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THIS TALK

• The quickest intro to MDPs you’ve ever heard
• Optimistic exploration in RL

• Model-optimism and value-optimism
• A unifying view

• Linear function approximation
• Local and global optimism



MARKOV DECISION PROCESSES

Environment
Learner

(“Agent”)

State 𝑥𝑡

Action 𝑎𝑡

• Learner: 
• Observe state 𝑥𝑡 , choose action 𝑎𝑡
• Obtain reward 𝑟 𝑥𝑡 , 𝑎𝑡

• Environment: Draw next state 𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥𝑡 , 𝑎𝑡
• Episode ends in round 𝐻
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• Learner: 
• Observe state 𝑥𝑡 , choose action 𝑎𝑡
• Obtain reward 𝑟 𝑥𝑡 , 𝑎𝑡

• Environment: Draw next state 𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥𝑡 , 𝑎𝑡
• Episode ends in round 𝐻

Environment
Learner

(“Agent”)

State 𝑥𝑡

Action 𝑎𝑡

Goal:
get as much reward 

as possible!



OPTIMALITY IN MDPS

Primal: optimality in trajectory space
maximize       σℎ=1

𝐻 𝑞ℎ,𝑎, 𝑟ℎ,𝑎
subject to      σ𝑎 𝑞ℎ+1,𝑎 = σ𝑎 𝑃𝑎

⊤𝑞ℎ,𝑎
σ𝑎 𝑞1 𝑥0, 𝑎 = 1, 𝑞 ≥ 0

Dual: optimality in value-function space
as characterized by the Bellman optimality equations

𝑉ℎ
∗ = max

𝑎
𝑟𝑎 + 𝑃𝑎𝑉ℎ+1

∗
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OPTIMALITY IN MDPS

Dual: optimality in value-function space
as characterized by the Bellman optimality equations

𝑉ℎ
∗ = max

𝑎
𝑟𝑎 + 𝑃𝑎𝑉ℎ+1

∗

Equivalent due to Linear Programming duality

Optimal policy:
𝜋ℎ
∗ 𝑎 𝑥 ∝ 𝑞ℎ

∗ 𝑥, 𝑎

Optimal policy:
𝜋ℎ
∗ 𝑎 𝑥 ∝ 𝕀{𝑎=argmax

𝑎′
𝑄∗(𝑥,𝑎′)}
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“Optimism in the face 
of uncertainty”

≈
imagine you’re in the 

best statistically plausible world 
and plan accordingly
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OPTIMISTIC EXPLORATION IN RL

oh yeah

“Optimism in the face 
of uncertainty”

≈
imagine you’re in the 

best statistically plausible world 
and plan accordingly



THE TWO KINDS OF OPTIMISM

Optimism in model space:
construct a confidence set around 𝑃 and 
jointly optimize over models & policies

Optimism in value space:
construct upper confidence bounds 

directly on the optimal value function 𝑉∗
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Optimism in model space:
construct a confidence set around 𝑃 and 
jointly optimize over models & policies

Optimism in value space:
construct upper confidence bounds 

directly on the optimal value function 𝑉∗

• 𝒫 = confidence set of transition 
functions ෨𝑃 centered around empirical 
transition function ෠𝑃 such that

𝐷 ෨𝑃 ⋅ 𝑥, 𝑎 , ෠𝑃 ⋅ 𝑥, 𝑎 ≤ 𝜖 𝑥, 𝑎 ,

holds for all 𝑥, 𝑎
• Calculate optimistic policy-model pair

𝜋+, 𝑃+ = arg max
𝜋, ෨𝑃∈𝒫

𝑉෨𝑃
𝜋 𝑥0

• E.g., UCRL2 (Jaksch et al., 2010) uses
෨𝑃 ⋅ 𝑥, 𝑎 − ෠𝑃 ⋅ 𝑥, 𝑎

1
≤ 𝐶 𝑆/𝑁(𝑥, 𝑎)

and “extended value iteration”

