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Abstract

We consider online learning in a special
class of episodic Markovian decision pro-
cesses, namely, loop-free stochastic shortest
path problems. In this problem, an agent
has to traverse through a finite directed
acyclic graph with random transitions while
maximizing the obtained rewards along the
way. We assume that the reward function
can change arbitrarily between consecutive
episodes, and is entirely revealed to the agent
at the end of each episode. Previous work was
concerned with the case when the stochastic
dynamics is known ahead of time, whereas
the main novelty of this paper is that this as-
sumption is lifted. We propose an algorithm
called “follow the perturbed optimistic pol-
icy” that combines ideas from the “follow the
perturbed leader” method for online learn-
ing of arbitrary sequences and “upper confi-
dence reinforcement learning”, an algorithm
for regret minimization in Markovian deci-
sion processes (with a fixed reward function).
We prove that the expected cumulative regret
of our algorithm is of order L|X ||A|

√
T up to

logarithmic factors, where L is the length of
the longest path in the graph, X is the state
space, A is the action space and T is the
number of episodes. To our knowledge this
is the first algorithm that learns and controls
stochastic and adversarial components in an
online fashion at the same time.

1 Introduction

In this paper we study reinforcement learning prob-
lems where the performance of learning algorithms is
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measured by the total reward they collect during learn-
ing. We are interested in algorithms with theoretically
guaranteed bounds on their performance. Variants
of this problem have received considerable attention
during the last decade (see Brafman and Tennenholtz
(2002); Kakade (2003); Bartlett and Tewari (2009a);
Jaksch et al. (2010), or Section 4.2.4 of Szepesvári
(2010) for a summary of available results and the refer-
ences therein). Most works consider the case when the
learner controls a finite Markovian Decision Process
(MDP). While there exists a few works that extend the
theoretical analysis beyond finite MDPs, these come at
strong assumptions on the MDP (e.g., Kakade et al.,
2003; Strehl and Littman, 2008; Abbasi-Yadkori and
Szepesvári, 2011). Still, all these approaches assume
that the state of the environment is completely Marko-
vian and thus one can construct a predictive model
of the environment. However, in practice, the envi-
ronment might be very complex, for example, in an
inventory management problem, the “world’s econ-
omy” may influence the prices at which one can buy or
sell items, thus modeling the environment as an MDP
would mean that the learner must model the world’s
economy, based on her limited information.

This paper belongs to the important stream of works,
initiated by Even-Dar et al. (2005) and Yu et al.
(2009), where the assumption that the state is com-
pletely Markovian is relaxed. The main idea relies on
the observation that in a number of practical problems,
such as the above-mentioned inventory management
problem, the hard-to-model, complex part of the envi-
ronment influences only the rewards that the learner
receives.

The interaction between the learner and the environ-
ment is shown in Figure 1. The environment is split
into two parts: One part that has Markovian dynam-
ics and another one with an unrestricted, autonomous
dynamics. In each discrete time step, the agent re-
ceives the state of the Markovian environment and
the previous state of the autonomous dynamics. The
learner then makes a decision about the next action,
which is sent to the environment. The environment
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then makes a transition: the next state of the Marko-
vian environment depends stochastically on the cur-
rent state and the chosen action, and the other part
has an autonomous dynamic which is not influenced
by the learner’s actions or the state of the Markovian
environment. After this transition, the agent receives
a reward depending on the complete state of the envi-
ronment and the chosen action, and then the process
continues. The goal of the learner is to collect as much
reward as possible. The modeling philosophy is that
whatever information about the environment’s dynam-
ics can be modeled should be modeled in the Marko-
vian part and the remaining “unmodeled dynamics” is
what constitutes the autonomous part of the environ-
ment.

A large number of practical operations research and
control problems have the above outlined structure.
These problems include production and resource allo-
cation problems, where the major source of difficulty
is to model prices, various problems in computer sci-
ence, such as the k-server problem, paging problems,
or web-optimization problems, such as ad-allocation
problems with delayed information (see, e.g., Even-Dar
et al., 2009; Yu et al., 2009). The contextual bandit
setting considered by Lazaric and Munos (2011) can
also be regarded as a simplified version of this model,
with the restriction that the states are generated in an
i.i.d. fashion.

