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Abstract

We consider an online learning problem where the learner interacts with a Markov
decision process in a sequence of episodes, where the reward function is allowed
to change between episodes in an adversarial manner and the learner only gets to
observe the rewards associated with its actions. We allow the state space to be
arbitrarily large, but we assume that all action-value functions can be represented
as linear functions in terms of a known low-dimensional feature map, and that
the learner has access to a simulator of the environment that allows generating
trajectories from the true MDP dynamics. Our main contribution is developing a
computationally efficient algorithm that we call MDP-LINEXP3, and prove that
its regret is bounded by Õ

(
H2T 2/3(dK)1/3

)
, where T is the number of episodes,

H is the number of steps in each episode, K is the number of actions, and d is
the dimension of the feature map. We also show that this bound can be improved
to Õ

(
H2
√
dKT

)
under the strong condition that the likelihood ratio between the

state distributions generated by any pair of policies is upper bounded by a constant.
To our knowledge, MDP-LINEXP3 is the first provably efficient algorithm for this
problem setting.

1 Introduction

Reinforcement learning (RL) is one of the most important frameworks for sequential decision-making
under uncertainty, where a learner interacts with the environment sequentially and aims to improve
her strategy over time [39, 41]. Besides well-publicized spectacular empirical successes of RL
algorithms, recent years saw a renaissance of theoretical research in the field. Our paper contributes
to this line of study by providing algorithms with provable performance guarantees.

In the present work, we study the problem of online learning in episodic Markov Decision Processes
(MDP), where the interaction is divided into T episodes of fixed length H . At each time step of
the episode, the learner observes the current state of the environment, chooses one of the available
actions, and earns a reward. Consequently, the state of the environment changes according to the
transition function of the underlying MDP, as a function of the previous state and the action taken
by the learner. We assume that the reward function can change arbitrarily between episodes, and
the learner only has access to bandit feedback: instead of being able to observe the reward function
at the end of the episode, the learner only gets to observe the rewards that it actually received. As
traditional in this line of work, we aim to design algorithms for the learner with theoretical guarantees
on her regret, which is the difference between the total reward accumulated by the learner and the
total reward of the best stationary policy fixed in hindsight.

Unlike most previous work on this problem, we allow the state space to be potentially infinite,
bringing theory one step closer to practical scenarios where assuming finite state spaces is unrealistic.
To address the challenge of learning in large state spaces, we adopt the classic RL technique of



using linear function approximation and suppose that we have access to a relatively low-dimensional
feature map that can be used to represent policies and value functions. We will assume that the feature
map is expressive enough so that all action-value functions can be expressed as linear functions of
the features. While we do not assume full knowledge of the underlying Markov decision process, we
will assume that we have access to a simulator of the MDP that will allow the learner to generate
sample episodes.

Our main contribution is designing a computationally efficient algorithm called MDP-LINEXP3,
and prove that in the setting described above, its regret is at most Õ

(
H2T 2/3(dK)1/3

)
, where K is

the number of actions and d is the dimensionality of the feature map. We also show that this bound
can be improved to Õ

(
H2
√
dKT

)
under the strong condition that the likelihood ratio between the

state distributions generated by any pair of policies is upper bounded by a constant. These results
constitute the first known regret guarantee for any algorithm in this setting.

Our result fits into a long line of work considering online learning in Markov decision processes.
The problem of regret minimization in stationary Markov decision processes with a fixed reward
function has been studied extensively since the work of Burnetas and Katehakis [13], Auer and Ortner
[7], Tewari and Bartlett [42], Jaksch et al. [22], with several important advances made in the past
decade [17, 18, 10, 21, 23]. While most of these works considered small finite state spaces, the same
techniques have been very recently extended to accommodate potentially unbounded state spaces
under the assumption of realizable function approximation by Jin et al. [24] and Yang and Wang [44].

Even more relevant is the line of work considering adversarial rewards, initiated by Even-Dar et al.
[20], who consider online learning in continuing MDPs with full feedback about the rewards. They
proposed a MDP-E algorithm, that achieves O(τ2

√
T logK) regret, where τ is an upper bound

on the mixing time of the MDP. Later, Neu et al. [33] proposed an algorithm which guarantees
Õ
(√

τ3KT/α
)

regret with bandit feedback, essentially assuming that all states are reachable with
probability α > 0 under all policies. In our work, we focus on episodic MDPs with a fixed episode
length H . The setting was first considered in the bandit setting by Neu et al. [31], who proposed an
algorithm with O(H2

√
TK/α). Although the number of states does not show up in the bound, the

regret scales at least linearly with the size of the state space S , since |S| ≤ H/α. Later work by Zimin
and Neu [46], Dick et al. [19] eliminated the dependence on α and proposed an algorithm achieving
Õ(
√
TH|S|K) regret. Regret bounds for the full-information case without prior knowledge of the

MDP were achieved by [32] and [37], both of order Õ(H|S|K
√
T ).

As apparent from the above discussion, all work on online learning in MDPs with adversarial rewards
considers finite state spaces. The only exception we are aware of is the very recent work [14], whose
algorithm OPPO is guaranteed to achieve Õ

(√
d3H3T

)
regret. While they remarkably assumed no

prior knowledge of the MDP parameters, their guarantees are only achieved in the full-information
case. This is to be contrasted with our results that are achieved for the much more restrictive bandit
setting, albeit with the more permissive assumption of having access to a simulator of the environment.

Our problem formulation shares many similarities with the framework of the contextual bandit
problem, which can be seen as a relatively simple reinforcement learning problem in which the
actions do not influence the future evolution of states, but nevertheless can still model a broad
range of important real-world problems [43, 5]. Several variants and special cases of the contextual
bandit problem exist differing on the assumptions on the set of available actions, context and reward
functions [27, 11, 4, 36, 40]. Our own approach in this paper is directly motivated by the recent
work of Neu and Olkhovskaya [30], who consider linear contextual bandit problems with adversarial
reward functions and i.i.d. context vectors. While we borrow several ideas and techniques from their
work, our analysis faces a range of new challenges posed by the fact that the feature vectors our
algorithm has to deal with are far from being stationary due to the dependence on the learner’s policy.
Notably, our work is not the first to make use of ideas originally developed for linear bandit settings
in the context of RL with linear function approximation: the recently proposed algorithms of Jin
et al. [24] and Yang and Wang [44] addressing this setting are both based on extending ideas from
stochastic linear contextual bandits [6, 15, 1].

The rest of the paper is organized as follows. After defining some basic notation, Section 2 presents
our problem definition. We present our algorithms and main results in Section 3 and provide the
proofs in Section 4. Section 5 concludes the paper by discussing some implications of our results.
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Notation. We use 〈·, ·〉 to denote inner products in Euclidean space and by ‖·‖ we denote the
Euclidean norm for vectors and the operator norm for matrices. For a symmetric positive definite
matrix A, we use λmin(A) to denote its smallest eigenvalue. We write tr (A) for the trace of a matrix
A and use A < 0 to denote that an operator A is positive semi-definite, and we use A < B to denote
A−B < 0. For a positive integer N , we use [N ] to denote the set of positive integers {1, 2, . . . , N}.