𝑁 𝑥, 𝑎 =#visits to 𝑥, 𝑎 so far

෠𝑃 𝑥′ 𝑥, 𝑎 =
𝑁 𝑥,𝑎,𝑥′

𝑁 𝑥,𝑎
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jointly optimize over models & policies

Optimism in value space:
construct upper confidence bounds 

directly on the optimal value function 𝑉∗

• 𝒫 = confidence set of transition 
functions ෨𝑃 centered around empirical 
transition function ෠𝑃 such that

𝐷 ෨𝑃 ⋅ 𝑥, 𝑎 , ෠𝑃 ⋅ 𝑥, 𝑎 ≤ 𝜖 𝑥, 𝑎 ,

holds for all 𝑥, 𝑎
• Calculate optimistic policy-model pair

𝜋+, 𝑃+ = arg max
𝜋, ෨𝑃∈𝒫

𝑉෨𝑃
𝜋 𝑥0

• E.g., UCRL2 (Jaksch et al., 2010) uses
෨𝑃 ⋅ 𝑥, 𝑎 − ෠𝑃 ⋅ 𝑥, 𝑎

1
≤ 𝐶 𝑆/𝑁(𝑥, 𝑎)

and “extended value iteration”

• Compute exploration bonus CB(𝑥, 𝑎) for 
each 𝑥, 𝑎 and solve the optimistic 
Bellman optimality equations with the 
empirical transition function ෠𝑃:

𝑉ℎ+1
+ = max

𝑎
𝑟𝑎 + CB𝑎 + ෠𝑃𝑎𝑉ℎ

+

• E.g., UCB-VI (Azar et al., 2017) uses

CB 𝑥, 𝑎 = 𝐶𝐻 1/𝑁(𝑥, 𝑎)

𝑁 𝑥, 𝑎 =#visits to 𝑥, 𝑎 so far

෠𝑃 𝑥′ 𝑥, 𝑎 =
𝑁 𝑥,𝑎,𝑥′

𝑁 𝑥,𝑎



PROS AND CONS

Optimism in model space:
construct a confidence set around 𝑃 and 
jointly optimize over models & policies

Optimism in value space:
construct upper confidence bounds 

directly on the optimal value function 𝑉∗

☺ simple probabilistic analysis
just show that 𝑃 ∈ 𝒫!

 complicated to implement
need to search jointly over 
models and policies

 loose bounds
best known regret guarantees

are suboptimal 𝑂 𝐻𝑆 𝐴𝑇

 complicated to analyze
need recursive arguments to show 
optimistic property of 𝑉+

☺ easy to implement
dynamic programming with 
෠𝑃 and 𝑟 + 𝐶𝐵

☺ tight bounds
optimal regret bounds 𝑂 𝐻 𝑆𝐴𝑇
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Main result
“Every model-optimistic algorithm can be 
written as a value-optimistic algorithm”

Consider any divergence 𝐷 that is a) convex in its arguments and 
b) positive homogeneous, and define its conjugate 𝐷 as