Using the notations of Figure 1, let xt be the Marko-
vian state, yt the autonomous state and r(xt, at, yt) be
the reward given for selecting action at in state (xt, yt).
In what follows, for simplicity, by slightly abusing ter-
minology, we call the state xt of the Markovian part
“the state” and regard dependency on yt as depen-
dency on t by letting rt(·, ·) = r(·, ·, yt). With these
notations, the learner’s goal is to perform nearly as
well as the best state-feedback policy in hindsight in

terms of the total reward collected (
∑T
t=1 rt(xt, at)),

i.e., to compete with the best controller of the form
π : X → A, where X is the state-space of the Marko-
vian part of the environment and A is the set of ac-
tions.

Naturally, no assumptions can be made about the au-
tonomous part of the environment as it is assumed that
modeling this part of the environment lies outside of
the capabilities of the learner. This leads to a robust
control guarantee: The guarantee on the performance
must hold no matter how the autonomous state se-
quence (yt), or equivalently, the reward sequence (rt)
is chosen. We think that this built-in robustness might
be a much desired feature in many applications.1

1Sometimes, robustness is associated to conservative
choices and thus poor “average” performance. Although
we do not study this question here, we note in passing that
the algorithms we build upon have “adaptive variants” that
are known to adapt to the environment in the sense that
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Figure 1: The interaction between the learner and the
environment.

The above described problem has been studied in a
number of papers under varying assumptions. Ex-
isting results are summarized in Table 1. In the ta-
ble and throughout the paper we use the notation
Õ(t) = O(tpoly(log t)). In all these works the state
space X is assumed to be finite, as is the action space
A and in fact it is assumed that tables proportional to
the size of the state-action space X×A fit the memory.
Although this might look restrictive, we must remind
the reader that (i) studying the finite problem provides
useful insight that can be exploited later and in fact,
in many cases the solutions discovered by studying fi-
nite problems can be generalized; (ii) if an approach
does not work for finite problems then it cannot be
expected to work well on larger problems either.

1.1 Our contributions

Our main contribution is an algorithm with a regret
bound (of optimal order in the number of episodes)
against an arbitrary sequence of reward functions but
for the case when the Markovian dynamics is unknown.
As it turns out, this problem is considerably more chal-
lenging than the one, exclusively studied in the above
cited previous works, when the Markovian dynamics
is known a priori. That said, there exists an alter-
nate thread of previous theoretical works that assume
an unknown Markovian dynamics over finite state and
action spaces (Jaksch et al., 2010; Bartlett and Tewari,
2009b). In these works, however, the reward function
is fixed (known or unknown). That in the problem
we study both the Markovian dynamics is unknown
and the reward function is allowed to be an arbitrary
sequence forces us to explore an algorithm design prin-
ciple that remained relatively less-explored so far.2

their performance improves when the environment is “less
adversarial”.

2The reason why straightforward modifications and
combinations of previous techniques do not work will be
discussed later in this section.
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paper reward feedback loops transition regret bound

Even-Dar et al. (2005, 2009) adversarial rt MDP fixed, known Õ(
√
T )

Yu et al. (2009) adversarial rt MDP fixed, known Õ(T 3/4+ε), ε > 0

Jaksch et al. (2010) stochastic rt(xt, at) MDP fixed, unknown Õ(
√
T )

Neu et al. (2010a) adversarial rt(xt, at) SSP fixed, known O(
√
T )

Neu et al. (2010b) adversarial rt(xt, at) MDP fixed, known Õ(T 2/3)

this paper adversarial rt SSP fixed, unknown Õ(
√
T )

Table 1: Existing results related to our work. For each paper we describe the setup by specifying the type of
the reward function and feedback, whether the results correspond to a general MDP with loops (we do not list
other restrictions presented in the papers such as mixing) or the loop-free SSP, and the type of the transition
function and if it is known. Finally, for each paper and setup we present the order of the obtained regret bound
in terms of the time horizon T .

Our results are proven under the assumption that the
learner repeatedly solves a loop-free stochastic shortest
path problem when a new reward function is selected
at the beginning of each episode. We have studied this
problem very briefly in Section 4 of Neu et al. (2010a)
under the assumption that before learning starts, the
agent is given the transition probabilities underlying
the controlled Markovian dynamics. We gave an algo-
rithm and proved that its regret is O(L2

√
T log |A|),

where L is the number of layers in the state space, T
is the number of episodes and A denotes the (finite)
set of actions. Here, the regret is the expected dif-
ference between the performance of the learning agent
and the best policy in hindsight. In this paper we give
a new algorithm for this problem when the learner
does not initially know the dynamics and prove that
the algorithm’s regret is bounded by Õ(L|X ||A|

√
T ).