2 Problem definition

An episodic Markovian Decision Process (MDP), denoted by M(S,A, H, P, r) is defined by a state
space S , action space A, episode length H ∈ Z+, transition function P : S ×A× S → [0, 1] and a
reward function r : S × A → [0, 1]. We assume that S is a measurable space and A is a finite set
with cardinality K. Without significant loss of generality, we will assume that the set of available
actions is the same A = [K] in each state, and furthermore that the MDP has a layered structure,
satisfying the following conditions:

• The state set S can be decomposed into H disjoint sets: S = ∪Hh=1Sh,

• S1 = {x1} and SH = {xH} are singletons,

• transitions are only possible between consecutive layers, that is, for any xh ∈ Sh, the
distribution P (·|x, a) is supported on Sh+1 for all a and h ∈ [H].

These assumptions are common in the related literature (e.g., [31, 46, 37]) and are not essential to
our analysis; their primary role is simplifying our notation. In the present paper, we consider an
online learning problem where the learner interacts with its environment in a sequence of episodes
t = 1, 2, . . . , T , facing a different reward function rt selected by a (possibly adaptive) adversary
at the beginning of each episode t. Oblivious to the reward function chosen by the adversary, the
learner starts interacting with the MDP in each episode from the initial state Xt,1 = x1. At each
consecutive step h ∈ [H] within the episode, the learner observes the state Xt,h, picks an action
At,h and observes the loss rt(Xt,h, At,h). Then, unless h = H , the learner moves to the next state
Xt,h+1, which is generated from the distribution P (·|Xt,h, At,h). At the end of step H , the episode
terminates and a new one begins.

Our algorithm and analysis will make use of the concept of (stationary stochastic) policies π :
A× S → [0, 1]. A policy π prescribes a behavior rule to the learner by assigning probability π(a|x)
to taking action a at state x. Each policy π generates a probability distribution µπh over each layer
h ∈ [H], and we will refer to the collection of these distributions in each layer as the occupancy
measure µπ induced by π. The instantaneous value function and action-value function with respect
to policy π in episode t are defined, respectively, as

Qπt,h(x, a) = Eπ

[
H∑
k=h

rt(X̃k, Ãk)

∣∣∣∣∣ X̃h = x, Ãh = a

]
, V πt,h(x) =

∑
a

π(a|x)Qπt,h(x, a),

where the notation Eπ[·] highlights that the sequence of states X̃k and actions Ãk are generated by
following policy π in the MDP.

We will be interested in developing learning algorithms that select a policy πt for the learner at
the beginning of each episode t. With some abuse of notation, we will use Vt,l(x) = V πtt,l (x) and
Qt,l(x, a) = Qπtt,l(x, a) to denote the value function and the action-value function of policy πt in
episode t. With this notation, we define our performance metric as the (total expected) regret

RT = sup
π

T∑
t=1

(
V πt,1(x1)− Vt,1(x1)

)
,

where the supremum is taken over the set of all stationary policies mapping states to actions. It
follows from standard results that there exists a stationary and deterministic policy π∗ that achieves
the corresponding infimum [35, Theorem 4.4.2]. Intuitively, the regret measures the gap between the
total loss incurred by the learner and that of the best stationary policy fixed in hindsight, with full
knowledge of the sequence of losses chosen by the adversary. This performance measure is standard
in the related literature on online learning in MDPs, see, for example [31, 46, 32, 37, 14, 25].
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In this paper, we focus on MDPs with potentially infinite state spaces, which makes it difficult to
design computationally tractable algorithms with nontrivial guarantees, unless we make some as-
sumptions. We particularly focus on the classic technique of relying on linear function approximation
by assuming that the action-value functions occurring during the learning process can be written as a
linear function of a low-dimensional feature map.
Assumption 1 (Realizable function approximation). For any h ∈ [H], a ∈ A there exists a feature
map ϕ : S → Rd, and there exist vectors θπt,a,h ∈ Rd, such that for any (x, a, h) ∈ S ×A× [L] and
a stochastic stationary policy π, the action-value function can be written as

Qπt,h(x, a) =
〈
ϕ(x), θπt,a,h

〉
. (1)

Furthermore, the features and the parameter vectors satisfy ‖ϕ(x)‖ ≤ σ and
∥∥θπt,a,h∥∥ ≤ R for all

x ∈ S, a ∈ A, h ∈ [H].

Online learning under this assumption has received substantial attention in the recent literature, and
in particular has been shown to be satisfied in the class of so-called linear MDPs studied by Jin et al.
[24], Cai et al. [14] and low-rank MDPs studied by Yang and Wang [44], which are both special cases
of factored linear models [45, 34].

3 Algorithm and main results

Our algorithm design is motivated by the following decomposition of the regret first proposed for
online MDP problems by Even-Dar et al. [20] and adapted to finite-horizon MDPs by Neu et al. [31]:
Lemma 1. Let µ∗ denote the occupancy measure induced by π∗. Then, for any sequence of policies
πt selected by the learner, the regret satisfies

RT =

H∑
h=1

EX∗h∼µ∗h

[
T∑
t=1

(
Qt,h(X∗h, π

∗(X∗h))− Vt,h(X∗h)
)]

.

As observed in previous work [20, 31], this lemma implies that the global regret minimization
problem can be decomposed into a set of local regret minimization problems in each state x, where
the reward function associated with each action a is defined as Qt,h(x, a). Indeed, letting πt(·|x)
denote the policy played by the local algorithm in state x in round t, we can define the local regret
against policy π∗ as

Rh,T (x) = E

[
T∑
t=1

(
Qt,h(x, π∗(x))−

∑
a

πt(a|x)Qt,h(x, a)
)]

,

and the regret in layer h as RT,h = EX∗h∼µ∗h [Rh,T (X∗h)]. This can be easily seen to be related to the
global regret as RT =

∑H
h=1RT,h, and thus it is obvious that bounding the local regrets in each state

x yields a bound on the global regret.

With this in mind, following the algorithmic template laid out by Even-Dar et al. [20] called MDP-E,
we propose an algorithm based on running a variant of the classic EXP3 algorithm of Auer et al.
[8] in each state x. The key challenge is constructing the inputs to these local algorithms in a
way that yields a computationally tractable algorithm with nontrivial performance bounds, and
more specifically to achieve runtime and regret guarantees that are independent of the size of the
state space. Indeed, instead of the possibly unbounded number of states, we prefer to have the
dimensionality of the feature map appear in our bounds, which is made possible by Assumption 1.
Indeed, this assumption allows us to represent each Q-function by its parameter vector, which in
turn enables an efficient implementation of the local regret minimization algorithms. Specifically, we
design an estimator θ̂t,a,h of the parameter vector θt,a,h corresponding to the action-value function
Qt,h(x, a) = 〈ϕ(x), θt,a,h〉 of policy πt, and plug the resulting estimates 〈ϕ(x), θ̂t,a,h〉 into a local
copy of EXP3. The form of our estimator θ̂t,a,h and overall algorithm design is directly influenced
by the recently proposed LINEXP3 method of Neu and Olkhovskaya [30], and thus we refer to our
algorithm as MDP-LINEXP3. Its pseudocode is presented as Algorithm 1.

