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Online Markov Decision Processes
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I Goal: minimize regret relative to the best fixed policy
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π
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π
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I Earlier work:
I Full information: L̂T = O(

√
T ) (Even-dar et al., 2005).

I Bandit information: L̂T = o(T ) (Yu et al., 2009).
I Bandit information for episodic loop-free MDPs: L̂T = O(

√
T )

(Neu et al., 2010).



Online learning with bandit information: the algorithm

I Define unbiased estimates of rewards

r̂t(x , a) =

{
rt(x ,a)

pNt (x ,a|xt−N ,at−N)
if (x , a) = (xt , at)

0 otherwise,

where

pNt (x , a|xt−N , at−N) = P [xt = x , at = a| x1:t−N , a1:t−N ] .

I Let ρ̂t = E [ r̂t(x , a)| x ∼ µπt , a ∼ πt ] and q̂t be the solution
to the Bellman equations

q̂t(x , a) = r̂t(x , a)− ρ̂t +
∑
x ′,a′

P(x ′|x , a)πt(a
′|x ′)q̂t(x ′, a′).

I Feed an instance of Exp3 with the computed values of
q̂t(x , a) in each state x .



Online learning in MDPs with bandit information

I Assume:
I General MDP with cycles.
I Every policy π induces a stationary distribution µπ over the

states.
I Every policy mixes fast (with mixing time τ).
I µπ(x) ≥ α > 0 for all π.

I Result: sublinear regret relative to the best fixed policy

L̂T = O

(
τT 2/3

(
|A| log(|A|) log(T )

α

)1/3
)
.

I Proof idea:

L̂T =

(
RπT −

T∑
t=1

ρπt

)
︸ ︷︷ ︸

≤2τ+2

+

(
T∑
t=1

ρπt −
T∑
t=1

ρπt
t

)
︸ ︷︷ ︸

O(T 2/3)

+

(
T∑
t=1

ρπt
t − R̂T

)
︸ ︷︷ ︸

O(T 2/3)

See you at poster 95!


