituent in x over the words in x, assuming that the first action taken is a, with respect
to the Viterbi scores V .

state(τE, c) is a state of the parsing MDP corresponding to the partial parse tree that is
obtained by removing all the descendants of c from τE .

isCorrect(a, τE) returns 1 if all constituents introduced by a are in τE , and returns 0 in
all other cases. More formally, isCorrect(a, τE) returns 1 if and only if a ∈ A(τ ′

E) and
T (τ ′

E, a) ⊂ τE , where τ ′
E = state(τE, ca) and T (τ ′

E, a) is the next state after taking action
a in τ ′

E .

From now on, we will use θ (as in the section on IRL) to denote the vector of rule scores
(σ (Ri))

nR

i=1. We will use the notation Gθ to denote the grammar G with rule scores given
by θ .

5.2.1 The Projection algorithm

In the parser training algorithm derived from the Projection algorithm of Abbeel and Ng
(2004), behaviors are represented with the total count of rules used during parsing the tree-
bank. This way the distance between the treebank tree τE and the tree τ (see (9)) is directly
related to the difference of specific rule counts in τE and in τ . In other words, the dis-
tance of two trees reflect the number of rules that appear in one tree, but not in the other
tree. In order to use the Projection algorithm, αk must be set to 1, and the regularization
coefficient λ must also be set to 1. The subroutine computeStepSize computes the step
sizes using (11) and (12). Note that computing the step sizes can be done efficiently if the
feature expectations computed by subroutine computeUpdate are shared with subroutine
computeStepSize.

The pseudocode of the resulting algorithm for computing the updates is displayed as
Algorithm 2.

Mach Learn

Algorithm 2 Update computation: Projection algorithm
Input: expert tree τE , grammar Gθ

Parameters: none
V ← insideScores(yτE ,Gθ)

τ ∗ ← viterbiParse(yτE ,V)

for i in 1, . . . , nR do

i ← f (Ri, τE) − f (Ri, τ

∗)
end for
return

Algorithm 3 Update computation: MWAL/Perceptron
Input: expert tree τE , grammar Gθ

Parameters: none
V ← insideScores(yτE ,Gθ)

τ ∗ ← viterbiParse(yτE ,V)

for i in 1, . . . , nR do

i ← −(f (Ri, τE) − f (Ri, τ

∗))
end for
return

5.2.2 MWAL/Perceptron with multiplicative updates

As previously shown in Sect. 4.2.3, this algorithm only differs from the Perceptron algorithm
of Collins and Roark (2004) only because a multiplicative update is used. Note that since this
algorithm assumes that all components of θ are strictly positive, while the scores associated
with positive features are strictly negative (they are log-probabilities), we have to switch to
using negative features to let the algorithm estimate the optimal negated scores. The resulting
algorithm is shown as Algorithm 3. Note that when using the parameters found, we must also
use the negated feature values when computing the parse for a tree. Alternatively, one may
negate the weights found by the algorithm once the algorithm returns the final estimate. The
link function must be set to g = exp when using this method.

5.2.3 Max-Margin Parsing

As this method emerges from the structured prediction community, it is no surprise that ap-
plying it to the parsing problem, we get a previously known method. The performance mea-
sure is essentially the same as that of the Max-Margin Parsing algorithm proposed by Taskar
et al. (2004), but the optimization method is different as we follow Ratliff et al. (2007). Ac-
cording to Shalev-Shwartz et al. (2007) (see also the references therein) subgradient meth-
ods can be faster and more memory efficient than interior point or decomposition methods
for Max-Margin problems. As a concrete example, exponentiated gradient descent in the
dual variables can perform better than sequential minimal optimization (Bartlett et al. 2005;
Globerson et al. 2007). Note that the MWAL algorithm can be regarded as implementing
exponentiated gradient descent in the primal variables, so the above conclusion does not
apply to it.

We chose �(a) = −c�f (Ra, τE) (a ∈ A) to be the loss function for the treebank tree τE .
This loss thus encourages giving high reward to the frequently used rules. The resulting

Mach Learn

Algorithm 4 Update computation: Max-Margin
Input: expert tree τE , grammar Gθ

Parameters: loss constant c�

for i = 1, . . . , nR do
θ ′
i ← θi − c�f (Ri, τE)

end for
V ← insideScores(yτE ,Gθ ′)
τ ∗ ← viterbiParse(yτE ,V)

for i in 1, . . . , nR do

i ← (f (Ri, τE) − f (Ri, τ

∗))
end for
return

Algorithm 5 Update computation: Policy Matching
Input: expert tree τE , grammar Gθ

Parameters: temperature parameter η

V ← insideScores(yτE ,Gθ)

 ← 0
for c ∈ τE do

x = state(τE, c)

π(·|x) ← B(A∗
θ (x, ·)), where A∗

θ (x, ·) is computed from V as in (5)
for a ∈ A(x) do

τθ (x, a) ← viterbiParseStartingWith(x, a,V)

�(x, a) ← (f (Ri, τθ (x, a)))
nR

i=1
∂π(a|x) ← π(a|x) 1

η
(�(x, a) − ∑

b∈A(x) π(b|x)�(x, b))

 ←
 + {isCorrect(a, τE) − π(a|x)}∂π(a|x)

end for
end for
return

algorithm is shown as Algorithm 4. Note that the regularization term of the update is moved
to the generic algorithm. As it was also noted beforehand, setting c� = 0 yields a regularized
version of the Perceptron algorithm of Collins and Roark (2004).