We denote the state-action trajectory in episode t as Ut = ((Xt,1, At,1) , . . . , (Xt,H , At,H)). For
stating many of our technical results, we define the filtration Ft = σ (Us, s ≤ t), and the notation
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Algorithm 1 MDP-LINEXP3
Parameters: Learning rate η > 0, exploration parameter γ ∈ (0, 1),
Initialization: Set θ̂1,a,h = 0̄ for all a ∈ A, h ∈ [H].
For episode t = 1, . . . , T , repeat:

• Draw Yt ∼ Ber(γ),
For step h = 1, . . . ,H , do:

1. Observe Xt,h and, for all a ∈ A(Xt,h), set

wt(Xt,h, a) = exp

(
η ·

t−1∑
s=1

〈ϕ(Xt,h), θ̂s,a,h〉

)
,

2. draw At,h from the policy defined as

πt (a|Xt,h) =
wt(Xt,h, a)∑

a′∈A(Xt,h)
wt(Xt,h, a′)

I{Yt=0} +
1

K
I{Yt=1},

3. observe the reward rt(Xt,h, At,h).
For step h = H, . . . , 1, do:

• Compute θ̂t,a,h for all a ∈ Ut.

Et [·] = E [· |Ft ]. Our reward estimator will be based on the observed rewards, and particularly
the partial sums Gt,h =

∑H
k=h rt(Xt,k, At,k) for each layer h. Another key component will be the

following covariance matrix:

Σt,a,h = Et
[
ϕ(Xt,h)ϕ(Xt,h)TI{At,h=a}

]
.

Making sure that Σt,a,h is invertible, we can define the estimator

θ̃t,a,h = Σ−1t,a,hϕ(Xt,h)Gt,hI{At,h=a}. (2)

This estimate shares many similarities with the estimates that are broadly used in the literature on
adversarial linear bandits [16, 12]. To appreciate the sensibility of this estimator, first notice that the
sum of the rewards over the layers is an unbiased estimator of the action-value function:

Et [Gt,h|Xt,h = x,At,h = a] = Qt,h(x, a) = 〈ϕ(x), θt,a,h〉 .

Thus, it is easy to see that θ̃t,a,h is an unbiased estimate of vector θt,a,h:

Et
[
θ̃t,a,h

]
= Et

[
Σ−1t,a,hϕ(Xt,h)ϕ(Xt,h)Tθt,a,hI{At,h=a}

]
= Σ−1t,a,hΣt,a,hθt,a,h = θt,a,h.

The downside of this estimator is that it is virtually impossible to compute, since the matrix Σt,a,h
depends on both the policy πt and on the unknown dynamics of MDP in a complicated fashion.
To address the difficulty associated with not knowing the MDP, we assume that the learner has
access to a simulator of the environment that allows drawing sample trajectories Ut from the true
dynamics of the MDP without interacting with the environment. Notice that this notion is weaker
than the more common concept of a generative model that can generate sample transitions from
any given state-action pair [9, 38, 26]: the simulator can only produce sample trajectories from a
given policy and from the given starting state x1. Armed with this sumulator, we propose a method
to directly estimate the inverse of the covariance matrix Σt,a,h by adapting the Matrix Geometric
Resampling method of Neu and Olkhovskaya [30] (which itself is originally inspired by the Geometric
Resampling method of Neu and Bartók [28, 29]). Our adaptation has two parameters β > 0 and
M ∈ Z+, and generates an estimate of the inverse covariance matrix through the following procedure1:

1The version we present here is a naïve implementation, optimized for readability. We present a more
practical variant in Appendix C
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Matrix Geometric Resampling with a Simulator
Input: simulator of P , policy πt, sequence of actions (a1, a2, . . . , aH).
For i = 1, . . . ,M , repeat:

1. Generate a path U(i) = {(X1(i), A1(i)), . . . , (XH(i), AH(i))},
following the policy πt in the simulator of P ,

2. For h = 1, . . . ,H , repeat:
(a) compute Bi,ah,h = I{Ah(i)=ah}ϕ(Xh(i))ϕ(Xh(i))T,

(b) compute Ci,ah,h =
∏i
j=1(I − βBj,ah,h).

Return Σ̂+
t,ah,h

= βI + β
∑M
i=1 Ci,ah,h for all h ∈ [H].

Based on the above procedure, we finally define our reward estimator as

θ̂t,a,h = Σ̂+
t,a,hϕ(Xt,h)Gt,hI{At,h=a}.

To get an intuitive understanding of the estimate, assume that M =∞, and take β ≤ 1
σ2 , so that the

expectation of the matrix Σ̂+
t,a,h can be seen to be the Neumann-series expansion of the matrix Σ−1t,a,h:

Et
[
Σ̂+
t,a,h

]
= βI + β

∞∑
k=1

(I − βΣt,a,h)k = β(βΣt,a,h)−1 = Σ−1t,a,h.

This suggests that, for large enough M , the matrix Σ+
t,a,h should be a good estimator of the inverse

covariance matrix, which will be quantified formally in the analysis. With a careful implementation
explained in Appendix C, θ̂t,a,h can be computed in O(MHKd) time, using M calls to the simulator.

Having access to these estimators, MDP-LINEXP3 constructs an EXP3-style policy defined as
πt(a|x) ∝ exp

(∑t−1
k=1

〈
ϕ(x), θ̂k,a,h

〉)
for each x, a. Notably, the policy only depends on the cu-

mulative parameter vectors and the feature vector φ(x), and thus does not have to make explicit
updates to the individual regret-minimization algorithms acting in the states x. For technical reasons,
MDP-LINEXP3 follows the uniform policy πU (a|x) = 1

K with probability γ in each episode, and
follows the above exponential-weights policy otherwise. We will denote the covariance matrix
generated by the uniform policy at layer h as Σh, and make the following assumption:
Assumption 2. The eigenvalues of Σh for all h are lower bounded by λmin > 0.

Our main result is the following guarantee regarding the performance of MDP-LINEXP3:
Theorem 1. Suppose that the MDP satisfies Assumptions 1 and 2 and λmin > 0. Then, for γ ∈ (0, 1),
M ≥ 0, any positive η ≤ 2

(M+1)H and any positive β ≤ 1
2σ2 , the expected regret of MDP-LINEXP3

over T episodes satisfies

RT ≤ 2TσRH · exp

(
−γβλminM

K

)
+ γH2T + ηH3d

(
1

3
+
K

γ

σ2

λmin

)
T +H · logK

η
.

