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Linearly Solvable Markov Decision Processes
“Offline” version [Todorov, 2010, Kappen, 2005]

Control a sequence of states X1,X2, . . . trying to
I minimize a state cost c : X 7→ [0, 1]
I not deviate too much from the passive dynamics P(X ′|X )



Linearly Solvable Markov Decision Processes
“Offline” version [Todorov, 2010, Kappen, 2005]

Repeat for t = 1, 2, . . . :
I Learner

I observes state Xt and picks next-state distribution Qt (·|Xt )
I suffers loss

`(Xt ,Qt ) = c(Xt ) +
∑
x

Qt (x |Xt ) log
Qt (x |Xt )

P(x |Xt )

I Environment generates next state Xt+1 ∼ Qt (·|Xt ).

GOAL: minimize average cost-per stage

lim sup
T→∞

1
T

T∑
t=1

`(Xt ,Qt) → min
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Linearly Solvable Markov Decision Processes
“Offline” version [Todorov, 2010, Kappen, 2005]

Optimal policy given by

Q(x ′|x ) =
P(x ′|x )z (x ′)∑
y P(y |x )z (y)

.

where z is the solution to the eigenvalue problem

e−λz = diag
(
e−c(x )

)
Pz .
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Linearly Solvable Markov Decision Processes
“Offline” version [Todorov, 2010, Kappen, 2005]

Control a sequence of states X1,X2, . . . trying to
I minimize a state cost c : X 7→ [0, 1]
I not deviate too much from the passive dynamics P(X ′|X )



This work: Online learning in LMDPs
First studied by Guan, Raginsky, and Willett [2014]

Control a sequence of states X1,X2, . . . trying to
I minimize a sequence of state costs ct : X 7→ [0, 1]
I not deviate too much from the passive dynamics P(X ′|X )



Online learning in LMDPs
First studied by Guan, Raginsky, and Willett [2014]

Repeat for t = 1, 2, . . . :
I Learner

I observes state Xt and picks next-state distribution Qt (·|Xt )
I suffers loss

`(Xt ,Qt ) = ct (Xt ) +
∑
x

Qt (x |Xt ) log
Qt (x |Xt )

P(x |Xt )

I Environment
I generates next state Xt+1 ∼ Qt (·|Xt ),
I picks state-cost function ct : X 7→ [0, 1]

GOAL: minimize regret

RT = max
Q

T∑
t=1

E [`t(Xt ,Qt) − `t(Xt ,Q)]



Online learning in LMDPs
First studied by Guan, Raginsky, and Willett [2014]

Repeat for t = 1, 2, . . . :
I Learner

I observes state Xt and picks next-state distribution Qt (·|Xt )
I suffers loss

`(Xt ,Qt ) = ct (Xt ) +
∑
x

Qt (x |Xt ) log
Qt (x |Xt )

P(x |Xt )

I Environment
I generates next state Xt+1 ∼ Qt (·|Xt ),
I picks state-cost function ct : X 7→ [0, 1]

GOAL: minimize regret

RT = max
Q

T∑
t=1

E [`t(Xt ,Qt) − `t(Xt ,Q)]



Online learning in LMDPs

State of the art [Guan, Raginsky, and Willett, 2014]:

RT = O
(
T 3/4+ε

)

Open problem: can this be improved to O
(√

T
)
?

Our result: RT = O
(
log2 T

)
(same assumptions: bounded 1-step mixing time of passive dynamics)
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The secret sauce



The secret sauce

Introduce idealized problem:
Repeat for t = 1, 2, . . . :
Learner:

I picks stationary distribution πt ∈ ∆(X 2)

I suffers loss ˜̀t (πt ) = 〈πt , ct 〉+ R(πt ), where

R(π) =
∑
x ,x ′

π(x , x ′) log
π(x , x ′)

P(x ′|x )
∑

y π(x , y)

Environment
I picks state-cost function ct : X 7→ [0, 1]
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Introduce idealized problem:
Repeat for t = 1, 2, . . . :
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I picks stationary distribution πt ∈ ∆(X 2)

I suffers loss ˜̀t (πt ) = 〈πt , ct 〉+ R(πt ), where
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π(x , x ′) log
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∑

y π(x , y)

Environment
I picks state-cost function ct : X 7→ [0, 1]

R(π): the conditional entropy of (X ′,X ) ∼ π

... a convex function of π!



The algorithm & the rest of the proof

Algorithm: Follow the Leader:

πt = argmin
π

t−1∑
s=1

˜̀s(π)

Analysis:
I Show that policies change smoothly: ‖πt − πt+1‖1 = O(1/t)
I Bound idealized regret by O(logT ) (FTL/BTL lemma)
I Gap between idealized and true regret = O(log2 T )

I + a bunch of technical tools taken from Guan, Raginsky, and
Willett [2014]...
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