𝐷∗ 𝑣 Ƹ𝑝, 𝜖 = max
𝑝∈Δ

𝑣, 𝑝 − Ƹ𝑝 𝐷 𝑝, Ƹ𝑝 ≤ 𝜖

Solution of 
𝜋+, 𝑃+ = arg max

𝜋, ෨𝑃∈𝒫
𝑉෨𝑃
𝜋 𝑥0

Solution of

𝑉ℎ+1
+ = max

𝑎
𝑟𝑎 + CBℎ,𝑎 + ෠𝑃𝑎𝑉ℎ

+

CBℎ 𝑥, 𝑎 = 𝐷∗ 𝑉ℎ+1
+ ෠𝑃ℎ ⋅ 𝑥, 𝑎 , 𝜖 𝑥, 𝑎



Algorithm Divergence 𝝐 Conjugate bound Regret

UCRL2 𝑝 − Ƹ𝑝 1 𝑆/𝑁 𝜖 ⋅ span(𝑉) 𝑆𝐻3/2 𝐴𝑇

UCRL2B max
𝑥

𝑝 𝑥 − Ƹ𝑝 𝑥
2

Ƹ𝑝 𝑥
1/𝑁 σ𝑥 𝜖 Ƹ𝑝(𝑥) 𝑉 − Ƹ𝑝𝑉 𝐻 𝑆Γ𝐴𝑇

KL-UCRL 𝐾𝐿 𝑝 Ƹ𝑝 𝑆/𝑁 𝜖 Var ො𝑝(𝑉) 𝐻𝑆 𝐴𝑇

𝜒2-UCRL ෍

𝑥

𝑝 𝑥 − Ƹ𝑝 𝑥
2

Ƹ𝑝 𝑥
𝑆/𝑁 𝜖 Var ො𝑝(𝑉) 𝐻𝑆 𝐴𝑇

EXAMPLES

Jaksch et al. (2010), Fruit et al. (2019), Filippi et al. (2010), Maillard et al. (2014)
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“Data-dependent” 
exploration bonuses!
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Primal: optimism in trajectory space
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PROOF IDEA: DUALITY

• Nonconvex due to bilinear constraint ෨𝑃𝑞!
• Convex reparametrization: 𝐽 𝑥, 𝑎, 𝑥′ = 𝑞 𝑥, 𝑎 ෨𝑃 𝑥′ 𝑥, 𝑎 .
• Use assumptions on 𝐷 to rewrite confidence constraint as

𝐷 𝐽 𝑥, 𝑎,⋅ , 𝑞(𝑥, 𝑎) ෠𝑃 ⋅ 𝑥, 𝑎 ≤ 𝑞 𝑥, 𝑎 𝜖 𝑥, 𝑎 .
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• Nonconvex due to bilinear constraint ෨𝑃𝑞!
• Convex reparametrization: 𝐽 𝑥, 𝑎, 𝑥′ = 𝑞 𝑥, 𝑎 ෨𝑃 𝑥′ 𝑥, 𝑎 .
• Use assumptions on 𝐷 to rewrite confidence constraint as

𝐷 𝐽 𝑥, 𝑎,⋅ , 𝑞(𝑥, 𝑎) ෠𝑃 ⋅ 𝑥, 𝑎 ≤ 𝑞 𝑥, 𝑎 𝜖 𝑥, 𝑎 .

• Establish strong duality: max𝑞, ෨𝑃min𝑉 ℒ 𝑞, ෨𝑃; 𝑉 = min𝑉max𝑞, ෨𝑃 ℒ 𝑞, ෨𝑃; 𝑉 .

• Exploit the local nature of confidence constraints.

Primal: optimism in trajectory space

𝐷 ෨𝑃 ⋅ 𝑥, 𝑎 , ෠𝑃 ⋅ 𝑥, 𝑎 ≤ 𝜖 𝑥, 𝑎
maximize      σℎ=1

𝐻 𝑞ℎ,𝑎, 𝑟ℎ,𝑎
subject to 𝑞ℎ+1,𝑎 = σ𝑎

෨𝑃𝑎
⊤𝑞ℎ,𝑎



PROOF IDEA: DUALITY

Dual: optimism in value-function space
as characterized by the Bellman optimality equations

𝑉ℎ
+ = max

𝑎
𝑟𝑎 + CBℎ,𝑎 + ෠𝑃𝑎𝑉ℎ+1

+

Equivalent due to Lagrangian duality

Primal: optimism in trajectory space
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෨𝑃𝑎
⊤𝑞ℎ,𝑎



IMPLICATIONS

Optimism in model space:
construct a confidence set around 𝑃 and 
jointly optimize over models & policies

Optimism in value space:
construct upper confidence bounds 

directly on the optimal value function 𝑉∗

☺ simple probabilistic analysis
just show that 𝑃 ∈ 𝒫!

 complicated to implement
need to search jointly over 
models and policies

 loose bounds
best known regret guarantees

are suboptimal 𝑂 𝐻𝑆 𝐴𝑇

 complicated to analyze
need recursive arguments to show 
optimistic property of 𝑉+

☺ easy to implement
dynamic programming with 
෠𝑃 and 𝑟 + 𝐶𝐵

☺ tight bounds
optimal regret bounds 𝑂 𝐻 𝑆𝐴𝑇
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Optimism in model space:
construct a confidence set around 𝑃 and 
jointly optimize over models & policies

Optimism in value space:
construct upper confidence bounds 

directly on the optimal value function 𝑉∗

Best of both worlds!
• Simple probabilistic analysis and easy implementation!

