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Markov decision processes

Repeat for t = 1, 2, . . . :
I Learner

I observes state xt and plays action at
I obtains reward r(xt , at ),

I Environment generates next state xt+1 ∼ P(·|xt , at ).

GOAL: gather as much reward as possible
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Optimal control in MDPs
A 5-minute summary

I Average-reward criterion:

lim inf
T→∞ E

[
1
T

T∑
t=1

r(xt , at )

]
.

I Basic fact: enough to consider
stationary policies

π(a |x ) = P [at = a | xt = x ] .

I Under mild assumptions, every π
induces stationary distribution µπ:

µπ(x , a) = lim
t→∞P [xt = x , at = a ] .
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I Under mild assumptions, every π
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of π is linear in µπ:
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Optimal control in MDPs
The LP formulation

Primal LP

ρ∗ = max
µ∈∆
〈µ, r〉

∆ =

{
distribution µ :

∑
b

µ(y , b) =
∑
x ,a

P(y |x , a)µ(x , a) (∀y)

}

Dual LP

ρ∗ = min
ρ∈R

ρ

s.t. V (x ) ≥ r(x , a) − ρ+
∑
y

P(y |x , a)V (y) (∀x , a)
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Optimal control in MDPs
The LP formulation

Primal LP

ρ∗ = max
µ∈∆
〈µ, r〉

∆ =

{
distribution µ :

∑
b

µ(y , b) =
∑
x ,a

P(y |x , a)µ(x , a) (∀y)

}

Dual “LP” ≡ The Bellman equations

V ∗(x ) = max
a

(
r(x , a) − ρ∗ +

∑
y

P(y |x , a)V ∗(y)

)
(∀x , a)



Reinforcement Learning in MDPs

Reinforcement Learning
≈

learning optimal policies in unknown MDPs

Exactly solving imperfectly known MDPs is foolish!
I Overfitting: too little data ⇒ bad policy
I Under-exploration: tons of bad data ⇒ bad policy

SOLUTION:
Regularization!
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A recent trend: (Entropy-)Regularized RL
Two popular approaches

Idea 1: Soften the max in the Bellman optimality equations!

V ∗(x ) = max
a

(
r(x , a) − ρ∗ +

∑
y

P(y |x , a)V ∗(y)

)

[Marcus et al., 1997, Ruszczyński, 2010, Ziebart et al., 2010, Ziebart, 2010, Braun et al., 2011, Azar
et al., 2012, Rawlik et al., 2012, Fox et al., 2016, Asadi and Littman, 2017, Haarnoja et al., 2017,
Schulman et al., 2017, Nachum et al., 2017] . . . and who knows how many more NIPS’17 submissions

Idea 2: Maximize a regularized objective!
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Idea 2: Maximize a regularized objective!
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[Peters et al., 2010, Montgomery and Levine, 2016, Schulman et al., 2015, Mnih et al., 2016,
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Numerous open questions:
I are these approaches connected?
I do the derived algorithms converge anywhere?
I does a solution even exist?



A unified framework for entropy-regularized MDPs
Neu, Jonsson and Gómez (2017)

Primal LP

ρ∗ = max
µ∈∆
〈µ, r〉

Dual “LP”
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(
r(x , a) − ρ∗ +

∑
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)
(∀x , a)
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Conditional entropy regularization
Neu, Jonsson and Gómez (2017)

Theorem
The two convex programs are connected by Lagrangian
duality with the choice

R(µ) =
∑
x ,a

µ(x , a) log
µ(x , a)∑
b µ(x , b)

=
∑
x ,a

µ(x , a) logπµ(a |x )

Lemma
The conditional entropy R(µ) is convex in µ and the
associated Bregman divergence is

D
(
µ
∥∥µ ′) =∑

x ,a

µ(x , a) log
πµ(a |x )
πµ ′(a |x )

≥ 0.
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Primal convex program

ρ∗η = max
µ∈∆

(
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∑
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µ(x , a) logπµ(a |x )

)

Dual “convex program”
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Immediate consequences:
I existence & uniqueness results
I well-defined contractive DP operators
I policy gradient theorems...



A unified algorithmic framework
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Every algorithm is
either Mirror Descent
or Dual Averaging!

I provides a common analytic framework
I ensures convergence
I explains numerous recent algorithms
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Example 1:
Trust-region policy optimization ≈ Mirror Descent
Neu, Jonsson and Gómez (2017)

Mirror descent

µt+1 = argmax
µ∈∆

(
〈µ, r〉− 1

η
D (µ‖µt)

)

Trust-Region Policy Optimization [Schulman et al., 2015]:

DTRPO (µ‖µold) =
∑
x ,a

νold(x )πµ(a |x ) log
πµ(a |x )
πold(a |x )
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Corollary

TRPO converges to the optimal policy!



Example 2:
A3C ≈ Dual Averaging
Neu, Jonsson and Gómez (2017)

Dual Averaging

µt+1 = argmax
µ∈∆

(
〈µ, r〉− 1

ηt
R(µ)

)

“A3C” [Mnih et al., 2016, O’Donoghue et al., 2017]:

RA3C(µ) =
∑
x ,a

νold(x )πµ(a |x ) logπµ(a |x )
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Example 2:
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Neu, Jonsson and Gómez (2017)

Dual Averaging

µt+1 = argmax
µ∈∆

(
〈µ, r〉− 1

ηt
R(µ)

)

“A3C” [Mnih et al., 2016, O’Donoghue et al., 2017]:

RA3C(µ) =
∑
x ,a

νold(x )πµ(a |x ) logπµ(a |x )

≈
∑
x ,a

νµ(x )πµ(a |x ) logπµ(a |x ) = R(µ)Divergence alert!!!
A3C optimizes a non-stationary and non-convex objective!



Example 2:
A3C ≈ Dual Averaging
Neu, Jonsson and Gómez (2017)

Patching A3C:

I O’Donoghue et al. [2017] characterize the stationary points of
A3C, but do not show its existence or that A3C would converge
to this fixed point

I Our theory provides a closed-form expression for the regularized
policy gradient: just replace the advantage function Aπ(x , a) by

Aπ
η(x , a) = r(x , a)−

1
η
logπ(a |x ) +

∑
y

P(y |x , a)V π
η (y) −V π

η (x )
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Other algorithms in our framework
Neu, Jonsson and Gómez (2017)

Mirror Descent:

I Dynamic Policy Programming [Azar et al., 2012], Ψ-learning
[Rawlik et al., 2012]

I Relative Entropy Policy Search [Peters et al., 2010, Zimin and
Neu, 2013, Montgomery and Levine, 2016]

Dual Averaging:

I “MellowMax” RL algorithms of [Asadi and Littman, 2017],
G-learning [Fox et al., 2016]

I “Energy-based policy search” [Haarnoja et al., 2017]

I “Path consistency learning” [Nachum et al., 2017]



Experiments
Neu, Jonsson and Gómez (2017)
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Dual Averaging perspective seems essential!

I DA theory suggests ηt = t · η0

I Regularized Value Iteration with constant η is bad
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Outlook

Can regularization provide a useful perspective on exploration?

I “Exploration” integrated in the foundations: regularized Bellman
equations

I convex optimization framework provides analysis tools and
algorithmic templates

I BUT: no clear understanding about the statistical benefits of
regularization

The way towards more effective algorithms?
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