Furthermore, letting β = 1
2σ2 , M =

⌈
Kσ2 log(Tσ2R2)

γλmin

⌉
, η =

(logK)2/3λ
1/3
min

T 2/3(dKσ2)1/3H
, γ = (σ2dK logK)1/3

(Tλmin)1/3

and supposing that T is large enough so that the above constraints on γ,M, η and β are satisfied, we
also have

RT ≤ 3H2T 2/3

(
dKσ2 logK

λmin

)1/3

+
1

3
H2T 1/3(d logK)2/3

(
λmin

Kσ2

)1/3

+ 4H
√
T .

The downside of the above result is that it scales with the time horizon as T 2/3, which is likely to be
suboptimal in light of the best known bounds of order

√
T achieved in the tabular setting [46] in the

bandit case and the large-scale setting considered by Cai et al. [14] in the full-information case. The
next result shows that this dependence can be improved at the price of making stronger assumptions
about the MDP. Specifically, assume that P is such that for any policy π, the occupancy distribution
µπh has a density fπh (x) on the set of states Sh with respect to some base measure, and denote the
density corresponding to µ∗h as f∗h(x). Then, assuming that the likelihood ratio f∗h(x)

fπh (x) is uniformly
upper bounded, our bounds above can be tightened significantly:
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Theorem 2. Suppose that the MDP satisfies Assumptions 1, 2 and that the likelihood ratio between the
occupancy measures induced by any policy π and π∗ can be bounded uniformly as supπ,h,x

f∗h(x)
fπh (x) ≤ ρ

for some ρ > 0. Then, for γ ∈ (0, 1), M ≥ 0, any positive η ≤ 2
(M+1)H and any positive β ≤ 1

2σ2 ,
the expected regret of MDP-LINEXP3 over T episodes, satisfies

RT ≤ 2TσRH · exp

(
−γβλminM

K

)
+ γH2T + ηH3d

(
1

3
+Kρ

)
T +H · logK

η
.

Furthermore, letting β = 1
2σ2 , M =

⌈
Kσ2 log(Tσ2R2)

γλmin

⌉
, η = 1

H

√
logK
TdKρ , γ =

√
dρ logK

T and
supposing that T is large enough so that the above constraints are satisfied, we also have

RT ≤ 3H2
√
ρdKT logK +

1

3
H2

√
Td logK

ρK
+ 4H

√
T .

4 Analysis

As explained in the previous section, our algorithm and analysis is based on decomposing the overall
learning problem to a number of local online learning problems corresponding to each state in the
MDP. This approach is closely related to the one recently taken by Neu and Olkhovskaya [30], who
considered the contextual bandit problem with i.i.d. context vectors and adversarially chosen linear
reward functions, and suggested a similar regret decomposition for that problem. Our analysis in
the present paper will make use of several tools developed by them, with the added challenge that
the feature vectors in our setting are no longer i.i.d.: in any layer, the distribution of states clearly
depends on the learner’s policy in the previous layers. Concretely, the main challenge in our analysis
comes from the fact that the state distribution µ∗ appearing in the regret decomposition of Lemma 1
does not match the actual distribution of states µt. In what follows, we highlight the main steps in the
analysis. Proofs of the lemmas are given in the Appendix.

We start by rewriting our reward estimator as θ̂t,a,h = θ̃t,a,h + bt,a,h, where θ̃t,a,h is such that
Et
[
θ̃t,a,h

]
= θt,a,h and bt,a,h is a bias term. The bulk of our analysis is based on the following regret

decomposition that further refines the decomposition given in Lemma 1:
Lemma 2. LetX∗h be sampled from the context distribution generated by µ∗h. Suppose that πt ∈ Ft−1
and that Et

[
θ̃t,a,h

]
= θt,a,h for all t, a, h. Then, for all h,

RT,h =

T∑
t=1

EX∗h∼µ∗h,t

[
K∑
a=1

(π∗(a|X∗h)− πt(a|X∗h))
〈
ϕ(X∗h), θ̃t,a,h

〉]
.

The proof is presented in Appendix A.1. This suggests that we can define an auxiliary regret
minimization game for every layer h and every state x with reward

〈
ϕ(x), θ̂t,a,h

〉
assigned to action

a in each round t. The regret in this auxiliary game can be written as

R̂T,h(x) =

T∑
t=1

K∑
a=1

(
π∗t (a|x)− π(a|x)

)〈
ϕ(x), θ̂t,a,h

〉
,

and the above lemma suggests that the regret in layer h can be simply bounded as

RT,h ≤ E
[
R̂T,h(X∗h)

]
+ 2

T∑
t=1

max
a

∣∣E [〈ϕ(X∗h), bt,a,h〉]
∣∣.

Thus, we are left with the problem of controlling the auxiliary regret in each state, and the bias of our
estimators. The following lemma, which is a straightforward application of standard ideas from the
classical EXP3 analysis [8], gives bounds for the regret in the auxiliary game:

Lemma 3. Fix any h ∈ [H], x ∈ Sh and suppose that θ̂t,a,h is such that
∣∣η〈ϕ(x), θ̂t,a,h

〉∣∣ < 1.
Then, the regret in the auxiliary game at x satisfies

R̂T,h(x) ≤ logK

η
+ γUT (x) + η

T∑
t=1

K∑
a=1

πt(a|x)
〈
ϕ(x), θ̂t,a,h

〉2
,

where UT (x) =
∑T
t=1

(〈
ϕ(x), θ̂t,π∗(x),h

〉
− 1

K

∑K
a=1

〈
ϕ(x), θ̂t,a,h

〉)
.
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While the proof is standard, we provide it for completeness in Appendix A.2. The main term on the
right-hand side of this bound is handled in the next lemma:
Lemma 4. Suppose that ϕ(Xt,h) is satisfying ‖ϕ(Xt,h)‖2 ≤ σ, 0 < β ≤ 1

2σ2 and M > 0. Then for
each t and h,

Et

[
K∑
a=1

πt(a|X∗h)
〈
ϕ(X∗h), θ̂t,a,h

〉2] ≤ (H − h)2d

(
1

3
+
K

γ

σ2

λmin

)
.

The proof of this claim is rather complicated and is presented in Appendix A.3. The main difficulty
in the analysis comes from the mismatch of distribution of X∗h and Xt,h. To illustrate this difficulty,
consider replacing θ̂t,a,h by the ideal estimator θ̃t,a,h defined in Equation (2) in the quadratic term
bounded in the above lemma. Introducing the notation Σ∗t,a,h = E [πt(a|X∗h)ϕ(X∗h)ϕ(X∗h)T], each
term in the sum can be bounded as

Et
[
πt(a|X∗h)

〈
ϕ(X∗h), θ̃t,a

〉2]
= Et

[
πt(a|X∗h)

(
ϕ(X∗h)TΣ−1t,a,hϕ(Xt)Gt,hI{At,h=a}

)2]
≤ (H − h)2 · Et

[
tr
(
πt(a|X∗h)ϕ(X∗h)ϕ(X∗h)TΣ−1t,a,hϕ(Xt,h)ϕ(Xt,h)TΣ−1t,a,hI{At,h=a}

)]
= (H − h)2 · tr

(
Σ∗t,a,hΣ−1t,a,h

)
.