5.2.4 Policy matching

The pseudocode for this algorithm is shown as Algorithm 5. This method aims to match
the actions for which isCorrect(a, τE) returns 1, i.e., the actions that introduce constituents
that are in the parse tree τE . A smoothed near-optimal policy is computed using the op-
timal advantage function A∗

θ = A∗
rθ

. This function can be efficiently computed once the
inside Viterbi scores V have been computed for all intervals [i, j], 1 ≤ i ≤ j ≤ K and all
nonterminal symbols. As noted earlier these scores are available without extra computation
if we are using a Viterbi parser. The subtree τθ (x, a) returned by viterbiParseStarting-
With(xw1K

, a,V) can also be found easily by using V . In fact, all the interesting subtrees
can be extracted in at most O(K2nR) time, where K is the length of the sentence to parse.

Mach Learn

Algorithm 6 Update computation: Maximum Entropy reranking
Input: expert tree τE , grammar Gθ

Parameters: number of parses ntrees

 ← 0
T ∗ ← maximumScoringTrees(yτE ,Gθ ,ntrees)

for τ ∈ T ∗ do
p(τ) ← exp(score(τ,Gθ))

for i in 1, . . . , nR do

i ←
i + p(τ)(f (Ri, τE) − f (Ri, τ))

end for
end for
return
∑

τ∈T ∗ p(τ)

5.2.5 Maximum Entropy discriminative reranking

When applying the Maximum Entropy IRL method to parser training, we get an algorithm
that is very close in nature to the reranking method of Charniak and Johnson (2005). The
difference between the resulting algorithm shown as Algorithm 6 and the method proposed
by Charniak and Johnson (2005) is the choice of features: we only use the simplest possible
features, i.e., rule counts. Note that finding the ntrees best trees may need up to O(ntreesK

3n3
nt)

time, where K is the length of the sentence to parse, as pointed out by Charniak and Johnson
(2005).

6 Empirical evaluation

The aim of the empirical evaluation is multifold. First, we were interested in comparing the
performance of some algorithms previously tested on parser training (Max-Margin Parsing,
the Perceptron algorithm and Maximum Entropy discriminative reranking) with others that
have not been tested on parser training before (the Projection algorithm, MWAL, Policy
Matching). Second, we were interested in the sensitivity of the algorithms to the hyperpara-
meters: we examined different step-size rules and settings of the regularization coefficient.
Third, we were interested in the dependence of the results on the size of the training set.
Finally, we were interested in comparing results obtained by following the standard practice
of using a single hold-out set to measure performance with results if we use cross-validation.

We compared the algorithms on the Penn Treebank WSJ corpus. The settings that we
used were the same as those used by Taskar et al. (2004), Titov and Henderson (2007)
and Turian and Melamed (2006), i.e., we have trained and tested all of the methods on the
sentences not longer than 15 words, and unless otherwise mentioned we used sections 2–
21 of the corpus for training, section 22 for development, and section 23 for testing. The
grammar that we used is a simple parent-annotated grammar extracted from the training
set and transformed to Chomsky normal form.10 This grammar is much simpler than the

10The parent-annotated grammar contains nonterminal symbols that are composed from the labels of a con-
stituent and its parent constituent, i.e., NPˆVP meaning a noun phrase which is an immediate child of a verb
phrase. Such a grammar can be trivially extracted from a treebank. If a rule extracted from the corpus would
have more than two non-terminals, one can always introduce some new non-terminals and break the rule into
a number of rules that uses these non-terminals.

Mach Learn

one used by Taskar et al. (2004) or those used in other more recent works. In fact, our
grammar contains 639 nonterminal symbols only, which is approximately six times less than
the number (3975) reported by Taskar et al. (2004). We trained the parameters for the binary
rules only and used the scores from the default lexicon of the Berkeley Parser11 which scores
word-tag pairs with a smoothed estimate of log P(tag|word)

P (tag)
). We had a total of 3392 weights

to train.
We have decided to stick with a simple grammar to make a thorough study of the various

training algorithms feasible given the computational resources that were available to us. We
have implemented the methods in Java, using code pieces from the Stanford Parser12 and
the Berkeley Parser, and run our experiments on the “condor” cluster of the Computer and
Automation Research Institute of the Hungarian Sciences. The experiments took a total of
ca. 30,000 hours of CPU time on PCs with 3 GHz processors and 2 gigabytes of RAM.
100 passes through the training data took approximately 8 hours of running time for the
Max-Margin method, the Perceptron algorithm. MWAL and Policy Matching were approx-
imately 10% slower. The same number of passes took 13 hours for MaxEnt. These are still
extremely short training times as compared with the methods of Turian and Melamed (2006)
(5 days) and Titov and Henderson (2007) (6 days). The training of the parser of Taskar et
al. (2004) took several months, as mentioned by Turian and Melamed (2006). Note that
to achieve state-of-the-art results significantly more complicated grammars are used which
increases training time substantially. To give an example, to obtain state-of-the-art results
(LP = 91.4%, LR = 90.4%, F1 = 90.9% and EX = 62.0%), the training time of the speed-
optimized CRF-CFG training method of Finkel et al. (2008) was 2 hours per pass through
the training data (using the same setup as ours), so 100 passes would have taken 200 hours
with this method, roughly 20 times more than the training time needed for the grammar that
we investigate. According to Finkel et al. (2008), to obtain state-of-the-art results both a
good feature-set and a good training algorithm is needed. Here we decided to focus on the
training algorithms, hoping that our results generalize when other models are used. However,
the validation of this remains for future work.

