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Abstract
We study the generalization properties of the popular stochastic optimization method known as
stochastic gradient descent (SGD) for optimizing general non-convex loss functions. Our main
contribution is providing upper bounds on the generalization error that depend on local statistics of
the stochastic gradients evaluated along the path of iterates calculated by SGD. The key factors our
bounds depend on are the variance of the gradients (with respect to the data distribution) and the local
smoothness of the objective function along the SGD path, and the sensitivity of the loss function
to perturbations to the final output. Our key technical tool is combining the information-theoretic
generalization bounds previously used for analyzing randomized variants of SGD with a perturbation
analysis of the iterates.
Keywords: stochastic gradient descent, generalization, information-theoretic generalization

1. Introduction

Stochastic gradient descent (SGD) is arguably the single most important algorithmic component of
the modern machine-learning toolbox. First proposed by Robbins and Monro (1951) for finding roots
of a function using noisy evaluations, stochastic approximation methods like SGD has been broadly
adapted for a variety of tasks in signal processing, control and optimization (Kushner and Yin, 1997;
Nemirovski et al., 2009). In the context of machine learning, SGD is extremely popular due to its
efficient use of computation that naturally enables it to process very large data sets and its inherent
ability to handle noisy data (Bottou and Bousquet, 2007). In modern machine learning, SGD is the
de facto standard method for training deep neural networks, partly due to the efficient computability
of the gradients through the famous backpropagation algorithm (Rumelhart et al., 1986; LeCun et al.,
2012). Given the surprising effectiveness of SGD for deep learning, several empirical and theoretical
studies have attempted to explain the reasons of its success. In recent years, this research effort
has lead to some remarkable results that finally shed some light on the core factors contributing
to the effectiveness of SGD. A handful of examples include showing guaranteed convergence to
minimizers (Ge et al., 2015; Lee et al., 2016), to minimum-norm solutions under various assumptions
(Ma et al., 2018; Jacot et al., 2018; Oymak and Soltanolkotabi, 2019), and even to global optima of
overparametrized neural networks (Du et al., 2018; Allen-Zhu et al., 2019).
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This paper aims to contribute to a better understanding of the generalization properties of SGD
for optimizing general non-convex objectives. This is a widely studied question, mostly from the
perspective of stability, inspired by the understanding that stable learning algorithms are guaranteed
to generalize well to test data (Bousquet and Elisseeff, 2002; Feldman and Vondrák, 2019; Bousquet
et al., 2020). This line of work was initiated by Hardt, Recht, and Singer (2016), who showed that
SGD has strong stability properties when applied to smooth convex loss functions, and is particularly
stable when the objective is also strongly convex. They also provided bounds on the generalization
error for non-convex losses, with a rate that is polynomial in the number of steps T , with an exponent
that depends on the smoothness of the objective. A significant limitation of their results is that they
require the loss function to have a bounded Lipschitz constant, which is generally difficult to ensure
(especially when training deep neural networks). In recent years, the results of Hardt et al. have been
strengthened in a variety of ways, for example by removing the Lipschitz condition in the general
non-convex case by Lei and Ying (2020) and by removing the smoothness condition in the convex
case by Bassily et al. (2020).

Another line of work studies the generalization properties of a randomized version of SGD called
stochastic gradient Langevin dynamics (SGLD, cf. Welling and Teh, 2011). As shown by Raginsky
et al. (2017), SGLD has strong finite-sample convergence properties for general non-convex learning,
which already implies good generalization. Another line of attack aiming to directly understand the
generalization of SGLD was initiated by Pensia, Jog, and Loh (2018). Subsequent improvements to
this technique were made by Negrea et al. (2019), Haghifam et al. (2020) and Rodríguez-Gálvez et al.
(2021), who prove data-dependent generalization bounds that do not depend on the Lipschitz constant
of the loss function. The core technical tool of these analyses is bounding the generalization error
in terms of the mutual information between inputs and outputs of learning algorithms, previously
proposed in a much more general context by Russo and Zou (2016, 2019) and Xu and Raginsky
(2017), which are themselves closely connected to classic PAC-Bayesian generalization error bounds
(McAllester, 1999, 2013). Indeed, these information-theoretic tools are particularly suitable for
analyzing SGD-like algorithms due to a convenient decomposition of the mutual infomation across
iterations by an application of the chain rule of the relative entropy. The obvious downside of this
technique is that it relies on randomly perturbing the SGD iterates, which empirically hurts the
performance of the algorithm and results in underfitting the training loss.

