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THIS TALK

* The quickest intro to MDPs you've ever heard
* Optimistic explorationinRL
* Model-optimism and value-optimism

* A unifying view
 Linear function approximation
* Local and global optimism




8 MARKOV DECISION PROCESSES

Learner Action a, .
“ ” Environment
(“Agent”)

State x;

e Learner:
* Observe state x;, choose action a,
 Obtain reward r(x;, a;)

e Environment: Draw next state x;,; ~ P(: |x;, a;)
 Episode ends in round H



8 MARKOV DECISION PROCESSES

Learner Action a, .
“ ” Environment
(“Agent”)

State x;
[ |
e Learner: Goal.:
- Observe state x,, choose action a, get as much reward
» Obtain reward r(x,, a,) as possible!

e Environment: Draw next state x;,; ~ P(: |x;, a;)
 Episode ends in round H



B OPTIMALITY IN MDPS

Primal: optimality in trajectory space
maximize Y _(dna Tha)

subjectto X, qni14 = 2a PaTCIh,a
2.a91(xp,a) =1,9 =0

Dual: optimality in value-function space
as characterized by the Bellman optimality equations
V, = mc?x{ra + PV, 1}
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B OPTIMALITY IN MDPS

Primal: optimality in trajectory space
maximize Y _(dna Tha)

: — T
SUbJeCt to Za CIh+1,a — Za Pa Qh, Optimal policy:
Yaq1(xp,a) =1,9 20 a0 « gi(x,0)

Equivalent due to Linear Programming duality

Dual: optimality in value-function space

as characterized by the Bellman optimality equations
V};k — max{ra 4 PaV;Lk+1} Optimal policy:
a

mp(alx) o« H{a:argmaxarQ*(x,a')}
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construct a confidence set around P and construct upper confidence bounds
jointly optimize over models & policies directly on the optimal value function I’'*
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« P = confidence set of transition
functions P centered around empirical
transition function P such that

(P( 1x,a), P(: |x, a)) e(x,a),
holds for all (x, a)
Calculate optimistic policy-model pair
(rt,P") = arg max Vs (xg)

E.g., UCRL2 (Jaksch et aI , 2010) uses .
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and “extended value iteration” ('lx,a) = N(x.q)




B THE TWO KINDS OF OPTIMISM

Optimism in model space: Optimism in value space:

construct a confidence set around P and construct upper confidence bounds
jointly optimize over models & policies directly on the optimal value function I’'*

« P = confidence set of transition
functions P centered around empirical
transition function P such that

« Compute exploration bonus CB(x, a) for
each (x, a) and solve the optimistic
Bellman optimality equations with the
(P( |, a), P(- |x, a)) e(x,a), empirical transition function P:

holds for all (x, a) Visr = max{ry + CBq + RoVy' }

Calculate optimistic policy-model pair + E.g., UCB-VI (Azar et al., 2017) uses

(m*,P) = arg max V5 (xo) CB(x,a) = CH\/l/N(x, a)

E.g., UCRL2 (Jaksch et aI , 2010) uses

”13(. Ix,a) — P(- |x, a)”1 < C\/S/N(x, a) N(x,a) =#visits to (x,a) so far

. ) By’ __ N(x,ax")
and “extended value iteration” ('lx,a) = N(x.a)




B PROS AND CONS

Optimism in model space:
construct a confidence set around P and

jointly optimize over models & policies

© simple probabilistic analysis
just show that P € P!