We have used the standard ParsEval metrics (Black 1992) of labeled precision (LP),
labeled recall (LR), the F1 measure (the weighted harmonic mean of LP and LR), plus the
ratio of exact matches (EX). Note that the original labels were used for computing LP and
LR, instead of the parent-annotated symbols. LP, LR and EX are computed as follows: Pick
a parse tree τE from the corpus and let w1K be its yield. Let the parse tree obtained for w1K

by the method to be evaluated be τ ∗. Then

LP(τE) = |τ ∗ ∩ τE|
|τ ∗| ,

LR(τE) = |τ ∗ ∩ τE|
|τE| ,

EX(τE) = I{τ ∗ = τE},
and LP, LR, EX are obtained by computing the averages of the respective values over the cor-
pus. We report some results as the percentage of improvement over some baseline (typically,
the performance of the PCFG parser trained with Maximum Likelihood). For instance, if the
parser trained with Maximum Likelihood reaches an F1 measure of F ML

1 (0 ≤ F ML
1 ≤ 1) and

11http://nlp.cs.berkeley.edu/Main.html#Parsing (Petrov and Klein 2007).
12http://nlp.stanford.edu/software/lex-parser.shtml

http://nlp.cs.berkeley.edu/Main.html#Parsing
http://nlp.stanford.edu/software/lex-parser.shtml

Mach Learn

the parser trained with Policy Matching reaches an F1 measure of F PM
1 (0 ≤ F PM

1 ≤ 1) then
the error reduction in F1 by PM relative to ML is given by

ERF1(PM) = 1 − 1 − F PM
1

1 − F ML
1

= F PM
1 − F ML

1

1 − F ML
1

,

which is then reported as a percentage.
We have run the algorithms for 100 passes, and measured performance on the training,

development and test sets after all passes. After 100 passes, we selected the parser that at-
tained a maximal F1 score on the development set during the 100 passes.13 Whenever we
report a result for a specific hyperparameter setting (e.g., a specific step size or a specific
regularization value), we mean the result that is given by the best parser selected this way.
Note that increasing the number of passes did not improve the results any further for any
of the algorithms. We have initialized the rule scores using the logarithm of the empirical
estimate of the respective relative frequencies of the rules. The gradients have been normal-
ized before adding the regularization factors to them or multiplying them with the step sizes
except for the Projection algorithm. This helps with flat areas of the optimization surface,
while (when decreasing step sizes are used) it does not hurt much close to the optimum.
Max-Margin, MaxEnt and Policy Matching all have a single hyperparameter that needs to
be selected. We have set the loss constant c� = 0.5 for Max-Margin and the temperature
parameter to η = 0.1 for Policy Matching because these values worked well in preliminary
experiments. For MaxEnt reranking, we have used the value ntrees = 50 as proposed by Char-
niak and Johnson (2005). Unless otherwise stated, we set the regularization constant λ = 0
for all the methods.

6.1 The influence of the choice of the step sizes

First, we want to find out which step sizes are the most suitable for this particular problem.
We tested constant step sizes, step sizes proportional to 1

k
, 1√

k
, and the iRprop step-size

rule (Igel and Hüsken 2000). The proportional constant was obtained for each method by
jointly optimizing over the number of passes and a number of possible values which were
{0.01,0.2,0.5,1.0,2.0,5.0,10.0}. (In the subsequent experiments the constants found here
were used.) The results for different step-size rules can be seen in Table 1 and on Fig. 3,
parts (a) through (d). As the Projection algorithm uses fixed step-size parameters, we do not
present the results for it on this table. The first thing to notice is that the two top performing
methods are Max-Margin and Policy Matching, closely followed by MaxEnt. The standard
selection of αk ∼ 1

k
leads to the least improvement in the parsing performance. We see that

αk ∼ 1√
k

produces particularly good results for all of the methods, perhaps due to the fact
that this step-size choice is known to improve robustness. Constant step sizes also perform
well for similar reasons. Interestingly, MaxEnt seems to be very robust to the choice of step
sizes: its performance is nearly identical for all examined step-size rules except iRprop.

Besides monitoring results on the test set, we also report results on the training set. Re-
sults on the training set help us detect overfitting, as well as to see a method’s ability to adapt
to the data. In fact, both a poor and overly good results on the training set are problematic,
though by adding proper complexity regularization overly good results on the training set

13We do not report results for the development set. We note in passing that they are a bit lower than test set
results but otherwise they correlate with them strongly.

