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Abstract
We consider online learning in finite, stochastic Markovian
environments where in each time step a new reward func-
tion is chosen by an oblivious adversary. The goal of the
learning agent is to compete with the best stationary policy
in terms of the total reward received. In each time step the
agent observes the current state and the reward associated
with the last transition, however, the agent does not ob-
serve the rewards associated with other state-action pairs.
The agent is assumed to know the transition probabilities.
The state of the art result for this setting is a no-regret algo-
rithm. In this paper we propose a new learning algorithm
and, assuming that stationary policies mix uniformly fast,
we show that the expected regret of the new algorithm in
T time steps is O

(
T 2/3(ln T )1/3

)
, giving the first rigorously

proved regret bound for the problem.

Online Markov Decision Processes

• Reward sequence: an arbitrary sequence r1, r2, . . . , rT fixed
in advance, where rt : X ×A → [0, 1].

• History up to time t :
ut = (x1, a1, r1(x1, a1), x2, a2, r2(x2, a2), . . . , xt , at , rt(xt , at))

• At time step t :

– agent selects action at based on ut−1 and xt ;

– observes reward rt(xt , at);

– observes new state xt+1∼ P (·|xt , at).

The learning problem

• Policy: πt(a|x) = P
[
at = a|xt = x, ut−1

]
• Expected total reward of the player:

R̂T = E

[
T∑

t=1
rt(xt , at)

]
,

where at ∼πt(·|xt) and xt+1∼ P (·|xt , at)

• Expected total reward of a fixed policy π:

Rπ
T = E

[
T∑

t=1
rt(x′t , a′t)

]
,

where a′t ∼ π(·|x′t) and x′t+1∼ P (·|x′t , a′t)

• Goal: minimize regret

L̂T = sup
π

Rπ
T − R̂T .

Previous work

• Full information: L̂T = O(
√

T ): Even-Dar et al. [2009]

• Bandit information: L̂T = o(T ): Yu et al. [2009]

• Bandit information for episodic loop-free MDPs: L̂T = O(
√

T )
Neu et al. [2010]

Assumptions

• Assumption A1 Every policy π has a well-defined unique
stationary distribution µπ.

• Assumption A2 The stationary distributions are uniformly
bounded away from zero: infπ,x µ

π(x)≥ β > 0.

• Assumption A3 There exists some fixed positive mixing time
τ such that for any two arbitrary µ and µ′ over X ,

sup
π
‖(µ−µ′)Pπ‖1≤ e−1/τ‖µ−µ′‖1.

Definitions

• Value functions and average rewards:

ρπt = lim
S→∞

1

S

S∑
s=1
E

[
rt(x′s, a′s)

]
,

qπ
t (x, a) = E

[
∞∑
s=1

(
rt(x′s, a′s)−ρπt

)∣∣∣∣∣x′1 = x, a′1 = a

]
,

vπ
t (x, a) = E

[
∞∑
s=1

(
rt(x′s, a′s)−ρπt

)∣∣∣∣∣x′1 = x

]
.

• At time t , use only experience gathered up to time step
t −N and define

µN
t ,x,a(x ′) = P

[
xt = x ′ |xt−N = x, at−N = a,πt−N +1, . . . ,πt−1

]
,

so that µN
t ,x,a is positive.

• Estimate reward as

r̂t(x, a) =


rt (x,a)

πt (a|x)µN
t (x|xt−N ,at−N )

, if (x, a) = (xt , at) ;

0, otherwise.

Mixing ensures that the probability of visiting state x at
time t is positive for all x and t , that is,

πt(a|x)µN
t (x|xt−N , at−N ) > 0 .

• Let ρ̂t =
∑

x,aµ
πt (x)πt(a|x)r̂t(x, a) and solve, for all x, a,

the Bellman equations

q̂t(x, a) = r̂t(x, a)− ρ̂t +
∑
x ′,a′

P (x ′|x, a)πt(a′|x ′)q̂t(x, a) .

Algorithm
Set N ≥ 1, w1(x, a) = w2(x, a) = · · · = w2N (x, a) = 1, γ ∈
(0, 1), η∈ (0,γ].
For t = 1, 2, . . . , T , repeat

1. Set

πt(a|x) = (1−γ)
wt(x, a)∑
b wt(x, b)

+
γ

|A |
for all (x, a)∈X ×A .

2. Draw an action at randomly, according to the policy
πt(·|xt).

3. Receive reward rt(xt , at) and observe xt+1.

4. If t ≥ N + 1

(a) Compute µN
t (x|xt−N , at−N ) for all x ∈X .

(b) Construct estimates r̂t and compute q̂t using the
Bellman equations for πt .

(c) Set wt+N (x, a) = wt+N−1(x, a)eηq̂t (x,a) for all (x, a) ∈
X ×A .

Main result

Theorem 1. Let N = dτ ln T e,

C = (2τ + 4)τ|A | ln T + (3τ + 1)2,

η = T−2/3 · (ln |A |)2/3 ·
(

4C (τ + 2)

β

)−1/3

,

γ = T−1/3 · (2τ + 4)−2/3 ·
(

2C ln |A |
β

)1/3

.

Then

L̂T ≤ 3 T 2/3 ·
(

(4τ + 8) ln |A |
β

C

)1/3

+ O
(
T 1/3) .

Proof

The proof is based on ideas from Even-Dar et al. [2009]. The
complication is of course that rewards are estimated. The
regret can be decomposed as

Rπ
T − R̂T =

(
Rπ

T −
T∑

t=1
ρπt

)
︸ ︷︷ ︸

(i )

+

(
T∑

t=1
ρπt −

T∑
t=1

ρπt
t

)
︸ ︷︷ ︸

(i i )

+

(
T∑

t=1
ρπt

t − R̂T

)
︸ ︷︷ ︸

(i i i )

.

Bounding (i ) After Even-Dar et al. [2009]:

Rπ
T −

T∑
t=1

ρπt ≤ 2τ + 2 .

The policiesπt change slowly

Lemma 1. Let c = 2η
β

(
1
γ

+ 4τ + 6
)
. Assume that c(3τ + 1)2 <

β/2 and N ≥
⌈
τ ln

(
4

β−2c(3τ+1)2

)⌉
. Then, for all N < t ≤ T ,

x, x ′ ∈X and a ∈A , we have

µN
t ,x,a(x ′)≥ β/2

and
max

x ′

∑
a′
|πt+1(a′|x ′)−πt(a′|x ′)| ≤ c .

Bounding (i i )
After Even-Dar et al. [2009]:

ρπt −ρπt
t =

∑
x,a

µπ(x)π(a|x)

[
qπt

t (x, a)− vπt
t (x)

]
.

A simple modification of the proof of the regret bound of
Exp3 yields the following:

Proposition 1. Let N ≥ dτ ln T e. For any policy π and for all
T large enough, we have

T∑
t=1
E

[
ρπt −ρt

]
≤ (4τ + 10)N +

ln |A |
η

+ (2τ + 4) T

(
γ +

2η

β
|A | (N c + (e−2)(2τ + 4))

)
.

Bounding (i i i )
Proposition 2. Let N ≥ dτ ln T e. For any T large enough,

T∑
t=1
E

[
ρt

]
− R̂T ≤ T c(3τ + 1)2 + 2Te−N /τ + 2N .

Follows from the slow change of policiesπt .
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