Our main contribution in this paper is demonstrating that it is possible to conduct an information-
theoretic analysis for the vanilla version of SGD, without directly perturbing the iterates. Our key
observation is that it is sufficient to add carefully constructed random noise to the iterates only during
the analysis, which then allows using the technique of Pensia et al. (2018) on these “virtual SGLD”
iterates. The key challenge in the analysis is designing the perturbations and correctly handling their
propagation through the iterations. The bounds we derive depend on three factors: the variance
of the gradient updates and the sensitivity of the gradients to perturbations along the path, and the
sensitivity of the final output to perturbations. All of these quantities are evaluated locally along the
iterates that SGD produces. Another important consequence of our virtual perturbation technique is
that our bounds hold simultaneously for all noise distributions, which obviates the need to tune the
hyperparameters of the algorithm to optimize the bound.

As is probably obvious from the above discussion, our approach is thoroughly inspired by the
insightful work of Pensia, Jog, and Loh (2018), which itself is inspired by the seminal works of Russo
and Zou (2016, 2019) and Xu and Raginsky (2017) on information-theoretic generalization bounds.
In recent years, their theory has been extended in a variety of directions that resulted in tighter and
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tighter bounds. Here, we highlight the works of Asadi et al. (2018); Asadi and Abbe (2020) whose
chaining technique can lead to tighter bounds when applied to neural networks, and the work of
Steinke and Zakynthinou (2020) whose key idea of appropriately conditioning the mutual information
enables proving more refined data-dependent guarantees. In fact, these latter ideas directly inspired
the work of Haghifam et al. (2020) and Rodríguez-Gálvez et al. (2021) on tighter generalization
bounds for Langevin dynamics and SGLD, respectively. We conjecture that our analysis can be also
refined by using such sophisticated information-theoretic techniques. Finally, we also mention that
our main idea of using random perturbations to guarantee boundedness of the mutual information
has been partially inspired by the work of Zhang et al. (2020).

Besides the works mentioned above, several other theories of generalization have been proposed
in the deep learning literature. One particularly widely held belief is that algorithms that find “wide
optima” of the loss landscape generalize well to test data. This hypothesis has been first proposed by
Hochreiter and Schmidhuber (1997) and later popularized by Keskar et al. (2017), and has attracted
some (moderately rigorous) verification and refutation attempts (e.g., Dinh et al., 2017; Izmailov
et al., 2018; He et al., 2019; Chaudhari et al., 2019). One common criticism of this theory is that the
“width” of a solution is difficult to formally define, and the most common intuitive definitions suffer
from being sensitive to reparametrization. While we don’t claim to resolve the debate around “wide
optima”, our results lend some minimal credence to this theory in that our generalization bounds
indeed predict an improvement when the loss of the final solution is insensitive to perturbations. As
we will show, our bounds allow measuring this sensitivity in terms of arbitrary coordinate systems,
which at least addresses the most elementary concerns with parametrization-sensitivity of common
definitions. That said, some aspects of our results defy common wisdom: most notably, our bounds
show an improvement for larger batch sizes, even though this choice empirically leads to worse
performance, purportedly due to converging to “sharper minima”. Importantly, our analysis does not
explain why SGD would converge towards solutions that generalize well and how hyperparameters
like the batch size could impact the quality of solutions.

Notation. For two distributions P and Q satisfying P � Q, we denote their relative entropy by
D (P‖Q) =

∫
x dP (x) log

(
dP
dQ(x)

)
. The distribution of a random variableX will be denoted by PX

and the product distribution between PX and PY will be denoted by PX ⊗ PY . With this notation,
the mutual information between two random variables is defined as I(X;Y ) = D (PX,Y ‖PX ⊗ PY ).
Whenever possible, we use capital letters to denote random variables and use lowercase letters to
denote their realizations. We use ‖·‖ to denote the Euclidean norm on Rd and S+ to denote the set of
symmetric positive definite matrices in Rd×d. For any u ∈ Rd and Σ ∈ S+, we will use N (u,Σ) to
denote the multivariate normal distribution with mean u and covariance Σ.

2. Background

We let S = {Z1, Z2, . . . , Zn} denote a data set of n i.i.d. samples taking value in the set Z and
W = A(S) be the output of a (potentially randomized) learning algorithm run on data set S.
We assume that this output is a d-dimensional real-valued vector, representing parameters of a
potentially nonlinear model such as a neural network. The performance of a learning algorithm
is evaluated in terms of a loss function mapping data points and parameter vectors to positive
real numbers, with `(w, z) giving the loss of the model with parameters w ∈ Rd evaluated on
data point z ∈ Z . We will assume throughout that `(w, z) is differentiable with respect to w for
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all z, and let g(w, z) denote its gradient evaluated at w. Furthermore, we will assume that the
distribution of Z ∼ Z1 is such that `(w,Z) is R-subgaussian for any w ∈ Rd in the sense that
the inequality E [exp(y (`(w,Z)− E [`(w,Z)]))] ≤ exp(R2y2/2) is satisfied for all y ∈ R. This
condition clearly holds if the loss function is bounded on the support of the data distribution. Letting
S′ = {Z ′1, Z ′2, . . . , Z ′n} be an independent data set of the same distribution as S, and denoting the
average loss of w on data set s = {z1, z2, . . . , zn} by L(w, s) = 1