Mach Learn

Table 1 Results for different step-size choices. Abbreviations: ML = Maximum Likelihood, PE =
Perceptron, MW = MWAL, ME = Maximum Entropy, MM = Max-Margin, PM = Policy Matching. The
four parts of the table are labeled by the respective step sizes

Test performance [%] Training performance [%]
LP LR F1 EX LP LR F1 EX

αk ∝ 1
k

ML 89.16 80.24 84.47 47.59 91.99 89.48 90.72 56.75
PE 90.39 81.95 85.97 49.25 92.98 91.43 92.20 58.55
MW 90.43 82.69 86.38 50.41 92.91 91.92 92.41 58.77
ME 91.30 83.45 87.20 53.73 93.40 92.51 92.81 61.23
MM 90.57 82.41 86.30 50.74 92.98 91.78 92.38 59.23
PM 90.10 83.77 86.82 47.59 92.44 92.87 92.66 55.4
αk = α0
ML 89.16 80.24 84.47 47.59 91.99 89.48 90.72 56.75
PE 89.53 82.26 85.74 50.24 92.70 91.96 92.32 58.24
MW 89.87 83.45 86.54 51.57 92.02 92.32 92.17 55.57
ME 91.35 83.53 87.27 53.26 93.83 92.62 92.81 60.41
MM 91.91 84.47 88.03 52.40 93.67 92.90 93.28 61.27
PM 92.02 84.25 87.96 53.39 94.59 93.43 94.01 64.41
αk ∝ 1√

k

ML 89.16 80.24 84.47 47.59 91.99 89.48 90.72 56.75
PE 90.66 83.06 86.69 51.40 92.87 92.18 92.53 58.54
MW 90.18 83.19 86.54 50.91 92.63 92.23 92.43 58.52
ME 91.44 83.62 87.26 54.22 93.14 92.56 92.85 60.72
MM 91.64 84.38 87.86 52.07 93.63 93.02 93.33 61.65
PM 92.13 84.27 88.03 54.22 94.51 93.22 93.86 63.94
iRpop
ML 89.16 80.24 84.47 47.59 91.99 89.48 90.72 56.75
PE 89.24 82.82 85.91 47.42 92.52 91.84 92.18 57.80
MW 89.16 81.82 85.33 48.42 92.42 91.50 91.96 57.23
ME 91.00 83.01 86.82 51.07 93.68 92.53 93.07 61.70
MM 91.09 83.34 87.04 53.23 94.11 92.86 93.48 62.36
PM 91.75 83.92 87.66 54.22 95.05 93.64 94.34 66.85

might be turned into good results on the test set. We see that in this respect the results ob-
tained for the iRprop step-size rule are the most promising, followed by the results obtained
with the step-size sequence 1/

√
k. However, for simplicity we decided to run the further

tests with the latter step-size sequence.

6.2 The influence of the regularization parameter

Next we examined how regularization influences the results. We expect that the methods
which performed better on the training set will take the greatest advantage of regulariza-
tion. The regularization constant is fixed in the Projection algorithm, so results are not
shown for this algorithm. We report results with 1√

k
step sizes. Although using step sizes

proportional to 1√
k

by itself has some regularization effect, using explicit regularization
improves performance. The dependency of the F1 measure on the choice of the regular-
ization constant can be seen on Fig. 2. The curve for Perceptron is not shown to preserve
clarity—qualitatively this curve is very similar to the curve obtained for MWAL. As ex-
pected, we see that regularization has a positive effect for the Policy Matching algorithm,

Mach Learn

Fig. 2 F1 measured on the test set vs. the regularization constant. The step size for pass k was set to 1√
k

.

The graph for the Perceptron is not shown to maintain clarity

Table 2 Results for regularized parser training methods. The step size in pass k was set to 1√
k

and the

regularization parameters were optimized for each method. Abbreviations: ML = Maximum Likelihood,
PE = Perceptron, MW = MWAL, ME = Maximum Entropy, MM = Max-Margin, PM = Policy Matching

Test performance [%] Training performance [%]

LP LR F1 EX LP LR F1 EX

ML 89.16 80.24 84.47 47.59 91.99 89.48 90.72 56.75

PE 90.43 83.32 86.73 51.24 92.10 91.79 91.95 56.01

MW 90.54 83.77 87.02 52.73 92.06 91.97 92.01 56.87

ME 92.00 83.77 87.69 55.72 93.21 92.36 92.78 60.51

MM 92.17 84.40 88.11 52.90 93.83 92.86 93.34 61.66

PM 92.86 84.68 88.58 55.80 94.36 93.05 93.70 64.05

but it does not improve performance of the other methods significantly. The general ten-
dency that can be observed in the graph is that the performance is roughly constant for
small values of the regularization coefficient, and falls down quickly as the coefficient ap-
proaches 0.1. For Policy Matching and MaxEnt, we see that there is an interval of regu-
larization values that improve performance. Table 2 and Fig. 3(e) show the performance
of the parsers that were trained using regularization. To obtain these results, the regulariza-
tion parameters were optimized on the development set by sweeping over a set of values
for each individual method, while also optimizing for the number of passes. The set used
was {10−6,5 × 10−6,10−5,5 × 10−5, . . . ,10−1}. (In subsequent experiments we used the
regularization constants found in this step.)