Unfortunately, this latter term cannot be bounded without further assumptions on Σt,a,h due to
the mismatch between the distributions of X∗h and Xt,a,h. We address this issue by mixing the
exponential-weights distribution with the uniform policy and appealing to Assumption 2, which
together ensure that the smallest eigenvalue of matrix Σt,a,h is at least λmin

γ
K . This yields a bound

on the operator norm of the matrix inverse Σ−1t,a,h, and eventually the bound of order H2Kd/(γλmin)
above. The tighter bounds of Theorem 2 are derived by using a stronger assumption to bound
tr
(
Σ∗t,a,hΣ−1t,a,h

)
—the details of these tighter bounds are presented in Appendix B.

The final element in the proof is the following lemma that bounds the bias of the estimator:
Lemma 5. For M ≥ 0, β = 1

2σ2 , we have∣∣Et[〈ϕ(X∗h), θt,a,h − θ̂t,a,h
〉]∣∣ ≤ σR exp

(
−γβ
K
λminM

)
.

The proof can be found in Appendix A.4. Putting these lemmas together and verifying that the reward
estimators indeed satisfy the condition of Lemma 3 (done in Lemma 6 in Appendix A.5), we obtain
the following bound on the regret in layer h:

RT,h ≤ 2TσR · exp

(
−γβλminM

K

)
+ 2γ(H − h)T + η(H − h)2

(
d

3
+ d

K

γ

σ2

λmin

)
T +

logK

η
.

Summing up the bound for all h ∈ [H] proves Theorem 1.

5 Discussion

This paper is studied the problem of online learning in MDPs, merging two important lines of work
on this problem concerned with linear function approximation [24, 14] and bandit feedback with
adversarial rewards [31, 33, 46]. Our results are the first in this setting and not directly comparable
with any previous work. Consequently, it is presently unclear if our guarantees can be substantially
improved: while Theorem 2 shows that regret bounds of order

√
T are indeed possible in this

challenging setting, this result comes at the cost of an extremely strong assumption on the MDP
dynamics. We note that this assumption on bounded likelihood ratios is essentially identical to the
assumption made by Neu et al. [31, 33] in the tabular setting that the probability of visiting any
state under any policy is lower bounded by α > 0. We also point out that our approach bears many
similarities to that of Abbasi-Yadkori et al. [2, 3], whose regret bounds also depend on a quantity
analogous to λmin appearing in our Theorem 1. We remain optimistic that assumptions on such
problem-dependent quantities can be eventually relaxed, especially since such improvements have
already been demonstrated in the tabular setting by Zimin and Neu [46], Dick et al. [19]. We believe
that the techniques developed in this paper will be essential for making progress in this direction,
and are particularly confident that the Matrix Geometric Resampling technique will be a part of the
eventual solution.

8



References
[1] Y. Abbasi-Yadkori, D. Pál, and Cs. Szepesvári. Improved algorithms for linear stochastic

bandits. In Advances in Neural Information Processing Systems 24, pages 2312–2320. 2011.

[2] Y. Abbasi-Yadkori, P. Bartlett, K. Bhatia, N. Lazic, Cs. Szepesvári, and G. Weisz. POLITEX:
Regret bounds for policy iteration using expert prediction. In International Conference on
Machine Learning, pages 3692–3702, 2019.

[3] Y. Abbasi-Yadkori, N. Lazic, Cs. Szepesvári, and G. Weisz. Exploration-enhanced POLITEX.
arXiv preprint arXiv:1908.10479, 2019.

[4] A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire. Taming the monster: A fast
and simple algorithm for contextual bandits. In ICML 2014, page 1638–1646, 2014.

[5] A. Agarwal, A. Krishnamurthy, J. Langford, H. Luo, and S. R. E. Open problem: First-order
regret bounds for contextual bandits. In Proceedings of the 30th Conference on Learning Theory,
pages 4–7, 2017.

[6] P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3:397–422, 2002.

[7] P. Auer and R. Ortner. Logarithmic online regret bounds for undiscounted reinforcement
learning. In NIPS-18, pages 49–56, 2006. ISBN 0-262-23253-7.

[8] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit
problem. SIAM J. Comput., 32(1):48–77, 2002.

[9] M. G. Azar, R. Munos, and H. J. Kappen. On the sample complexity of reinforcement learning
with a generative model. In Proceedings of the 29th International Coference on International
Conference on Machine Learning, pages 1707–1714, 2012.

[10] M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning. In
Proceedings of the 34th International Conference on Machine Learning, pages 263–272, 2017.

[11] A. Beygelzimer, J. Langford, L. Li, L. Reyzin, and R. E. Schapire. Contextual bandit algorithms
with supervised learning guarantees. In AISTATS 2011, pages 19–26, 2011.

[12] S. Bubeck, N. Cesa-Bianchi, and S. M. Kakade. Towards minimax policies for online linear
optimization with bandit feedback. arXiv e-prints, art. arXiv:1202.3079, Feb. 2012.

[13] A. N. Burnetas and M. N. Katehakis. Optimal adaptive policies for Markov Decision Processes.
22(1):222–255, 1997.

[14] Q. Cai, Z. Yang, C. Jin, and Z. Wang. Provably Efficient Exploration in Policy Optimization.
arXiv e-prints, art. arXiv:1912.05830, Dec. 2019.

[15] W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with linear payoff functions. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
pages 208–214, 2011.

[16] V. Dani, S. M. Kakade, and T. P. Hayes. The price of bandit information for online optimization.
In Advances in Neural Information Processing Systems 20, pages 345–352. 2008.

[17] C. Dann and E. Brunskill. Sample complexity of episodic fixed-horizon reinforcement learning.
In Advances in Neural Information Processing Systems, pages 2818–2826, 2015.

[18] C. Dann, T. Lattimore, and E. Brunskill. Unifying PAC and regret: Uniform PAC bounds for
episodic reinforcement learning. In Advances in Neural Information Processing Systems 30,
pages 5713–5723. 2017.

[19] T. Dick, A. Gyorgy, and C. Szepesvari. Online learning in markov decision processes with
changing cost sequences. In International Conference on Machine Learning, pages 512–520,
2014.

9



[20] E. Even-Dar, S. M. Kakade, and Y. Mansour. Online Markov decision processes. Math. Oper.
Res., 34(3):726–736, 2009.

[21] R. Fruit, M. Pirotta, A. Lazaric, and R. Ortner. Efficient bias-span-constrained exploration-
exploitation in reinforcement learning. In International Conference on Machine Learning, pages
1573–1581, 2018.

