Fast rates for online learning in Linearly Solvable Markov Decision Processes

Gergely Neu & Vicenç Gómez

Universitat Pompeu Fabra Barcelona, Spain

Control a sequence of states X_1, X_2, \ldots trying to

- minimize a state cost $c: X \mapsto [0, 1]$
- not deviate too much from the passive dynamics P(X'|X)

Linearly Solvable Markov Decision Processes

"Offline" version [Todorov, 2010, Kappen, 2005]

Repeat for $t = 1, 2, \ldots$:

LEARNER

- observes state X_t and picks next-state distribution $Q_t(\cdot|X_t)$
- suffers loss

$$\ell(X_t, Q_t) = c(X_t) + \sum_x Q_t(x|X_t) \log rac{Q_t(x|X_t)}{P(x|X_t)}$$

うして ふゆう ふほう ふほう ふしつ

• Environment generates next state $X_{t+1} \sim Q_t(\cdot|X_t)$.

Linearly Solvable Markov Decision Processes

"Offline" version [Todorov, 2010, Kappen, 2005]

Repeat for $t = 1, 2, \ldots$:

LEARNER

- observes state X_t and picks next-state distribution $Q_t(\cdot|X_t)$
- suffers loss

$$\ell(X_t, Q_t) = c(X_t) + \sum_x Q_t(x|X_t) \log rac{Q_t(x|X_t)}{P(x|X_t)}$$

うして ふゆう ふほう ふほう ふしつ

• Environment generates next state $X_{t+1} \sim Q_t(\cdot|X_t)$.

GOAL: minimize average cost-per stage

$$\lim \sup_{T o \infty} rac{1}{T} \sum_{t=1}^T \ell(X_t, Q_t) o \min$$

Optimal policy given by

$$Q(x'|x) = rac{P(x'|x)z(x')}{\sum_y P(y|x)z(y)}.$$

where z is the solution to the eigenvalue problem

$$e^{-\lambda}z = \operatorname{diag}\left(e^{-c(x)}\right)Pz.$$

"Linearly solvable"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Optimal policy given by

$$Q(x'|x) = rac{P(x'|x)z(x')}{\sum_y P(y|x)z(y)}.$$

where z is the solution to the eigenvalue problem

$$e^{-\lambda}z = \operatorname{diag}\left(e^{-c(x)}
ight)Pz.$$

Control a sequence of states X_1, X_2, \ldots trying to

- minimize a state cost $c: X \mapsto [0, 1]$
- not deviate too much from the passive dynamics P(X'|X)

This work: Online learning in LMDPs First studied by Guan, Raginsky, and Willett [2014]

Control a sequence of states X_1, X_2, \ldots trying to

- minimize a sequence of state costs $c_t: X \mapsto [0, 1]$
- ▶ not deviate too much from the passive dynamics P(X'|X)

First studied by Guan, Raginsky, and Willett [2014]

Repeat for $t = 1, 2, \ldots$:

- LEARNER
 - observes state X_t and picks next-state distribution $Q_t(\cdot|X_t)$
 - suffers loss

$$\ell(X_t, Q_t) = c_t(X_t) + \sum_x Q_t(x|X_t) \log rac{Q_t(x|X_t)}{P(x|X_t)}$$

うして ふゆう ふほう ふほう ふしつ

ENVIRONMENT

- generates next state $X_{t+1} \sim Q_t(\cdot|X_t)$,
- picks state-cost function $c_t: X \mapsto [0, 1]$

First studied by Guan, Raginsky, and Willett [2014]

Repeat for $t = 1, 2, \ldots$:

- LEARNER
 - observes state X_t and picks next-state distribution $Q_t(\cdot|X_t)$
 - suffers loss

$$\ell(X_t, Q_t) = c_t(X_t) + \sum_x Q_t(x|X_t) \log rac{Q_t(x|X_t)}{P(x|X_t)}$$

ENVIRONMENT

- generates next state $X_{t+1} \sim Q_t(\cdot|X_t)$,
- picks state-cost function $c_t: X \mapsto [0, 1]$