Note that using the techniques of Jaksch et al. (2010),

one can show a regret bound of Õ(L|X |
√
T |A|) for the

easier problem when the reward function is fixed and
known (this bound follows from a detailed look at our
proof). Thus, the price we pay for playing against an

arbitrary reward sequence is an O(
√
|A|) factor in the

upper bound.

Our new algorithm combines previous work on online
learning in Markovian decision processes and work on
online prediction in adversarial settings in a novel way.
In particular, we combine ideas from the UCRL-2 al-
gorithm of Jaksch et al. (2010) developed for learn-
ing in finite MDPs, with the “follow the perturbed
leader” (FPL) prediction method for arbitrary se-
quences (Hannan, 1957; Kalai and Vempala, 2005),
while for the analysis we also borrow some ideas from
our paper Neu et al. (2010a) (which in turn builds on
the fundamental ideas of Even-Dar et al. 2005, 2009).
However, in contrast to our previous work where we
rely on using one exponentially weighted average fore-
caster (EWA, Cesa-Bianchi and Lugosi, 2006, Section
2.8) locally in each state, we use FPL to compute the
policy to be followed globally. The main reason for
this change is twofold: First, we need a Follow-the-

Leader-Be-the-Leader-type inequality for the policies
we use and we could not prove such an inequality
when the policies are implicitly obtained by placing
experts into the individual states. Second, we could
not find a computationally efficient way of implement-
ing EWA over the space of policies, hence we turned
to the FPL approach, which gives rise to a computa-
tionally efficient implementation. The FPL technique
has been explored by Yu et al. (2009) and Even-Dar
et al. (2005, 2009), but, as it is shown in Table 1, they
assumed that the environment is known. It is also
interesting to note that even if the reward function
is fixed, no previous work considered the analysis of
the FPL technique for unknown MDP dynamics. Our
analysis also sheds some light on the role of the confi-
dence intervals and the principle of ”optimism in face
of uncertainty” in on-line learning.

2 Problem formulation

Markovian decision processes (MDPs) are a widely
studied framework for sequential decision making
(Puterman, 1994). In an MDP a decision maker (or
agent) observes its current state x, and based on its
previous experiences, selects an action a. As a re-
sult, the decision maker receives some positive reward
r(x, a) and its state is changed randomly according
to some probability distribution conditioned on x and
a. The goal of the decision maker is to maximize its
cumulative reward.

A special class of MDPs is the class of loop-free
stochastic shortest path problems (loop-free SSP prob-
lems): Informally, the decision maker has to start from
a fixed initial state x0, and has to make its way to a
terminal state xL while maximizing the total rewards
gathered during the passage. Once the terminal state
is reached, the agent is placed back to the initial state
x0, and thus a new episode is started. We assume that
during each episode, the agent can visit each state only
once, or, in other words, the environment is loop-free.

807



The adversarial stochastic shortest path problem with unknown transition probabilities

In this paper we consider the online version of the loop-
free SSP problem (as defined in Neu et al. 2010a), in
which case the reward function is allowed to change
between episodes, that is, instead of a single reward
function r, we are given a sequence of reward func-
tions (rt) describing the rewards at episode t that is
assumed to be an individual sequence, that is, no sta-
tistical assumption is made about the rewards.

More formally, the online loop-free SSP problem M is
defined by a tuple (X ,A, P, (rt)), where

X is the state space, including two special states, the
initial and the terminal states x0 and xL, respec-
tively.

A is the action space, the set of available actions at
each state.

P : X × X ×A → [0, 1] is the transition function,
where P (x′|x, a) gives the probability of moving
to state x′ upon selecting action a in state x,

rt : X ×A → [0, 1] is the reward function in episode
t, where rt(x, a) is the reward given for choosing
action a in state x. No stochastic assumptions are
made on the sequence (rt).

Loop free condition: The state space is composed
of layers X = X0∪X1∪· · ·∪XL, where X0 = {x0},
XL = {xL}, Xl ∩ Xk = ∅ if l 6= k, and transitions
are only possible between consecutive layers, that
is, if P (x′|x, a) > 0 then x′ ∈ Xl+1 and x ∈ Xl for
some 0 ≤ l ≤ L− 1.