• Simple regret bound: Regret𝑇 ≤ σ𝑡=1
𝑇 σℎ=1

𝐻 CBℎ,𝑡 𝑥ℎ,𝑡 , 𝑎ℎ,𝑡 + 𝑂 𝐻 𝑆𝐴𝑇

• If the exact form of CB is difficult to calculate, you can use a tractable 
upper bound CB+ and retain the guarantees
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Optimism in model space:
construct a confidence set around 𝑃 and 
jointly optimize over models & policies

Optimism in value space:
construct upper confidence bounds 

directly on the optimal value function 𝑉∗

Best of both worlds!
• Simple probabilistic analysis and easy implementation!

• Simple regret bound: Regret𝑇 ≤ σ𝑡=1
𝑇 σℎ=1

𝐻 CBℎ,𝑡 𝑥ℎ,𝑡 , 𝑎ℎ,𝑡 + 𝑂 𝐻 𝑆𝐴𝑇

• If the exact form of CB is difficult to calculate, you can use a tractable 
upper bound CB+ and retain the guarantees

Downside: bounds still loose by a factor 𝑆 



LINEAR FUNCTION APPROXIMATION

Assumption: factored linear MDP
The transition matrix factorizes as

𝑃𝑎 = Φ𝑀𝑎,
where the rows of Φ correspond to some 

known feature vectors 𝜑 𝑥 ∈ ℝ𝑑

Implies realizability of 𝑄-function approximation: 
every 𝑄 function can be written as 𝑄 𝑥, 𝑎 = 𝜃𝑎, 𝜑 𝑥



LINEAR FUNCTION APPROXIMATION

Dual: optimality in value-function space
as characterized by the projected Bellman optimality equations

𝑄ℎ,𝑎
∗ = ΠΦ 𝑟𝑎 + 𝑃𝑎max

𝑎′
𝑄ℎ+1,𝑎′
∗

Implies realizability of 𝑄-function approximation: 
every 𝑄 function can be written as 𝑄 𝑥, 𝑎 = 𝜃𝑎, 𝜑 𝑥

Assumption: factored linear MDP
The transition matrix factorizes as

𝑃𝑎 = Φ𝑀𝑎,
where the rows of Φ correspond to some 

known feature vectors 𝜑 𝑥 ∈ ℝ𝑑



Primal: optimality in trajectory space

Dual: optimality in value-function space
as characterized by the projected Bellman optimality equations

𝑄ℎ,𝑎
∗ = ΠΦ 𝑟𝑎 + 𝑃𝑎max

𝑎′
𝑄ℎ+1,𝑎′
∗

Equivalent due to Linear Programming duality

maximize       σℎ=1
𝐻 𝑞ℎ,𝑎, 𝑟ℎ,𝑎

subject to          σ𝑎 𝑞ℎ+1,𝑎 = σ𝑎 𝑃𝑎𝑊ℎ,𝑎Φ𝜔ℎ,𝑎

Φ⊤𝑞ℎ,𝑎 = Φ⊤𝑊ℎ,𝑎Φ𝜔ℎ,𝑎

PRIMAL-DUAL FORMULATION



BUILDING A REFERENCE MODEL

Idea:
Construct confidence sets around LSTD reference model ෠𝑃𝑡,𝑎 = Φ ෡𝑀𝑡,𝑎 with 

෡𝑀𝑡,𝑎 = Σ𝑡,𝑎
−1෍

𝑘=1

𝑡

𝕀 𝑎𝑘=𝑎 𝜑 𝑥𝑘 𝑒𝑥𝑘
′

and observe that ෡𝑀𝑡,𝑎 −𝑀𝑎 𝑣 is a vector-valued martingale for any 𝑣!