® complicated to implement

need to search jointly over
models and policies

® loose bounds
best known regret guarantees
are suboptimal O(HSVAT)

Optimism in value space:

construct upper confidence bounds
directly on the optimal value function I’'*

@ complicated to analyze
need recursive arguments to show
optimistic property of V'*

© easy to implement
dynamic programming with
Pandr + CB

© tight bounds
optimal regret bounds 0(H+V/SAT)
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B UNIFYING THE TWO VIEWS

Consider any divergence D that is a) convex in its arguments and
b) positive homogeneous, and define its conjugate D as

D.(v|p,e) = %‘S‘AX{W"’ —D)D(p,p) < €}

Solution of Solution of
(r*,P*) = arg 7?113%); Vs (xo) Vi, = m;tx{ra + CBpq + Pth+}

CBr(x,a) = D.(Vi1|Pn( 1x, ), e(x, a))



B EXAMPLES
Algorithm  Divergence ¢  Conjugatebound Regret

UCRL2 lp — pll; S/N e - span(V) SH3/2\JAT
N2
UCRL2B max (p(x){ 1;(’“)) 1/N Y. Jep(x)|V —pV|  HVSTAT
X DX
KL-UCRL KL(p|p) S/N Je Vary (V) HSVAT

X 2
X*-UCRL v (x)ﬁzx’;(x)) S/N J € Var;(V) HSVAT

Jaksch et al. (2010), Fruit et al. (2019), Filippi et al. (2010), Maillard et al. (2014)



B EXAMPLES
Algorithm  Divergence ¢  Conjugatebound Regret

UCRL2 lp — pll; S/N e - span(V) SH3/2\JAT
N2
UCRL2B max (p(x){ 1;(’“)) 1/N Y. Jep(x)|V —pV|  HVSTAT
X DX
KL-UCRL KL(p|p) S/N Je Vary (V) HSVAT

N2
)(Z'UCRL 2 (p(x),\_ p(x)) <

J € Var; (V) HSVAT

“Data-dependent”
Jaksch et al. (2010), Fruit e exploration bonuses! et al. (2014)
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PROOF IDEA: DUALITY

Primal: optimism in trajectory space
maximize er_{:l(qh,a; T h,a>
subjectto qpi14 = Zal%?qh,a

D (ﬁ( 1x,a), P(- |x, a)) < e(x,a)

Nonconvex due to bilinear constraint Pgq!
Convex reparametrization: J(x,a,x") = q(x,a)P(x'|x, a).
Use assumptions on D to rewrite confidence constraint as
D (](x, a, ), q(x,a)P( |x, a)) < q(x,a)e(x, a).
Establish strong duality: max, 5 miny L(q,P;V) = miny, max, p L(q,P;V).
Exploit the local nature of confidence constraints.



B PROOF IDEA: DUALITY

Primal: optimism in trajectory space
maximize Zgz1<Qh,a; Th,a)
subjectto qpi14 = Zal%?qh,a

D (@( 1x,a), P(- |x, a)) < e(x,a)

Equivalent due to Lagrangian duality

Dual: optimism in value-function space
as characterized by the Bellman optimality equations
Vit = max{r, + CBp, + P,V;t.}

a



3 IMPLICATIONS

Optimism in model space:
construct a confidence set around P and

jointly optimize over models & policies

© simple probabilistic analysis
just show that P € P!

® complicated to implement

need to search jointly over
models and policies

® loose bounds
best known regret guarantees
are suboptimal O(HSVAT)
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construct upper confidence bounds
directly on the optimal value function I’'*
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need recursive arguments to show
optimistic property of V'*

© easy to implement
dynamic programming with
Pandr + CB

© tight bounds
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3 IMPLICATIONS

Optimism in model space: Optimism in value space:

construct a confidence set around P and construct upper confidence bounds
jointly optimize over models & policies directly on the optimal value function I’'*

Downside: bounds still loose by a factor VS ®



B LINEAR FUNCTION APPROXIMATION

Assumption: factored linear MDP
The transition matrix factorizes as

P, = ®M,,
where the rows of ® correspond to some
known feature vectors ¢(x) € R?

Implies realizability of Q-function approximation:
every Q function can be written as Q(x,a) = (6., (x))



B LINEAR FUNCTION APPROXIMATION

Assumption: factored linear MDP
The transition matrix factorizes as

P, = ®M,,
where the rows of ® correspond to some
known feature vectors ¢(x) € R?