Note that our problem formulation implies that each
path from the initial state to the terminal state con-
sists of exactly L transitions. While this assump-
tions may seem restrictive, it is not: all loop-free state
spaces (with varying path lengths) can easily be trans-
formed to one that satisfies our assumption on uni-
form path length (a simple transformation algorithm
is given in Appendix A of György et al., 2007).

Most papers on adversarial MDPs assume that the
transition function is known (Even-Dar et al., 2009;
Neu et al., 2010a,b) and the decision maker has to
predict the rewards only. The only exception we know
is the work of Yu and Mannor (2009a,b) who consid-
ered the problem of online learning in MDPs where the
transition probabilities may also change arbitrarily af-
ter each transition, from a given set. This problem
is significantly more difficult than the case when only
the rewards have to be estimated; accordingly, the al-
gorithms proposed in these papers fail to achieve con-
sistency for this setting. We consider the simpler sit-
uation when the transitions in the MDP are governed
by a single transition function which is not known be-
fore the beginning of the decision process, and has to

be estimated from observed transitions in the MDP.
Also, we assume that the reward function is fully ob-
served after each finished episode for all state-action
pairs. Thus, this is a significant extension of the full
information problem investigated in Neu et al. (2010a)
to the case of an unknown transition function.

3 Tools for SSPs

A stationary policy π (or, in short: a policy) is a map-
ping π : X → A. We say that a policy π is followed in
an SSP problem if the action in state x ∈ X is set to
be π(x), independently of previous states and actions.
A random path

u = (x0,a0, . . . ,xL−1,aL−1,xL)

is said to be generated by policy π under the transition
model P if x0 = x0 and xl+1 ∈ Xl+1 is drawn from
P (·|xl, π(xl)) for all l = 0, 1, . . . , L−1. We denote this
relation by u ∼ (π, P ). Using the above notation we
can define the value of a policy π, given a fixed reward
function r and a transition model P as

W (r, π, P ) = E

[
L−1∑

l=0

r(xl, π(xl))

∣∣∣∣∣u ∼ (π, P )

]
,

that is, the expected sum of rewards gained when fol-
lowing π in the MDP defined by r and P . In our
problem, we are given a sequence of reward functions

(rt)
T
t=1. We will refer to the partial sum of these re-

wards as Rt =
∑t
s=1 rt. Using the notations

vt(π) = W (rt, π, P ) and Vt(π) = W (Rt, π, P ),

we can phrase our goal as coming up with an algorithm

that generates a sequence of policies (πt)
T
t=1 that min-

imizes the expected regret

L̂T = max
π

VT (π)− E

[
T∑

t=1

vt(πt)

]
.

At this point, we mention that regret minimization
demands that we continuously incorporate each ob-
servation as it is made available during the learning
process. Assume that we decide to use the following
simple algorithm: run an arbitrary exploration pol-
icy πexp for 0 < K < T episodes, estimate a transi-
tion function P̄, then, in the remaining episodes, run
the algorithm described in Neu et al. (2010a) using P̄.
It is easy to see that this method attains a regret of
O(K + T/

√
K), which becomes O(T 2/3) when setting

K = O(T 2/3). Also, the regret of this algorithm would
scale very poorly with the parameters of the SSP.
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4 The algorithm: follow the
perturbed optimistic policy

In this section we present our FPL-based method
that we call “follow the perturbed optimistic policy”
(FPOP). The algorithm is shown as Algorithm 1.

One of the key ideas of our approach, borrowed from
Jaksch et al. (2010), is to maintain a confidence set of
transition functions that contains the true transition
function with high probability. The confidence set is
constructed in such a way that it remains constant over
random time periods, called epochs, and the number of
epochs (KT ) is guaranteed to be small relative to the
time horizon (details on how to select the confidence
set are presented in Section 4.1). We denote the i-th
epoch by Ei, while the corresponding confidence set
is denoted by Pi. Now consider the simpler problem
where the reward function r is assumed to be constant
and known throughout all episodes t = 1, 2, . . . , T .
One can directly apply UCRL-2 of Jaksch et al. (2010)
and select policy and transition-function estimate as