Σ𝑡,𝑎 = 𝐼 + σ𝑘=1
𝑡 𝜑 𝑥𝑘 𝜑 𝑥𝑘

⊤

Bradtke and Barto (1996), Boyan (1998), Parr et al. (2008)



BUILDING A REFERENCE MODEL

Idea:
Construct confidence sets around LSTD reference model ෠𝑃𝑡,𝑎 = Φ ෡𝑀𝑡,𝑎 with 

෡𝑀𝑡,𝑎 = Σ𝑡,𝑎
−1෍

𝑘=1

𝑡

𝕀 𝑎𝑘=𝑎 𝜑 𝑥𝑘 𝑒𝑥𝑘
′

and observe that ෡𝑀𝑡,𝑎 −𝑀𝑎 𝑣 is a vector-valued martingale for any 𝑣!

Lemma
෡𝑀𝑡,𝑎 −𝑀𝑎 𝑣

Σ𝑡,𝑎
≤ 𝐶 𝑑 𝑣 ∞

Σ𝑡,𝑎 = 𝐼 + σ𝑘=1
𝑡 𝜑 𝑥𝑘 𝜑 𝑥𝑘

⊤

Abbasi-Yadkori, Pál and Szepesvári (2011)

Bradtke and Barto (1996), Boyan (1998), Parr et al. (2008)



LOCAL AND GLOBAL OPTIMISM

Local confidence sets
𝐷 ෨𝑃 ⋅ 𝑥, 𝑎 , ෠𝑃 ⋅ 𝑥, 𝑎 ≤ 𝜖 𝑥, 𝑎

Least-squares VI with local 
exploration bonuses
CB(𝑥, 𝑎) = 𝐶 𝜑 𝑥 Σ𝑡,𝑎

−1

• Equivalent to LSVI-UCB 
by Jin et al. (COLT 2020)!

• Regret= 𝑂 𝐻3𝑑3𝑇

• Efficient implementation



LOCAL AND GLOBAL OPTIMISM

Local confidence sets
𝐷 ෨𝑃 ⋅ 𝑥, 𝑎 , ෠𝑃 ⋅ 𝑥, 𝑎 ≤ 𝜖 𝑥, 𝑎

Least-squares VI with local 
exploration bonuses
CB(𝑥, 𝑎) = 𝐶 𝜑 𝑥 Σ𝑡,𝑎

−1

• Equivalent to LSVI-UCB 
by Jin et al. (COLT 2020)!

• Regret= 𝑂 𝐻3𝑑3𝑇

• Efficient implementation

Global confidence sets
෡𝑀𝑡,𝑎 − ෩𝑀𝑎 𝑣

Σ𝑡,𝑎
≤ 𝜖

Least-squares VI with 
global exploration bonuses

CB 𝑥, 𝑎 = 𝐵𝑎 , 𝜑 𝑥
with 𝐵𝑎 Σ𝑡,𝑎 ≤ 𝜖

• Equivalent to ELEANOR

by Zanette et al. (ICML 2020)!

• Regret= 𝑂 𝑑 𝐻3𝑇

• No efficient implementation



LOCAL AND GLOBAL OPTIMISM

Local confidence sets
𝐷 ෨𝑃 ⋅ 𝑥, 𝑎 , ෠𝑃 ⋅ 𝑥, 𝑎 ≤ 𝜖 𝑥, 𝑎

Least-squares VI with local 
exploration bonuses
CB(𝑥, 𝑎) = 𝐶 𝜑 𝑥 Σ𝑡,𝑎

−1

Global confidence sets
෡𝑀𝑡,𝑎 −𝑀𝑎 𝑣

Σ𝑡,𝑎
≤ 𝜖

Least-squares VI with 
global exploration bonuses

CB 𝑥, 𝑎 = 𝐵𝑎 , 𝜑 𝑥
with 𝐵𝑎 Σ𝑡,𝑎 ≤ 𝜖

Model-based perspective
(=simple probabilistic analysis)

• Equivalent to LSVI-UCB 
by Jin et al. (COLT 2020)!