[22] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 99:1563–1600, August 2010. ISSN 1532-4435.

[23] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is Q-learning provably efficient? In Advances
in Neural Information Processing Systems, pages 4863–4873, 2018.

[24] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably Efficient Reinforcement Learning with
Linear Function Approximation. arXiv e-prints, art. arXiv:1907.05388, July 2019.

[25] T. Jin and H. Luo. Learning adversarial mdps with bandit feedback and unknown transition.
ArXiv, abs/1912.01192, 2019.

[26] T. Lattimore and Cs. Szepesvári. Learning with good feature representations in bandits and in
RL with a generative model. arXiv preprint arXiv:1911.07676, 2019.

[27] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World
wide web, pages 661–670. ACM, 2010.

[28] G. Neu and G. Bartók. An efficient algorithm for learning with semi-bandit feedback. In ALT
2013, pages 234–248, 2013.

[29] G. Neu and G. Bartók. Importance weighting without importance weights: An efficient
algorithm for combinatorial semi-bandits. Journal of Machine Learning Research, 17:1–21,
2016.

[30] G. Neu and J. Olkhovskaya. Efficient and Robust Algorithms for Adversarial Linear Contextual
Bandits. arXiv e-prints, art. arXiv:2002.00287, Feb. 2020.

[31] G. Neu, A. György, and Cs. Szepesvári. The online loop-free stochastic shortest-path problem.
pages 231–243, 01 2010.

[32] G. Neu, A. György, and Cs. Szepesvári. The adversarial stochastic shortest path problem with
unknown transition probabilities. In Proceedings of the Fifteenth International Conference on
Artificial Intelligence and Statistics, pages 805–813, 2012.

[33] G. Neu, A. György, Cs. Szepesvári, and A. Antos. Online Markov decision processes under
bandit feedback. volume 59, pages 1804–1812, 01 2013. doi: 10.1109/TAC.2013.2292137.

[34] B. Á. Pires and Cs. Szepesvári. Policy error bounds for model-based reinforcement learning
with factored linear models. In Conference on Learning Theory, pages 121–151, 2016.

[35] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley and Sons, Inc., USA, 1st edition, 1994. ISBN 0471619779.

[36] A. Rakhlin and K. Sridharan. BISTRO: An efficient relaxation-based method for contextual
bandits. In International Conference on Machine Learning, pages 1977–1985, 2016.

[37] A. Rosenberg and Y. Mansour. Online convex optimization in adversarial Markov decision
processes. In Proceedings of the 36th International Conference on Machine Learning, pages
5478–5486, 2019.

[38] A. Sidford, M. Wang, X. Wu, L. Yang, and Y. Ye. Near-optimal time and sample complexities for
solving markov decision processes with a generative model. In Advances in Neural Information
Processing Systems 31, pages 5186–5196. 2018.

[39] R. Sutton and A. Barto. Reinforcement Learning: An Introduction (second edition). online
draft, 2018.

10



[40] V. Syrgkanis, A. Krishnamurthy, and R. E. Schapire. Efficient algorithms for adversarial
contextual learning, 2016.

[41] Cs. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

[42] A. Tewari and P. L. Bartlett. Optimistic linear programming gives logarithmic regret for
irreducible MDPs. In NIPS-20, pages 1505–1512, 2008.

[43] A. Tewari and S. A. Murphy. From ads to interventions: Contextual bandits in mobile health.
In Mobile Health - Sensors, Analytic Methods, and Applications, pages 495–517. 2017.

[44] L. F. Yang and M. Wang. Reinforcement leaning in feature space: Matrix bandit, kernels, and
regret bound. arXiv preprint arXiv:1905.10389, 2019.

[45] H. Yao, Cs. Szepesvári, B. Pires, and X. Zhang. Pseudo-mdps and factored linear action models.
10 2014. doi: 10.1109/ADPRL.2014.7010633.

[46] A. Zimin and G. Neu. Online learning in episodic markovian decision processes by relative
entropy policy search. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 1583–1591.
Curran Associates, Inc., 2013.

11



A Omitted proofs

A.1 The proof of Lemma 2

By Lemma 1, and since θ̃t,a,h is unbiased, we have

RT,h =

T∑
t=1

EX∗h∼µ∗h,t [Qt,h(X∗h, π
∗(X∗h))− Vt,h(X∗h)]

=

T∑
t=1

EX∗h∼µ∗h,t

[
K∑
a=1

(π∗(a|X∗h)− πt(a|X∗h))
〈
ϕ(X∗h), θt,a,h

〉]

=

T∑
t=1

EX∗h∼µ∗h,t

[
K∑
a=1

(π∗(a|X∗h)− πt(a|X∗h))
〈
ϕ(X∗h), θ̃t,a,h

〉]
.

A.2 The proof of Lemma 3

We omit index h for ease of readability. The proof follows the standard analysis of EXP3 originally
due to Auer et al. [8]. We begin by recalling the notation wt(x, a) = exp

(
η
∑t−1
s=1

〈
ϕ(x), θ̂s,a

〉)
and introducing Wt(x) =

∑K
a=1 wt(x, a). The proof is based on analyzing logWT+1(x), which

can be thought of as a potential function in terms of the cumulative losses. We first observe that
logWT+1(x) can be lower-bounded in terms of the cumulative loss:

log

(
WT+1(x)

W1(x)

)
≥ log

(
wT+1(x, π∗(x))

W1(x)

)
= η

T∑
t=1

ϕ(x)Tθ̂t,π∗(x) − logK.

On the other hand, for any t, we can prove the upper bound

log
Wt+1(x)

Wt(x)
= log

( K∑
a=1

wt+1(x, a)

Wt(x)

)
= log

( K∑
a=1

wt(x, a)eη〈ϕ(x),θ̂t,a〉

Wt(x)

)

= log

( K∑
i=1

πt(a|x)− γ/K
1− γ

· eη〈ϕ(x),θ̂t,a〉
)

(a)

≤ log

( K∑
i=1

πt(a|x)− γ/K
1− γ

(
1 + η

〈
ϕ(x), θ̂t,a

〉
+
(
η
〈
ϕ(x), θ̂t,a

〉)2))
(b)

≤
K∑
a=1

πt(a|x)

1− γ

(
η
〈
ϕ(x), θ̂t,a

〉
+
(
η
〈
ϕ(x), θ̂t,a

〉)2)− ηγ

K(1− γ)

∑
a

〈
ϕ(x), θ̂t,a

〉
,

where in step (a) we used the inequality ez ≤ 1+z+z2, which holds for z < 1.79, and in step (b) we
used the inequality log(1 + z) ≤ z that holds for any z. Noticing that

∑T
t=1 log Wt+1

Wt
= log WT+1

W1
,

we can sum both sides of the above inequality for all t = 1, . . . , T and compare with the lower bound
to get

η

T∑
t=1

ϕ(x)Tθ̂t,π∗(x) − lnK ≤
T∑
t=1

K∑
a=1

πt(a|x)

1− γ

(
η
〈
ϕ(x), θ̂t,a

〉
+
(
η
〈
ϕ(x), θ̂t,a

〉)2)− ηγ
∑
a

〈
ϕ(x), θ̂t,a

〉
K(1− γ)

.