(
πi, P̃i

)
= arg max
π∈Π,P̄∈Pi

{
W (r, π, P̄ )

}

in epoch Ei, and follow πi through that epoch. In
other words, we optimistically select the model from
the confidence set that maximizes the optimal value
of the MDP (defined as the value of the optimal pol-
icy in the MDP) and follow the optimal policy for this
model and the fixed reward function. However, it is
well known that for the case of arbitrarily changing re-
ward functions, optimistic “follow the leader”-style al-
gorithms like the one described above are bound to fail
even in the simple (stateless) expert setting. Thus, we
need to adopt ideas from online learning of arbitrary
sequences, a topic extensively covered by Cesa-Bianchi
and Lugosi (2006).

In particular, our approach is to make this optimistic
method more conservative by adding some carefully
designed noise to the cumulative sum of reward func-
tions that we have observed so far – much in the vein
of FPL. To this end, introduce the perturbation func-
tion Yi : X × A → R with Yi(x, a) being i.i.d. ran-
dom variables for all (x, a) ∈ X × A and all epochs
i = 1, 2, . . . ,KT ; in our algorithm Yi will be selected
according to Exp(η, |X ||A|), the |X ||A|-dimensional
distribution whose components are independent hav-
ing exponential distribution with expectation η. Using
these perturbations, the key idea of our algorithm is
to choose our policy and transition-function estimate
as
(
πt, P̃t

)
= arg max
π∈Π,P̄∈Pi(t)

{
W (Rt−1 + Yi(t), π, P̄ )

}
(1)

where i(t) is the epoch containing episode t. That
is, after fixing a biased reward function based on our

previous observations, we still act optimistically when
taking stochastic uncertainty into consideration. We
call this method “follow the perturbed optimistic pol-
icy”, or, in short, FPOP.

Our main result concerning the performance of this
algorithm is presented below. The performance bound
is detailed in Theorem 2 in the appendix.

Theorem 1. Assume that T > (|X ||A|)2. Then, for
some appropriate setting of η and δ, the expected regret
of FPOP can be bounded as

V ∗T − E

[
T∑

t=1

vt(πt)

]
= Õ

(
L|X ||A|

√
T
)
.

4.1 The confidence set for the transition
function

In this subsection, following Jaksch et al. (2010), we
describe how the confidence set is maintained to ensure
that it contains the real transition function with high
probability yet does not change too often. To maintain
simplicity, we will assume that the layer decomposition
of the SSP is known in advance, however the algorithm
can be easily extended to cope with unknown layer
structure.

The algorithm proceeds in epochs of random length:
the first epoch E1 starts at episode t = 1, and each
epoch Ei ends when any state-action pair (x, a) has
been chosen at least as many times in the epoch as
before the epoch (e.g., the first epoch E1 consists of
the single episode t = 1). Let ti denote the index of
the first episode in epoch Ei, i(t) be the index of the
epoch that includes t, and let Ni(x, a) and Mi(x

′|x, a)
denote the number of times state-action pair (x, a) has
been visited and the number of times this event has
been followed by a transition to x′ up to episode ti,
respectively. That is

Ni(xl, al)=

ti−1∑

s=1

I{
x
(s)
l =xl,a

(s)
l =al

}

Mi(xl+1|xl, al)=

ti−1∑

s=1

I{
x
(s)
l+1=xl+1,x

(s)
l =xl,a

(s)
l =al

},

(2)

where l = 0, 1, . . . , L− 1, xl ∈ Xl, al ∈ A and xl+1 ∈ X
(clearly, Mi(xl+1|xl, al) can be non-zero only if xl+1 ∈
Xl+1). Our estimate of the transition function in epoch
Ei will be based on the relative frequencies

P̄i(xl+1|xl, al) =
Mi(xl+1|xl, al)

max {1,Ni(xl, al)}
.

Note that P̄i(·|x, a) belongs to the set of probability
distributions ∆(Xlx+1,X ) defined over X with support
contained in Xlx+1. Define a confidence set of transi-
tion functions for epoch Ei as the following L1-ball
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Algorithm 1 The FPOP algorithm for the online loop-free SSP problem with unknown transition probabilities.