• Regret= 𝑂 𝐻3𝑑3𝑇

• Efficient implementation

• Equivalent to ELEANOR

by Zanette et al. (ICML 2020)!

• Regret= 𝑂 𝑑 𝐻3𝑇

• No efficient implementation



LOCAL AND GLOBAL OPTIMISM

Local confidence sets
𝐷 ෨𝑃 ⋅ 𝑥, 𝑎 , ෠𝑃 ⋅ 𝑥, 𝑎 ≤ 𝜖 𝑥, 𝑎

Least-squares VI with local 
exploration bonuses
CB(𝑥, 𝑎) = 𝐶 𝜑 𝑥 Σ𝑡,𝑎

−1

Global confidence sets
෡𝑀𝑡,𝑎 −𝑀𝑎 𝑣

Σ𝑡,𝑎
≤ 𝜖

Least-squares VI with 
global exploration bonuses

CB 𝑥, 𝑎 = 𝐵𝑎 , 𝜑 𝑥
with 𝐵𝑎 Σ𝑡,𝑎 ≤ 𝜖

Model-based perspective
(=simple probabilistic analysis)

• Equivalent to LSVI-UCB 
by Jin et al. (COLT 2020)!

• Regret= 𝑂 𝐻3𝑑3𝑇

• Efficient implementation

• Equivalent to ELEANOR

by Zanette et al. (ICML 2020)!

• Regret= 𝑂 𝑑 𝐻3𝑇

• No efficient implementation



IMPLEMENTING ELEANOR
ELEANOR in trajectory space

maximize       σℎ=1
𝐻 𝑞ℎ,𝑎, 𝑟ℎ,𝑎

subject to  𝑞ℎ+1,𝑎 = σ𝑎
෩𝑀𝑎
⊤Φ⊤𝑊ℎ,𝑎Φ𝜔ℎ,𝑎

Φ⊤𝑞ℎ,𝑎 = Φ⊤𝑊ℎ,𝑎Φ𝜔ℎ,𝑎

sup
𝑣∈𝒱

෩𝑀𝑎 − ෡𝑀𝑎 𝑣
Σ
≤ 𝜖
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• Nonconvex due to bilinear constraint ෩𝑀𝑎
⊤Φ⊤𝑊ℎ,𝑎Φ𝜔ℎ,𝑎!

• Previous tricks (convex reparametrization, etc.) don’t work!!
• Can be written as convex maximization problem essentially 

identical to LinUCB / OFUL





•Current optimistic exploration methods may be closer to each
other than we thought!

•Model-based view allows simpler algorithm design & analysis

•Open challenges:
• Closing the gaps between the bounds?
• Model-based theory for misspecified models? 

(some concurrent results by Lykouris et al., 2020)
• More general function approximation?

• …
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CONCLUSION

Model-based optimism is alive!



Thanks!!!



Primal: optimality in trajectory space
maximize       σℎ=1

𝐻 𝑞ℎ,𝑎, 𝑟ℎ,𝑎
subject to          𝑞ℎ+1,𝑎 = σ𝑎𝑃𝑎

⊤𝑊ℎ,𝑎Φ𝜔ℎ,𝑎

Φ⊤𝑞ℎ,𝑎 = Φ⊤𝑊ℎ,𝑎Φ𝜔ℎ,𝑎

PRIMAL REALIZABILITY

If transition model is factored as 𝑃𝑎 = Φ𝑀𝑎, all feasible 𝑞’s are feasible in the 
original LP:
𝑞ℎ+1,𝑎 = σ𝑎𝑃𝑎

⊤𝑊ℎ,𝑎Φ𝜔ℎ,𝑎 = σ𝑎𝑀𝑎
⊤Φ⊤𝑊ℎ,𝑎Φ𝜔ℎ,𝑎 = σ𝑎𝑀𝑎

⊤Φ⊤𝑞ℎ,𝑎 = σ𝑎𝑃
⊤𝑞ℎ,𝑎