Implies realizability of Q-function approximation:
every Q function can be written as Q(x,a) = (6., (x))

Dual: optimality in value-function space
as characterized by the projected Bellman optimality equations

Q;;,a = llg [Ta + F rrzlalx Q;+1,a']



B PRIMAL-DUAL FORMULATION

Primal: optimality in trajectory space
maximize I};I:1<qh,a, Th,a>

SUbjeCt to Za Ah+1,a = Za PaWh,a CI)C‘)h,a
(DTCIh,a — CI)-I-I/Vh,aq)wh,a

I Equivalent due to Linear Programming duality

Dual: optimality in value-function space
as characterized by the projected Bellman optimality equations

Q;‘;,a = llg [Ta + F rrzﬁx Q;+1,a']



B BUILDING A REFERENCE MODEL

Idea:

Construct confidence sets around LSTD reference model P, , = ®M, , with

t
Mt,a — Zt_,cll z H{ak=a}(P(xk)exl’(

k=1
and observe that (M, , — M, )v is a vector-valued martingale for any v!

— L T
Sta =1+ Xp=1 )0 (x)
Bradtke and Barto (1996), Boyan (1998), Parr et al. (2008)



B BUILDING A REFERENCE MODEL

Idea:
Construct confidence sets around LSTD reference model P, , = ®M, , with

t
Mt,a — z:t_,cll z H{ak=a}(P(xk)exl’(

k=1
and observe that (M, , — M, )v is a vector-valued martingale for any v!

Abbasi-Yadkori, P4l and Szepesvari (2011)

_ t T
Sta =1+ 2k=1 ¢ ) (xy)
Bradtke and Barto (1996), Boyan (1998), Parr et al. (2008)



B LOCAL AND GLOBAL OPTIMISM

Local confidence sets
D (P(- x,a), P(- |x, a)) < e(x, a)

Least-squares VI with local
exploration bonuses
CB(x,a) = Cllo(x)|lg;2

* Equivalent to LSVI-UCB
by Jin et al. (COLT 2020)!

» Regret= 0(VH3d3T)
- Efficient implementation
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IMPLEMENTING ELEANOR

ELEANOR Iin trajectory space
maximize If_ll:1<qh,ai Th’a>

subjectto Gy = Yo Mg DT Wpq Pwopq| SUPI(Ma = Mol < €
cI)th,a — (DTWh,a(th,a

» Nonconvex due to bilinear constraint /] ®TW,, ,®w;, ,!

* Previous tricks (convex reparametrization, etc.) don’t work!!

« Can be written as convex maximization problem essentially
identical to LinUCB / OFUL

®



CONCLUSION

* Current optimistic exploration methods may be closer to each
other than we thought!

* Model-based view allows simpler algorithm design & analysis

* Open challenges:
* Closing the gaps between the bounds?

* Model-based theory for misspecified models?
(some concurrent results by Lykouris et al., 2020)

* More general function approximation?



CONCLUSION

* Current optimistic exploration methods may be closer to each
other than we thought!

* Model-based view allows simpler algorithm design & analysis

* Open challenges:
* Closing the gaps between the bounds?

* Model-based theory for misspecified models?
(some concurrent results by Lykouris et al., 2020)

* More general function approximation?

Model-based optimism is alive! ==



Thanks!!!



3 PRIMAL REALIZABILITY

Primal: optimality in trajectory space

maximize Zg:1<CIh,a» rh,a)

subject to Qhita = a Pd Wha Pwp g
cI)th,a — CI)-I-Vl/h,aq)wh,a

If transition model is factored as P, = ®M_, all feasible g's are feasible in the
original LP:

Ah+1,a = Za PaTWh,a (th,a — Za Mc-lr(bTWh,a (bwh,a — Za Mc-lr(bTCIh,a — Za PTCIh,a