Input: State space X , action space A, perturbation parameter η ≥ 0, confidence parameter 0 < δ < 1, time
horizon T > 0.
Initialization: Let R0(x, a) = 0, n1(x, a) = 0, N1(x, a) = 0, and M1(x, a) = 0 for all state-action pairs
(x, a) ∈ X × A, let P1 be the set of all transition functions, and let the episode index i(1) = 1. Choose
Y1 ∈ R|X ||A| ∼ Exp(η, |X ||A|) randomly.
For t = 1, 2, . . . , T

1. Compute πt and P̃t according to (1).

2. Traverse a path ut =
(
x

(t)
0 ,a

(t)
0 , . . . ,x

(t)
L−1,a

(t)
L−1,x

(t)
L

)
following the policy πt, where x

(t)
l ∈ Xl and a

(t)
l =

πt
(
x

(t)
l

)
∈ A.

3. Observe reward function rt and receive rewards
∑L−1
l=0 rt

(
x

(t)
l ,a

(t)
l

)
.

4. Set ni(t)

(
x

(t)
l ,a

(t)
l

)
= ni(t)

(
x

(t)
l ,a

(t)
l

)
+ 1 for all l = 0, . . . , L− 1.

5. If ni(t)(x, a) ≥ Ni(t)(x, a) for some (x, a) ∈ X ×A then start a new epoch:

(a) Set i(t+ 1) = i(t) + 1, ti(t+1) = t+ 1 and compute Ni(t+1)(x, a) and Mi(t+1)(x, a) for all (x, a) by (2).

(b) Construct Pi(t+1) according to (3) and (4).

(c) Reset ni(t+1)(x, a) = 0 for all (x, a).

(d) Choose Yi(t+1) ∈ R|X ||A| ∼ Exp(η, |X ||A|) independently.

Else set i(t+ 1) = i(t).

around P̄i:

P̂i =

{
P̄ :

∥∥P̄ (·|x, a)−P̄i(·|x, a)
∥∥

1
≤

√
2|Xlx+1| ln T |X ||A|

δ

max{1,Ni(x, a)}

and P̄ (·|x, a)∈∆(Xlx+1,X ) for all (x, a)∈X×A
}
.

(3)

The following lemma ensures that the true transition
function lies in these confidence sets with high proba-
bility.

Lemma 1 (Jaksch et al., 2010, Lemma 17). For any
0 < δ < 1

∥∥P̄i(·|x, a)− P (·|x, a)
∥∥

1
≤

√
2|Xlx+1| ln T |X ||A|

δ

max{1,Ni(x, a)}
holds with probability at least 1− δ simultaneously for
all (x, a) ∈ X ×A and all epochs.

Since by the above result P ∈ P̂i holds with high prob-
ability for all epochs, defining our true confidence set
Pi as

Pi = ∩ij=1P̂j , (4)

we also have P ∈ Pi for all epochs with probability at
least 1 − δ. This way we ensure that our confidence
sets cannot increase between consecutive episodes with
probability 1. Note that this is a delicate difference
from the construction of Jaksch et al. (2010) that plays
an important role in our proof.

4.2 Extended dynamic programming

FPOP needs to compute an optimistic transition func-
tion and an optimistic policy in each episode with re-
spect to some reward function r and some confidence
set P of transition functions. That is, we need to solve
the problem

(π∗, P ∗) = arg max
π,P̄∈P

W (r, π, P̄ ). (5)

We will use an approach called extended dynamic pro-
gramming to solve this problem, a simple adaptation
of the extended value iteration method proposed by
Jaksch et al. (2010). The method is presented as Al-
gorithm 2 in the appendix. Computing in a backward
manner on the states (that is, going from layer Xl to
X0), the algorithm maximizes the transition probabil-
ities to the direction of the largest reward-to-go. This
is possible since the L1-balls allow to select the opti-
mistic transition functions independently for all state-
action pairs (x, a) ∈ X × A. Following the proof of
Theorem 7 of Jaksch et al. (2010), Lemma 6 in the
appendix shows that Algorithm 2 indeed solves the re-
quired minimization problem, and can be implemented
with O(|A||X |2) time and space complexity.

5 Analysis

The proof of Theorem 2 (and thus that of our main
result, Theorem 1) mainly follows the regret analysis
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of FPL combined with ideas from the regret analysis
of UCRL-2. First, let us consider the policy-transition
model pair

(
π̂t, P̂t

)
= arg max
π∈Π,P̄∈Pi(t)

{
W (Rt + Yi(t), π, P̄ )

}
.