6.3 The influence of the size of the training corpus

In the next set of experiments we measured how performance changes as a function of the
size of the training set. For this experiment we used 1, 2, 5, 10 or 20 sections following sec-

Mach Learn

Fig. 3 Relative error reduction
in F1 over the ML method. The
table shows test set results for
various step-size rules and
optimized regularization.
Abbreviations: PE = Perceptron,
MW = MWAL, ME = Maximum
Entropy, MM = Max-Margin,
PM = Policy Matching. The five
parts show results for (a) 1

k
step

sizes; (b) constant step sizes;
(c) 1√

k
step sizes; (d) iRprop

rule; and (e) 1√
k

step sizes with

regularization

tion 2 from the Penn Treebank WSJ corpus, and measured performance on section 23. The
results are shown in Table 3. We see that for small training sets, the Perceptron and MWAL
algorithms do a good job in fitting to the training examples, but generalize more poorly than
the other three methods. As the size of the training set increases, Policy Matching gradually
takes over them in the training set performance. On the test set, MaxEnt, Max-Margin and
Policy Matching produce the best results, irrespective of the size of the training set. The
Projection algorithm produces very poor results. Figure 4 shows the error reduction in F1

over the baseline method (Maximum Likelihood) achieved by the different methods on the
test set and the training set. Results for the Projection algorithm are not shown because this
algorithm is not able to improve on the baseline.

The first observation is that as the size of the training set grows, error reduction increases
on the test set, while it decreases on the training set. This is in line with the known fact that
discriminative methods tend to work better for larger datasets (Ng and Jordan 2001). Note
that there is a significant difference between the way the Perceptron and MWAL behave
compared to the other methods: The former methods achieve the best error reduction on the
training set initially, but they don’t improve as much on the test set as the size of the training
set is increased as the other methods.

6.4 Results with cross-validation

In this section we present results that were obtained with cross-validation. The motivation
is to test the robustness of conclusions that can be drawn using the “standard” setup when
performance is measured on a single hold-out set. For this reason, we performed 10-fold
cross-validation on sections 2–22 of the corpus. Results are shown in Table 4. In these ex-
periments the step size in pass k was set to 1√

k
. We provide results both with and without

regularization. We have performed paired Kolmogorov–Smirnov-tests to see whether the
measured differences are significant or not. Based on the results we see that MaxEnt, Max-
Margin and Policy Matching perform significantly better than the Perceptron method and
MWAL. The differences between the Perceptron method and MWAL, and those between
MaxEnt, Max-Margin and Policy Matching are not significant. However, the effect of reg-
ularization on the performance of Policy Matching is statistically significant in the exact

Mach Learn

Table 3 Results for training with training sets of different sizes. The step size at pass k was set to 1√
k

. Ab-

breviations: ML = Maximum Likelihood, PR = Projection, PE = Perceptron, MW = MWAL, MM = Max-
Margin, ME = Maximum Entropy, PM = Policy Matching. Parts of the table are labeled by the respective
number of sections that were used for training

Test performance [%] Training performance [%]

