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Markov decision processes

Repeat for t = 1, 2, . . . :
Learner
observes state xt and plays action at
obtains reward r(xt, at),

Environment generates next state

xt+1 ∼ P(·|xt, at).
GOAL: maximize long-term rewards!
Average-reward criterion:

lim inf
T→∞ E


1

T

T∑
t=1

r(xt, at)


→ max .

Basic fact: enough to consider stationary policies

π(a|x) = P [at = a| xt = x] .

(Mild) Assumption: every π induces stationary distribution µπ:

µπ(x, a) = lim
t→∞P [xt = x, at = a] .

Every feasible stationary distribution µ induces a policy:

πµ(a|x) =
µ(x, a)∑
bµ(x, b)

.

The LP formulation for average-reward MDPs

Primal LP

ρ∗ = max
µ∈∆
〈µ, r〉

∆ =

{
distribution µ :

∑
b

µ(y, b) =
∑
x,a

P(y|x, a)µ(x, a) (∀y)

}

Dual “LP” ≡ The Bellman equations

V∗(x) = max
a

r(x, a) − ρ
∗ +
∑
y

P(y|x, a)V∗(y)

 (∀x, a)

Optimal policy:

π(a|x) = I

{
a = argmax

b

r(x, b) − ρ
∗ +
∑
y

P(y|x, b)V∗(y)



}

Regularized Markov decision processes

Primal convex program

ρ∗η = max
µ∈∆

〈µ, r〉−
1

η

∑
x,a

µ(x, a) logπµ(a|x)


Dual “convex program” ≡ Regularized Bellman equations

V∗η(x) =
1

η
log
∑
a

exp
η

r(x, a) − ρ
∗
η +
∑
y

P(y|x, a)V∗η(y)





Optimal regularized policy:

π(a|x) ∝ eη(r(x,a)+
∑
y P(y|x,a)V

∗
η(y))

Theorem
The two convex programs are connected by Lagrangian duality.

Lemma: The conditional entropy of (A|X) ∼ µ

R(µ) =
∑
x,a

µ(x, a) logπµ(a|x)

is convex in µ and the associated Bregman divergence is

D (µ‖µ ′) =
∑
x,a

µ(x, a) log
πµ(a|x)

πµ ′(a|x)
≥ 0.

Algorithmic framework for regularized RL

Mirror descent

µt+1 = argmax
µ∈∆

〈µ, r〉−
1

η
D (µ‖µt)



TRPO = Mirror Descent with

DTRPO (µ‖µold) =
∑
x,a

νold(x)πµ(a|x) log
πµ(a|x)

πold(a|x)
.

NEW RESULT: TRPO converges to the optimal policy!
Other methods: Dynamic Policy Programming, Ψ-learning,. . .

Dual Averaging

µt+1 = argmax
µ∈∆

〈µ, r〉−
1

ηt
R(µ)



A3C = Dual averaging with

RA3C(µ) =
∑
x,a

νold(x)πµ(a|x) logπµ(a|x).

DIVERGENCE ALERT!! A3C optimizes a non-stationary objective
with no underlying mirror space!!!
Other methods: “Energy-based RL”, “MellowMax RL”, G-learning,
“path-consistency learning”,...

Experiment: the convergence of A3C
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A3C has multiple stationary points
(≡ fixed points of softmax value iteration)

Patching A3C: Gradient descent on the objective regularized with

R(µ) =
∑
x,a

νµ(x)πµ(a|x) log
πµ(a|x)

πold(a|x)
.

Regularized Policy Gradient Theorem
∇θ

〈µθ, r〉− 1
η
R(µθ)

 = E(x,a)∼µθ

∇θ logπθ(a|x)Aπη(x, a)
 ,

where Aπη is the regularized advantage function satisfying

Aπη(x, a) = r(x, a)−
1
η
logπ(a|x) +

∑
y P(y|x, a)V

π
η (y) − V

π
η (x)

Experiment: model-based RL
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Dual Averaging
Mirror Descent
Regularized VI
Optimal

“Regularization curve”:
η too large: convergence to suboptimal goal ↔ overfitting
η too small: policy too close to uniform ↔ underfitting

Dual Averaging perspective seems essential!
DA theory suggests ηt = t · η0
Regularized Value Iteration with constant η is bad