In other words, π̂t is an optimistic policy that knows
the reward function before the episode would begin.
Define

ṽt = W (rt,πt, P̃t) and v̂t = W (rt, π̂t, P̂t).

Furthermore, let

π∗t = arg max
π∈Π

{
W (Rt + Yi(t), π, P )

}
,

the optimal policy with respect to the perturbed re-
wards and the true transition function. The perturba-
tion added to the value of policy π in episode t will be
denoted by Zt(π) = W (Yi(t), π, P ). The true optimal
value up to episode t and the optimal policy attaining
this value will be denoted by

V ∗t = max
π∈Π

Vt(π) and σ∗t = arg max
π∈Π

Vt(π).

We proceed by a series of lemmas to prove our main
result. The first one shows that our optimistic choice
of the estimates of the transition model enables us to
upper bound the optimal value V ∗t with a reasonable
quantity.

Lemma 2.

V ∗T ≤
T∑

t=1

E [v̂t] + δ T L

+ |X ||A| log2

(
8T

|X ||A|

) ∑L−1
l=0 ln (|Xl||A|) + L

η
.

Note that while the proof of this result might seem a
simple reproduction of some arguments from the stan-
dard FPL analysis, it contains subtle details about the
role of our optimistic estimates that are of crucial im-
portance for the analysis.

Proof. Assume that P ∈ Pi(T ), which holds with prob-
ability at least 1− δ, by Lemma 1. First, we have

V ∗T + ZT (σ∗T ) ≤ VT (π∗T ) + ZT (π∗T )

= W (RT + Yi(T ),π
∗
T , P )

≤W (RT + Yi(T ), π̂T , P̂T )

(6)

where the first inequality follows from the definition
of π∗T and the second from the optimistic choice of π̂T
and P̂T . Let dYi(s) = Yi(s)−Yi(s−1) for s = 1, . . . , t.
Next we show that, given P ∈ Pi(T ),

W (Rt+Yi(t), π̂t, P̂t) ≤
t∑

s=1

W (rs+dYi(s), π̂s, P̂s) (7)

where we define Y0 = 0. The proof is done by induc-
tion on t. Equation (7) holds trivially for t = 1. For
t > 1, assuming P ∈ Pi(T ) and (7) holds for t− 1, we
have

W (Rt + Yi(t), π̂t, P̂t)

= W (Rt−1+Yi(t−1), π̂t, P̂t)+W (rt+dYi(t), π̂t, P̂t)

≤W (Rt−1+Yi(t−1), π̂t−1, P̂t−1)+W (rt+dYi(t), π̂t, P̂t)

≤
t∑

s=1

W (rs + dYi(s), π̂s, P̂s),

where the first inequality follows from the fact that(
π̂t−1, P̂t−1

)
is selected from a wider class3 than

(
π̂t, P̂t

)
and is optimistic with respect to rewards

Rt−1 + Yi(t−1), while the second inequality holds by
the induction hypothesis for t− 1. This proves (7).

Now the non-negativity of ZT (σ∗T ), (6) and (7) imply
that, given P ∈ Pi(T ),

V ∗T ≤
T∑

t=1

W (rt + dYi(t), π̂t, P̂t)

=
T∑

t=1

v̂t +
T∑

t=1

W (dYi(t), π̂t, P̂t).

Since P ∈ Pi(T ) holds with probability at least 1 − δ,
V ∗T ≤ TL trivially and the right hand side of the above
inequality is non-negative, we have

V ∗T ≤
T∑

t=1

E [v̂t] + E

[
T∑

t=1

W (dYi(t), π̂tj , P̂tj )

]
+ δTL

(8)
The elements in the second sum above may be non-zero
only if i(t) 6= i(t− 1). Furthermore, by Proposition 18
of Jaksch et al. (2010), the number of epochs KT up
to episode T is bounded from above as

KT
def
=

T∑

t=1

I{i(t)6=i(t−1)} ≤ |X ||A| log2

(
8T

|X ||A|

)
.

Therefore,

E

[
T∑

t=1

W (dYi(t), π̂tj , P̂tj )

]
≤ E



m∑

j=1

W (Yj , π̂tj , P̂tj )




≤ |X ||A| log2

(
8T

|X ||A|

) L−1∑

l=0

E
[

max
(x,a)∈Xl×A

Y1(x, a)

]
.