LP LR F1 EX LP LR F1 EX

1 section

ML 86.70 57.61 69.22 32.17 93.19 91.39 92.28 63.31

PR 79.02 56.37 65.80 23.88 85.37 88.96 90.07 40.81

PE 86.60 58.37 69.73 30.51 97.15 96.01 96.57 78.19

MW 86.46 58.52 69.80 31.67 97.02 96.30 96.66 76.93

ME 87.00 58.86 70.22 32.00 95.48 95.03 95.25 71.27

MM 88.21 59.32 70.94 34.32 96.82 95.69 96.25 74.63

PM 87.50 59.28 70.67 32.50 95.73 95.32 95.52 72.74

2 sections

ML 87.65 63.95 73.95 40.46 93.02 90.24 91.61 59.79

PR 73.55 61.20 66.81 25.04 84.67 86.73 88.65 36.97

PE 87.19 65.06 74.52 36.65 95.19 94.28 94.73 68.09

MW 86.81 64.60 74.08 39.13 95.96 95.31 95.63 70.85

ME 88.04 65.71 75.25 39.96 93.48 93.72 93.60 63.68

MM 88.81 65.71 75.53 40.46 95.54 94.72 95.13 70.47

PM 88.34 65.32 75.10 39.30 96.30 94.56 95.42 69.34

5 sections

ML 89.32 75.04 81.56 47.26 92.35 90.06 91.19 57.79

PR 80.97 69.98 75.07 30.84 85.10 83.56 86.80 32.38

PE 89.43 77.38 82.97 45.93 93.28 93.53 93.40 60.60

MW 90.08 76.95 83.00 46.76 94.26 93.29 93.77 64.34

ME 90.56 77.75 83.67 47.59 93.45 93.09 93.27 61.16

MM 90.49 77.34 83.40 47.59 94.47 93.56 94.01 64.61

PM 91.39 77.75 84.02 49.58 95.24 93.89 94.56 65.80

10 sections

ML 88.64 78.27 83.13 47.59 92.30 89.99 91.13 58.50

PR 81.08 74.29 77.54 30.18 85.70 84.86 86.39 39.21

PE 89.23 80.98 84.90 49.58 92.96 93.14 93.05 59.85

MW 89.25 79.85 84.29 48.92 93.92 92.57 93.24 62.37

ME 90.49 81.24 85.61 51.40 93.63 93.00 93.32 62.52

MM 90.29 80.78 85.27 51.07 94.08 93.24 93.66 63.30

PM 92.02 81.93 86.68 53.23 95.30 93.60 94.44 66.15

20 sections

ML 89.16 80.24 84.47 47.59 91.99 89.48 90.72 56.75

PR 80.58 73.38 76.81 34.16 85.79 82.37 84.12 39.28

PE 90.66 83.06 86.69 51.40 92.87 92.18 92.53 58.54

MW 90.18 83.19 86.54 50.91 92.63 92.23 92.43 58.52

ME 91.44 83.62 87.26 54.22 93.14 92.56 92.85 60.72

MM 91.64 84.38 87.86 52.07 93.63 93.02 93.33 61.65

PM 92.13 84.27 88.03 54.22 94.51 93.22 93.86 63.94

Mach Learn

Fig. 4 Relative error reduction in F1 over the ML method on the test set (left hand side) and on the training
set (right hand side) as a function of the size of the training set. The step size used in the kth pass is 1√

k
and

no regularization is used. Results for Projection are not shown to maintain clarity

Table 4 Cross-validation results. Abbreviations: ML = Maximum Likelihood, PE = Perceptron, MW =
MWAL, ME = Maximum Entropy, MM = Max-Margin, PM = Policy Matching. In the table μ denotes the
estimated performance and σ is the estimated standard deviation. The upper part of the table shows results for
the case when no regularization was used, while the lower part shows results for the case when regularization
was turned on (the regularization constants were optimized for each method on the development set)

λ = 0 Test performance [%]

LP LR F1 EX

μ σ μ σ μ σ μ σ

ML 90.21 0.61 82.38 1.12 86.12 0.80 48.45 1.80

PE 90.74 0.58 85.16 1.18 87.86 0.61 49.68 2.09

MW 90.91 0.69 84.98 1.13 87.84 0.73 49.88 2.25

ME 91.44 0.63 85.33 0.97 88.28 0.63 51.94 1.69

MM 91.89 0.57 85.27 1.14 88.45 0.78 52.05 1.78

PM 91.24 1.39 85.49 1.20 88.26 1.07 48.94 5.42

λ > 0 LP LR F1 EX

μ σ μ σ μ σ μ σ

ML 90.21 0.61 82.38 1.12 86.12 0.80 48.45 1.80

PE 90.29 0.77 84.43 1.40 87.25 0.75 46.71 2.16

MW 89.28 0.71 83.14 1.61 86.09 0.95 45.90 2.46

ME 91.49 0.51 85.07 1.03 88.16 0.67 51.68 1.87

MM 91.56 0.67 84.55 1.22 87.91 0.87 50.59 2.47

PM 92.23 0.55 84.98 1.07 88.46 0.64 52.80 2.01

Mach Learn

Fig. 5 Box plot of the F1 error
achieved by the different methods
estimated by cross-validation.
Abbreviations: ML = Maximum
Likelihood, PE = Perceptron,
MW = MWAL, ME = Maximum
Entropy, MM = Max-Margin,
PM = Policy Matching. The
suffix “r” means “regularized”.
Boxes are ordered with respect to
the estimated medians of the
distributions. Circles mark test
set results when methods are
trained and tested in the standard
setting

match ratio and the labeled precision, at the confidence level of 5%. Figure 5 shows a box
plot that illustrates the distributions of F1 measures achieved by the different methods.

We find that the performance measure on the single hold-out set are biased as compared
with the results obtained using cross-validation: The averages of LR and F1 computed mea-
sured on the single hold set are negatively biased, while EX is positively biased. Note that
this bias does not cause any problems during the comparison of the methods if it is the
same for the different methods, however, this does not hold. In particular, regularized Policy
Matching and Max-Margin Parsing looks as if they had a definitely better performance than
MaxEnt training when measured on the single hold-out set: When measured on the hold-out
set, the relative error reduction in F1 for Policy Matching is 26.46%, for Max-Margin it
is 25.36%, while for MaxEnt it is 20.88%. However, the results of cross-validation predict
no significant differences between these methods (see Fig. 5). Hence, we find that the current
practice of measuring performance only on the last section may lead to false conclusions.

7 Conclusions

In this paper we proposed to reduce structured prediction problems, in particular, parser
training problems to solving inverse reinforcement learning (IRL) problems. We have shown
how IRL methods can lead to parser training methods. Although in this paper we concen-
trated on parser training based on PCFGs, we argued that the idea of the reductions carries
through to other settings. As a result, the IRL problem can be a “least common denomi-
nator” of structured prediction problems and can provide an abstract, problem independent
framework to study structured prediction problems.