Reordering and multiplying both sides by 1−γ
η gives

T∑
t=1

(〈
ϕ(x), θ̂t,π∗(x) −

K∑
a=1

πt(a|x)
〈
ϕ(x), θ̂t,a

〉〉)

≤ (1− γ) lnK

η
+ η

T∑
t=1

K∑
a=1

(
〈ϕ(x), θ̂t,a〉

)2
+ γ

T∑
t=1

(〈
ϕ(x), θ̂t,π∗(x)

〉
− 1

K

∑
a

〈
ϕ(x), θ̂t,a

〉)
.

This concludes the proof.
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A.3 The proof of Lemma 4

The proof relies on a repeated use of the following identity that holds for any symmetric positive
definite matrix S:

M∑
k=0

(I − S)
k

= S−1 − (I − S)MS−1.

For ease of readability, we will omit the indices h in this section. We denote the covariance of states,
generated by policy π∗ as Σ∗a = E [πt(a|X∗)ϕ(X∗)ϕ(X∗)T]. We start by plugging in the definition
of θ̂t,a and writing

Et

[
K∑
a=1

πt(a|X∗)
〈
ϕ(X∗), θ̂t,a

〉2]

= Et

[
K∑
a=1

πt(a|X∗)
(
ϕ(X∗)TΣ̂+

t,aϕ(Xt)Gt,hI{At=a}
)2]

(3)

≤ (H − h)2 · Et

[
K∑
a=1

tr
(
πt(a|X∗)ϕ(X∗)ϕ(X∗)TΣ̂+

t,aϕ(Xt)ϕ(Xt)
TΣ̂+

t,aI{At=a}
)]

,

where we used
〈
Xt, θt,a

〉
≤ H − h in the inequality. Using the definition of Σ+

t,a and elementary
manipulations, we can get

Et
[
tr
(
πt(a|X∗)ϕ(X∗)ϕ(X∗)TΣ̂+

t,aϕ(Xt)ϕ(Xt)
TΣ̂+

t,aI{At=a}
)]

= Et
[
tr
(
Σ∗aΣ+

t,aΣt,aΣ+
t,a

)]
= β2 · Et

tr

Σ∗a

(
M∑
k=0

Ck,a

)
Σt,a

 M∑
j=0

Cj,a


= β2Et

 M∑
k=0

M∑
j=0

tr (Σ∗aCk,aΣt,aCj,a)


= β2Et

[
M∑
k=0

tr (Σ∗aCk,aΣt,aCk,a)

]
+ 2β2Et

 M∑
k=0

M∑
j=k+1

tr (Σ∗aCk,aΣt,aCj,a)

 .
Let us first address the first term on the right hand side. To this end, consider any symmetric positive
definite matrix S that commutes with Σt,a and observe that

Et [(I − βBk,a)S(I − βBk,a)]

= E
[
(I − βϕ(X(k))ϕ(X(k))TI{A(k)=a})S(I − βϕ(X(k))ϕ(X(k))TI{A(k)=a})

]
= S − βE

[
ϕ(X(k))ϕ(X(k))TI{A(k)=a}S

]
− βEt

[
Sϕ(X(k))ϕ(X(k))TI{A(k)=a}

]
+ β2Et

[
ϕ(X(k))ϕ(X(k))TSϕ(X(k))ϕ(X(k))TI{A(k)=a}

]
4 S − 2βSΣt,a + β2σ2SΣt,a = S

(
I − β(2− βσ2)Σt,a

)
,

where we used our assumption that ‖ϕ(X(k))‖ ≤ σ, which implies
Et
[
‖ϕ(X(k))‖22 ϕ(X(k))ϕ(X(k))TI{A(k)=a}

]
4 σ2Σt,a. Now, recalling the definition

Ck,a =
∏k
j=1(I − βBj,a) and using the above relation repeatedly, we can obtain

tr (Et [Σ∗aCk,aΣt,aCk,a]) = tr (Et [Σ∗aCk−1,aEt [(I − βBk,a)Σt,a(I − βBk,a)]Ck−1,a])

≤ tr
(
Et
[
Σ∗aCk−1,aΣt,a

(
I − β(2− βσ2)Σt,a

)
Ck−1,a

])
≤ . . . ≤ tr

(
Σ∗aΣt,a(I − β(2− βσ2)Σt,a)k

)
.

(4)

Thus, we can see that

β2
M∑
k=0

tr (Et [Σ∗aCk,aΣt,aCk,a]) = β2
M∑
k=0

tr
(
Σ∗aΣt,a(I − β(2− βσ2)Σt,a)k

)
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=
β2

β(2− βσ2)
tr
(
Σ∗aΣt,aΣ−1t,a

(
I − (I − β(2− βσ2)Σt,a)M

))
≤ βtr (Σ∗a)

2− βσ2
≤ 2βtr (Σ∗a)

3
,

where we used the condition β ≤ 1
2σ2 and the fact that (I − β(2 − βσ2)Σt,a)M < 0 by the same

condition. We can finally observe that our assumption on the contexts implies tr (Σ∗a) ≤ tr
(
σ2I
)

=

σ2d, so again by our condition on β we have βtr (Σ∗a) ≤ d
2 , and the first term is bounded by d

3 .

Moving on to the second term, we first note that for any j > k, the conditional expectation of
Bj,a given B≤k,a = (B1,a, B2,a, . . . Bk,a) satisfies E [Ck,a|B≤k,a] = Ck,a(I − βΣ)j−k due to
conditional independence of all Bj,a given Bk,a, for i > k. We make use of this equality by writing

β2
M∑
k=0

M∑
j=k+1

E [tr (Σ∗aCk,aΣt,aCj,a)] = β2
M∑
k=0

E

E
 M∑
j=k+1

tr (Σ∗aCk,aΣt,aCj,a)

∣∣∣∣∣∣B≤k,a


= β2
M∑
k=0

E

E
 M∑
j=k+1

tr
(
Σ∗aCk,aΣt,aCj,az(I − βΣt,a)j−k

)∣∣∣∣∣∣B≤k,a


= β

M∑
k=0

E
[
E
[

tr
(
Σ∗aCk,aΣt,aCk,aΣ−1t,a

(
I − (I − βΣt,a)M−k

))∣∣B≤k,a]]
≤ β

M∑
k=0

E
[
E
[

tr
(
Σ∗aCk,aΣt,aCk,aΣ−1t,a

)∣∣B≤k,a]]
(due to (I − βΣt,a)M−k < 0)

≤ β
M∑
k=0

tr
(
Σ∗aΣt,a(I − β(2− βσ2)Σt,a)kΣ−1t,a

)
(by the same argument as in Equation (4))