GOAL: minimize regret

$$R_T = \max_{Q} \sum_{t=1}^{T} \mathbb{E} \left[\ell_t(X_t, Q_t) - \ell_t(X_t, Q) \right]$$

State of the art [Guan, Raginsky, and Willett, 2014]:

$$R_T = O\left(T^{3/4+arepsilon}
ight)$$

・ロト ・ 日 ・ モー・ モー・ うへぐ

State of the art [Guan, Raginsky, and Willett, 2014]:

$$R_T = O\left(T^{3/4+arepsilon}
ight)$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Open problem: can this be improved to $O\left(\sqrt{T}\right)$?

State of the art [Guan, Raginsky, and Willett, 2014]:

$$R_T = O\left(T^{3/4+arepsilon}
ight)$$

Open problem: can this be improved to $O\left(\sqrt{T}\right)$?

Our result:
$$R_T = O(\log^2 T)$$

(same assumptions: bounded 1-step mixing time of passive dynamics)

うして ふゆう ふほう ふほう ふしつ

The secret sauce

Introduction to Online Convex Optimization

Elad Hazan

The secret sauce

Introduction to Online Convex Optimization

Elad Hazan

Introduce idealized problem: Repeat for t = 1, 2, ...: LEARNER:

- picks stationary distribution $\pi_t \in \Delta(\mathcal{X}^2)$
- suffers loss $\widetilde{\ell}_t(\pi_t) = \langle \pi_t, c_t \rangle + R(\pi_t)$, where

$$R(\pi) = \sum_{x,x^{\,\prime}} \pi(x,x^{\,\prime}) \log rac{\pi(x,x^{\,\prime})}{P(x^{\,\prime}|x) \sum_y \pi(x,y)}$$

(日) (四) (日) (日) (日)

ENVIRONMENT

▶ picks state-cost function $c_t: X \mapsto [0, 1]$

The secret sauce

Introduction to Online Convex Optimization

Elad Hazan

Introduce idealized problem: Repeat for t = 1, 2, ...: LEARNER:

- picks stationary distribution $\pi_t \in \Delta(\mathcal{X}^2)$
- suffers loss $\widetilde{\ell}_t(\pi_t) = \langle \pi_t, c_t \rangle + R(\pi_t)$, where

$$R(\pi) = \sum_{x,x^{\,\prime}} \pi(x,x^{\,\prime}) \log rac{\pi(x,x^{\,\prime})}{P(x^{\,\prime}|x) \sum_y \pi(x,y)}$$

Environment

• picks state-cost function $c_t: X \mapsto [0, 1]$

 $R(\pi)$: the conditional entropy of $(X', X) \sim \pi$... a convex function of π !

(日) (四) (日) (日)

The algorithm & the rest of the proof

Algorithm: Follow the Leader:

$$\pi_t = \operatorname*{arg\,min}_{\pi} \sum_{s=1}^{t-1} \widetilde{\ell}_s(\pi)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The algorithm & the rest of the proof

Algorithm: Follow the Leader:

$$\pi_t = rgmin_{\pi} \sum_{s=1}^{t-1} \widetilde{\ell}_s(\pi)$$

Analysis:

- ▶ Show that policies change smoothly: $\|\pi_t \pi_{t+1}\|_1 = O(1/t)$
- ▶ Bound idealized regret by $O(\log T)$ (FTL/BTL lemma)
- Gap between idealized and true regret = $O(\log^2 T)$
- + a bunch of technical tools taken from Guan, Raginsky, and Willett [2014]...

(日) (日) (日) (日) (日) (日) (日) (日)

- P. Guan, M. Raginsky, and R. M. Willett. Online markov decision processes with kullback-leibler control cost. Automatic Control, IEEE Transactions on, 59(6):1423-1438, 2014.
- H. J. Kappen. Linear theory for control of nonlinear stochastic systems. *Physical review letters*, 95(20):200201, 2005.
- E. Todorov. Policy gradients in linearly-solvable mdps. In *NIPS-23*, pages 2298–2306. CURRAN, 2010.