Another contribution of the paper is a unified framework for presenting IRL algorithms.
In particular, we have presented five IRL algorithms in the unified framework and then
showed how they can be used to obtain various parser training methods. The unified frame-
work suggests a few more possibilities: The link function could be chosen in various ways, or
one could use stochastic gradient methods. Regularization could also be interpreted by aver-
aging the weights found in the various iterations, possibly weighted with how well they per-
form on the development set. A further enhancement would be to use some voting scheme,
see e.g. Carvalho and Cohen (2006).

Mach Learn

The resulting algorithms were compared on the Penn Treebank WSJ corpus, both in a
standard setting and with cross-validation. Our results suggest that the Maximum Entropy,
the Max-Margin and the Policy Matching algorithms are the best performing methods, while
the performance of MWAL, the Projection and the Perceptron methods are weaker. In terms
of computation cost, amongst the best performing algorithms the subgradient implementa-
tion of Max-Margin training is the cheapest, followed by Policy Matching, which turned out
to be ca. 10% more expensive. Our best parser was trained using regularized Policy Match-
ing and achieved 88.58% F1 accuracy on the test set. This means a 26.46% error reduction
in F1, as compared to our the baseline model trained with Maximum Likelihood. This is a
significant error reduction as compared with the results of Taskar et al. (2004) whose training
algorithm achieves only a 1.74% error reduction in the same measure. With the introduction
of lexical features and using an auxiliary POS-tagger, they report a 9.4% error reduction
over the baseline (however, they do not report results for their generative baseline model
using this POS-tagger).14 The large error reduction achieved here underlines that the choice
of a good parser training method matters.

We find the connection between IRL and parser training especially fruitful in that it
allows one to derive parser training algorithms from any IRL method. This connection sug-
gests a number of further potential future enhancements. Further robustness might be gained
by considering stochastic outcomes of the labelling decisions. By changing the way the re-
wards depend on the states (partial parses) new, more powerful models can be created that
may lead to further performance improvements. The connection to RL could also be ex-
ploited by considering value function approximation methods that may result in significantly
faster parsers and no loss of accuracy if one uses the approximate value functions together
with appropriate search methods.

References

Abbeel, P., & Ng, A. (2004). Apprenticeship learning via inverse reinforcement learning. In ICML’04 (pp. 1–
8).

Bakir, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., & Vishwanathan, S. V. N. (2007). Pre-
dicting structured data (neural information processing). Cambridge: MIT Press.

Bartlett, P. L., Collins, M., Taskar, B., & McAllester, D. (2005). Exponentiated gradient algorithms for
large-margin structured classification. In Advances in neural information processing systems (Vol. 17,
pp. 113–120). Cambridge: MIT Press.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Belmont: Athena Scientific.
Black, E. (1992). Meeting of interest group on evaluation of broad-coverage parsers of English. In LINGUIST

list 3.587. http://www.linguistlist.org/issues/3/3-587.html.
Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Studies in applied mathematics: Vol. 15. Linear

matrix inequalities in system and control theory. Philadelphia: SIAM.
Carvalho, V. R., & Cohen, W. W. (2006). Single-pass online learning: performance, voting schemes and

online feature selection. In KDD’06 (pp. 548–553). New York: ACM.
Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge: Cambridge University

Press.
Charniak, E., & Johnson, M. (2005). Coarse-to-fine n-best parsing and MaxEnt discriminative reranking. In

ACL ’05: Proceedings of the 43rd annual meeting on association for computational linguistics (pp. 173–
180). Morristown: Association for Computational Linguistics.

Collins, M. (1999). Head-driven statistical models for natural language processing. Ph.D. thesis, University
of Pennsylvania.

Collins, M. (2000). Discriminative reranking for natural language parsing. In ICML’00 (pp. 175–182).

14The possible reasons for the low error reduction reported by Taskar et al. (2004) are discussed by Finkel et
al. (2008).

http://www.linguistlist.org/issues/3/3-587.html

Mach Learn

Collins, M. (2002). Discriminative training methods for hidden Markov models: theory and experiments with
perceptron algorithms. In EMNLP ’02: Proceedings of the ACL-02 conference on Empirical methods in
natural language processing (pp. 1–8). Morristown: Association for Computational Linguistics.

Collins, M., & Roark, B. (2004). Incremental parsing with the perceptron algorithm. In ACL ’04: Proceedings
of the 42nd annual meeting on association for computational linguistics (pp. 111–118). Morristown:
Association for Computational Linguistics.

Daumé III, H. (2006). Practical structured learning techniques for natural language processing. Ph.D. thesis,
University of Southern California, Los Angeles, CA.

Elliott, H., Derin, H., Cristi, R., & Geman, D. (1984). Application of the Gibbs distribution to image segmen-
tation. In Proc. 1984 int. conf. acoust., speech, signal processing, ICASSP’84 (pp. 32.5.1–32.5.4).

Finkel, J. R., Kleeman, A., & Manning, C. D. (2008). Efficient, feature-based, conditional random field pars-
ing. In ACL 08 (pp. 959–967). Morristown: Association for Computational Linguistics.

Freund, Y., & Schapire, R. E. (1999). Large margin classification using the perceptron algorithm. Machine
Learning, 37(3), 277–296.