≤ 1

(2− βσ2)
tr
(
Σ∗aΣt,aΣ−1t,a

(
I − (I − β(2− βσ2)Σt,a)MΣ−1t,a

))
≤ tr

(
Σ∗aΣ−1t,a

)
= tr

(
Σ∗a

(
Σ′t,a +

γ

K
Σ
)−1)

≤ K

γ
tr
(
Σ∗aΣ−1

)
,

where in the last line we used that Σt,a can be written as Σt,a = (1 − γ)Σ′t,a + γ
KΣ for Σ′t,a =

Et
[
ϕ(Xt)ϕ(Xt)

TI{At=a,Yt=0}
]
. Now, turning back to the sum over actions in (3) and recalling the

definition of Σ∗, we observe that Σ∗ =
∑
a Σ∗a so that we can write

Et

[
K∑
a=1

tr
(
πt(a|X∗)ϕ(X∗)ϕ(X∗)TΣ̂+

t,aϕ(Xt)ϕ(Xt)
TΣ̂+

t,aI{At=a}
)]

≤ d

3
+
K

γ

K∑
a=1

tr
(
Σ∗aΣ−1

)
=
d

3
+
K

γ
tr
(
Σ∗Σ−1

)
≤ d

3
+
K

γ

√
tr
(

(Σ∗)
2
)

tr
(

(Σ−1)
2
)

≤ d

3
+
Kd

γ

σ2

λmin
,

(5)

where we used the Cauchy–Schwarz inequality in the last step. This proves the statement.

A.4 The proof of Lemma 5

We first observe that the bias of θ̂t,a,h can be easily expressed as

Et
[
θ̂t,a,h

]
= Et

[
Σ̂+
t,a,hϕ(Xt,h)ϕ(Xt,h)Tθt,a,hI{At,h=a}

]
= Et

[
Σ̂+
t,a,h

]
Et
[
ϕ(Xt,h)ϕ(Xt,h)TI{At,h=a}

]
θt,a,h

= Et
[
Σ̂+
t,a,h

]
Σt,a,hθt,a,h = θt,a,h − (I − βΣt,a,h)Mθt,a,h.
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Thus, the bias is bounded as∣∣Et [ϕ(X∗h)T(I − βΣt,a,h)Mθt,a,h
]∣∣ ≤ ‖ϕ(X∗h)‖2 · ‖θt,a,h‖2

∥∥(I − βΣt,a,h)M
∥∥

op .

In order to bound the last factor above, observe that Σt,a,h < γ
KΣh due to the uniform exploration

used in the first layer by MDP-LINEXP3, which implies that

∥∥(I − βΣt,a,h)M
∥∥

op ≤
(

1− γβλmin

K

)M
≤ exp

(
−γβ
K
λminM

)
,

where the second inequality uses 1− z ≤ e−z that holds for all z. This concludes the proof.

A.5 The boundedness of the estimates

Lemma 6. The loss estimates satisfy η
∣∣〈ϕ(X∗h), θ̂t,a,h

〉∣∣ < 1 for η ≤ 2
H(M+1) .

Proof. The claim is proven by the following straightforward calculation:

η ·
∣∣〈ϕ(X∗h), θ̂t,a,h

〉∣∣ = η ·
∣∣ϕ(X∗h)TΣ̂+

t,a,hϕ(Xt,h) 〈ϕ(Xt,h), θt,a,h〉 I{At=a}
∣∣

≤ η(H − h) ·
∣∣ϕ(X∗h)TΣ̂+

t,a,hϕ(Xt,h)
∣∣ ≤ η(H − h)σ2

∥∥∥Σ̂+
t,a,h

∥∥∥
op

≤ η(H − h)σ2β

(
1 +

M∑
k=1

‖Ck,a,h‖op

)
≤ η(H − h)(M + 1)/2,

where we used the fact that our choice of β ensures ‖Ck,a,h‖op =
∥∥∥∏k

j=0(I − βBj,a,h)
∥∥∥

op
≤ 1.

B Proof of Theorem 2

The improvement in the regret bound comes from applying an importance-weighting trick in the
proof of Lemma 4 to bound the problematic term tr

(
Σ∗a,hΣ−1t,a,h

)
. Specifically, we write

tr
(
Σ∗a,hΣ−1t,a,h

)
= tr

(
Et [πt(a|X∗h)ϕ(X∗h)ϕ(X∗h)T] Σ−1t,a,h

)
= tr

(
Et
[
f∗h(Xt,h)

fπth (Xt,h)
πt(a|Xt,h)ϕ(Xt,h)ϕ(Xt,h)T

]
Σ−1t,a,h

)
≤ ρ · tr

(
Et [πt(a|Xt,h)ϕ(Xt,h)ϕ(Xt,h)T] Σ−1t,a,h

)
= ρd,

where we used our assumption on the likelihood ratio in the inequality. Using this bound instead of
the one in Equation (5) at the end of the proof of Lemma 4 yields the improved bound

Et

[
K∑
a=1

πt(a|X∗h)
〈
ϕ(X∗h), θ̂t,a,h

〉2] ≤ (H − h)2d

(
1

3
+ ρK

)
.

The proof of Theorem 2 is then concluded similarly as the proof of Theorem 1.

C Fast Matrix Geometric Resampling

The naïve implementation of the MGR procedure presented in the main text requires O(MKHd+
KHd2) time due to the matrix-matrix multiplications involved. In this section we explain how to
compute θ̂t,a in O(MKHd) time, exploiting the fact that the matrices Σ̂t,a,h never actually need to
be computed, since the algorithm only works with products of the form Σ̂t,a,hϕ(Xt,h) for vectors
Xt,h, h ∈ [H]. This motivates the following procedure:
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Fast Matrix Geometric Resampling
Input: simulator of transition function P , policy πt, trajectory
(x1, a1, x2, a2, . . . , xH , aH)
Initialization: Compute Y0,h = ϕ(xh) for all h ∈ [H].
For k = 1, . . . ,M , repeat:

1. Generate a path U(i) = {(X1(i), A1(i)), . . . , (XH(i), AH(i))},
following the policy πt in the simulator of P ,

2. For h = 1, . . . ,H , repeat:
(a) if Ah(k) = ah, set Yk,h = Yk−1,h − β 〈Yk−1,h, ϕ(Xh(k))〉ϕ(Xh(k)),

(b) otherwise, set Yk,h = Yk−1,h.
Return qt,a,h = βY0,h + β

∑M
k=1 Yk,h for all h ∈ [H].

It is easy to see from the above procedure that each iteration k can be computed using (K +
1)Hd vector-vector multiplications: sampling each action Ah(k) takes Kd time due to having to
compute the products

〈
ϕ(Xh(k)),

∑t−1
s=1 θ̂s,a,h

〉
for each action a, and updating Yk,h can be done by

computing the product 〈Yk−1,h, ϕ(Xh(k))〉. Overall, this results in a total runtime of order MKHd
as promised above.
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