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Linearly Solvable Markov Decision Processes
“Offline” version [Todorov, 2010, Kappen, 2005]

Control a sequence of states X, X»,... trying to
» minimize a state cost ¢: X — [0, 1]

» not deviate too much from the passive dynamics P(X'|X)
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Linearly Solvable Markov Decision Processes
“Offline” version [Todorov, 2010, Kappen, 2005]
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Linearly Solvable Markov Decision Processes
“Offline” version [Todorov, 2010, Kappen, 2005]

GOAL: minimize average cost-per stage

T
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lim 55130 T E (X, @Q:) — min

t=1
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Linearly Solvable Markov Decision Processes
“Offline” version [Todorov, 2010, Kappen, 2005]

Optimal policy given by

. Plela)z(z)
Q) = & Byl z(y)”

where z is the solution to the eigenvalue problem

ez = diag <e_c(””)> Pz.



Linearly Solvable Markov Decision Processes
“Offline” version [Todorov, 2010, Kappen, 2005]

“Linearly solvable”

. Plela)z(z)
Q) = & Byl z(y)”

where z is the solution to the eigenvalue problem

Optimal policy given by

ez = diag <e‘°m> Pz.



Linearly Solvable Markov Decision Processes
“Offline” version [Todorov, 2010, Kappen, 2005]

Control a sequence of states X, X»,... trying to
» minimize a state cost ¢: X — [0, 1]

» not deviate too much from the passive dynamics P(X'|X)
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This work: Online learning in LMDPs

First studied by Guan, Raginsky, and Willett [2014]

Control a sequence of states X, X»,... trying to
» minimize a sequence of state costs ¢; : X — [0, 1]

» not deviate too much from the passive dynamics P(X'|X)
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Onlme learning in LMDPs
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Onlme learning in LMDPs

GOAL: minimize regret

T
Ry = mSXZE [€:(Xe, Qi) — (X, Q)
=1
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Online learning in LMDPs

State of the art [Guan, Raginsky, and Willett, 2014]:

Ry = O (T%%)



Online learning in LMDPs

State of the art [Guan, Raginsky, and Willett, 2014]:

Ry = O (T%%)

Open problem: can this be improved to O (ﬁ)'?



Online learning in LMDPs

State of the art [Guan, Raginsky, and Willett, 2014]:

Ry = O (T%/4+)

Open problem: can this be improved to O (ﬁ)'?

(same assumptions: bounded 1-step mixing time of passive dynamics)
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The secret sauce




The secret sauce

—+

| Introduce idealized problem:
| Repeat for £ =1,2,...:
B LEARNER:

» picks stationary distribution 7t; € A(X?)
» suffers loss Et(nt) = (4, ¢t) + R(m), where

n(z,z’)

(z'lz) 3, (=, y)

R(m) = ) n(z,z')log 5

tBem3”

Introduction to
Online Convex Optimization
Elad Hazan

ENVIRONMENT

> picks state-cost function ¢; : X — [0, 1] -




The secret sauce

- ‘,n'_é Introduce idealized problem:
= Repeat for t =1,2,...:
8 LEARNER:

» picks stationary distribution 7t; € A(X?)
» suffers loss Ft(nt) = (4, ¢t) + R(m;), where

n(z,z’)

Introduction to
Online Convex Optimization

Elad Hazan

R(m) = ) n(z,z')log 5

B3

(z'lz) 3, (=, y)

ENVIRONMENT
> picks state-cost function ¢; : X — [0, 1]

R(m): the conditional entropy of (X', X) ~ 7
. a convex function of 7!




The algorithm & the rest of the proof

Algorithm: Follow the Leader:

t—1

7 = argmin Z 0 (7)
n s=1



The algorithm & the rest of the proof

Algorithm: Follow the Leader:

t—1
7 = argmin Zfs(ﬂ)
T os=1
Analysis:
» Show that policies change smoothly: |7ty — 7t¢41]|; = O(1/t)
» Bound idealized regret by O(log T') (FTL/BTL lemma)
» Cap between idealized and true regret = O(log® T')

» + a bunch of technical tools taken from Guan, Raginsky, and
Willett [2014]...
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