Globerson, A., Koo, T. Y., Carreras, X., & Collins, M. (2007). Exponentiated gradient algorithms for log-
linear structured prediction. In ICML ’07: Proceedings of the 24th international conference on machine
learning (pp. 305–312). New York: ACM.

Igel, C., & Hüsken, M. (2000). Improving the Rprop learning algorithm. In Proceedings of the second in-
ternational ICSC symposium on neural computation (NC 2000) (pp. 115–121). San Diego: Academic
Press.

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620–630.
Klein, D., & Manning, C. D. (2003). A∗ parsing: fast exact viterbi parse selection. In NAACL ’03: Pro-

ceedings of the 2003 conference of the North American chapter of the association for computational
linguistics on human language technology (pp. 40–47). Morristown: Association for Computational
Linguistics.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segment-
ing and labeling sequence data. In Proc. 18th international conf. on machine learning (pp. 282–289).
San Mateo: Morgan Kaufmann.

Maes, F., Denoyer, L., & Gallinari, P. (2007). Sequence labeling with reinforcement learning and ranking
algorithms. In ECML (pp. 648–657).

Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. Cambridge:
MIT Press.

Neu, G., & Szepesvári, Cs. (2007). Apprenticeship learning using inverse reinforcement learning and gradient
methods. In Conference on uncertainty in artificial intelligence (UAI) (pp. 295–302).

Ng, A., & Russell, S. (2000). Algorithms for inverse reinforcement learning. In ICML-2000 (pp. 663–670).
Ng, A. Y., & Jordan, M. I. (2001). On discriminative vs. generative classifiers: a comparison of logistic

regression and naive bayes. In NIPS-14 (pp. 841–848).
Petrov, S., & Klein, D. (2007). Learning and inference for hierarchically split PCFGs. In AAAI 2007 (nectar

track) (pp. 1663–1666).
Ratliff, N., Bagnell, J., & Zinkevich, M. (2006). Maximum margin planning. In. ICML’06 (pp. 729–736).
Ratliff, N., Bagnell, J. D., & Zinkevich, M. (2007). Subgradient methods for structured prediction. In Eleventh

international conference on artificial intelligence and statistics (AIStats) (pp. 2:380–387). (Online).
Rivas, E., & Eddy, S. R. (1999). A dynamic programming algorithm for RNA structure prediction including

pseudoknots. Journal of Molecular Biology, 285(5), 2053–2068.
Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007). Pegasos: primal estimated sub-GrAdient SOlver for

SVM. In ICML ’07: Proceedings of the 24th international conference on machine learning (pp. 807–
814). New York: ACM.

Syed, U., & Schapire, R. (2008). A game-theoretic approach to apprenticeship learning. In Advances in neural
information processing systems (Vol. 20, pp. 1449–1456). Cambridge: MIT Press.

Taskar, B., Klein, D., Collins, M., Koller, D., & Manning, C. (2004). Max-margin parsing. In Proceedings of
the conference on empirical methods in natural language processing (EMNLP) (pp. 1–8).

Taskar, B., Chatalbashev, V., Koller, D., & Guestrin, C. (2005). Learning structured prediction models: a large
margin approach. In ICML ’05: Proceedings of the 22nd international conference on machine learning
(pp. 896–903). New York: ACM.

Titov, I., & Henderson, J. (2007). Constituent parsing with incremental sigmoid belief networks. In Proceed-
ings of the 45th annual meeting of the association of computational linguistics (pp. 632–639). Prague:
Association for Computational Linguistics.

Turian, J., & Melamed, I. D. (2006). Advances in discriminative parsing. In ACL ’06: Proceedings of the
21st international conference on computational linguistics and the 44th annual meeting of the ACL
(pp. 873–880). Morristown: Association for Computational Linguistics.

Mach Learn

Warmuth, M. K., & Jagota, A. K. (1997). Continuous and discrete-time nonlinear gradient descent: relative
loss bounds and convergence (Technical Report). Fifth International Symposium on Artificial Intelli-
gence and Mathematics.

Ziebart, B., Maas, A. L., Bagnell, J. A., & Dey, A. K. (2008). Maximum entropy inverse reinforcement
learning. In AAAI (pp. 1433–1438).

	Training parsers by inverse reinforcement learning
	Abstract
	Introduction
	Background
	PCFG parsing
	Markovian decision processes

	PCFG parsing as an MDP
	A unified view of inverse reinforcement learning algorithms
	A Unified view
	Some IRL algorithms
	Projection
	Dissimilarity
	Update step

	MWAL
	Dissimilarity
	Update step

	Max-Margin Planning
	Dissimilarity
	Update step

	Policy matching
	Dissimilarity
	Update step

	Maximum entropy IRL
	Dissimilarity
	Update step

	Regularization
	Relationships between the methods

	Using inverse reinforcement learning to learn to parse
	Common ideas
	Parser training algorithms
	The Projection algorithm
	MWAL/Perceptron with multiplicative updates
	Max-Margin Parsing
	Policy matching
	Maximum Entropy discriminative reranking

	Empirical evaluation
	The influence of the choice of the step sizes
	The influence of the regularization parameter
	The influence of the size of the training corpus
	Results with cross-validation

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