3This follows from the definition of the confidence sets
in Equation (4).
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Using the upper bound on the expectation of the max-
imum of a number of exponentially distributed vari-
ables (see, e.g., the proof of Corollary 4.5 in Cesa-
Bianchi and Lugosi 2006), a combination of the above
inequality with (8) gives the desired result.

Next, we show that peeking one episode into the fu-
ture does not change the performance too much. The
following lemma is a standard result used for the anal-
ysis of FPL and we include the proof in the appendix
only for completeness.

Lemma 3. Assume that η ≤ (|X ||A|)−1
. Then,

E

[
T∑

t=1

v̂t

]
≤ E

[
T∑

t=1

ṽt

]
+ ηT L (e− 1)|X ||A|.

Now consider µt(x) = P [xlx = x|u ∼ (πt, P )], that
is, the probability that a trajectory generated by πt
and P includes x. Note that given a layer Xl, the
restriction µt,l : Xl → [0, 1] is a distribution. Define

an estimate of µt as µt(x) = P
[
xl = x|u ∼ (πt, P̃t)

]
.

Note that this estimate can be efficiently computed
using the recursion

µ̃t(xl+1) =
∑

xl,al

P̃t(xl+1|xl, al)πt(al|xl)µ̃t(xl),

for l = 0, 1, 2, . . . , L − 1, with µ̃t(x0) = 1. The fol-
lowing result will ensure that if our estimate of the
transition function is close enough to the true transi-
tion function in the L1 sense, than these estimates of
the visitation probabilities are also close to the true
values that they estimate. The proof follows from el-
ementary algebraic manipulations and is included in
the appendix for completeness.

Lemma 4. Assume that there exists some function
at : X ×A → R+ such that

∥∥∥P̃t(·|x, a)− P (·|x, a)
∥∥∥

1
≤ at(x, a)

holds for all (x, a) ∈ X ×A. Then

∑

xl∈Xl

|µ̃t(xl)−µt(xl)| ≤
l−1∑

k=0

∑

xk∈Xk

µt(xk) at (xk,πt(ak))

for all l = 1, 2, . . . , L− 1.

Finally, we use the above result to relate the estimated
policy values ṽt to their true values vt(πt). The fol-
lowing lemma, largely based on Lemma 19 of Jaksch
et al. (2010), is proved in the appendix.

Lemma 5. Assume T ≥ |X ||A|. Then

E

[
T∑

t=1

ṽt

]
≤E

[
T∑

t=1

vt(πt)

]
+ L|X |

√
2T ln

L

δ
+ 2δ T L

+
(√

2 + 1
)
L|X |

√
T |A| ln T |X ||A|

δL
.

6 Conclusions and future work

We have considered the problem of learning in adver-
sarial stochastic shortest path problems when the tran-
sition probabilities are unknown. We proposed an al-
gorithm achieving optimal regret rates in terms of the
time horizon, that is (to our knowledge) the first one
that learns stochastic and adversarial components in
an online fashion at the same time. The algorithm is
a novel combination of common techniques used for
online learning in stochastic and adversarial environ-
ments – namely, a combination of the “optimism in
the face of uncertainty” principle and the “follow the
perturbed leader” technique.

In the process of proving our results, much structure
(of both the standard MDP learning problem and the
online learning problem) was uncovered that was not
transparent in previous works. In particular, it has
become apparent that the size of confidence intervals
for the unknown model parameters only influences the
quality of the estimate of the achieved performance
(cf. Lemma 5), while selecting our models optimisti-
cally helps only in estimating the best possible perfor-
mance (cf. Lemma 2).

An interesting open question is whether the local-
forecasting based approach of Neu et al. (2010a), pi-
oneered by Even-Dar et al. (2005, 2009), can be ex-
tended to our problem. Another interesting question is
whether the FPL approach of Yu et al. (2009) can also
be extended (and their regret bounds strengthened).
Finally, in this paper we considered the problem under
the assumption that the regret function becomes fully
known at the end of each episode. However, in some
applications the agent only learns the rewards along
the trajectory it traversed, a.k.a the “bandit setting”.
It remains an interesting and important open problem
to extend the results obtained in this paper to this
setting. Another direction for future work is to con-
sider the non-episodic variants of the problem, studied
in many of the previously mentioned papers and more
recently, in the bandit setting, by Neu et al. (2010b).
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