n

∑n
i=1 `(w, zi), we define our

main object of interest, the expected generalization error of algorithm A on the data set S as

gen(W,S) = E
[
L(W,S′)− L(W,S)

]
.

The expected generalization error (that we will often simply call generalization error) measures the
difference between the training loss L(W,S) and the test loss E [L(W,S′)|W ] on expectation with
respect to the randomness of the data set S and the output W . Our techniques will be based on the
now-classic results of Russo and Zou (2016); Xu and Raginsky (2017) that show that, under the
conditions stated above, the generalization error of any learning algorithm can be bounded as

|gen(W,S)| ≤
√

2R2I(W ;S)

n
, (1)

where I(W ;S) denotes the mutual information between the random variables W and S.
We will consider the classic stochastic gradient descent (SGD) algorithm originally proposed by

Robbins and Monro (1951) and applied here to approximately minimize the empirical loss L(w, S)
in terms of w on the data set S. This iterative algorithm operates by making sequential updates
to a parameter vector in the direction opposite to the gradient of the loss function evaluated at a
minibatch of data points. Such a minibatch estimator will be denoted with a slight abuse of notation
as g(w,ZJ) = 1

|J |
∑

i∈J g(w,Zi), where J ⊆ [n] is a set of indices. Then, the iterates of SGD are
given by drawing W1 from an arbitrary fixed distribution independent of S, and then updating the
parameters recursively as

Wt+1 = Wt − ηtGt = Wt − ηtg(Wt, ZJt) (2)

for all t = 1, . . . , T , where ηt is a positive learning-rate parameter and Jt ⊆ [n] is the set of bt
indices of the minibatch selected for the t-th update, and Gt = g(Wt, ZJt). We will assume that ηt
and Jt are chosen independently of the history or the data set, but otherwise make no restrictions
about them (e.g., we allow increasing and cyclic stepsizes, and randomized minibatch schedules
such as random shuffling). We will often denote the minibatch ZJt by Bt for brevity, and we will
sometimes refer to the quantity

∑T
t=1 bt/n as the number of passes over the data set.

3. Generalization-error bounds for SGD

Our main result is a bound on the generalization error of the final iterate WT produced by SGD as
defined in the previous section. The key quantities appearing in the bound are the following:

• The local value sensitivity of the loss function at w ∈ Rd, defined on data set s ∈ Zn at level
σ as

∆σ(w, s) = E [L(w, s)− L(w + ξ, s)]

where ξ ∼ N (0, σ2I). When the loss is µ-smooth, this quantity is bounded by µσ2d/2.
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• The local gradient sensitivity of the loss function, defined at w ∈ Rd and at level σ as

Γσ(w) = E
[
‖g(w)− g(w + ξ)‖2

]
,

where ξ ∼ N (0, σ2I), and g(w) = E [g(w,Z)] is the population gradient evaluated at w.
This quantity characterizes the sensitivity of the gradients of the expected loss function to
perturbations around w, and is upper-bounded by µ2σ2d when the loss function is globally
µ-smooth.

• The local gradient variance of the loss function defined at w ∈ Rd as

Vt(w) = E
[
‖g(w,Bt)− g(w)‖2

∣∣∣Wt = w
]
.

It is important to note that this is a non-standard notion of variance in that it measures the
expected squared Euclidean distance from the population gradient E [g(w,Z)] instead of the
conditional expectation of the gradient E [g(w,Z)|Wt = w].

Our main result is stated as follows:

Theorem 1 Fix any sequence σ = (σ1, σ2, . . . , σT ) of positive real numbers and define σ1:t =√∑t−1
k=1 σ

2
k for all t. Then, the generalization error of the final iterate of SGD satisfies

|gen(WT , S)| ≤

√√√√4R2

n

T∑
t=1

η2
t

σ2
t

E [Γσ1:t(Wt) + Vt(Wt)] +
∣∣∣E[∆σ1:T (WT , S

′)−∆σ1:T (WT , S)
]∣∣∣.

The proof is provided in Section 4. There are several interesting properties of this result. One of its
most important merits is that it depends on pathwise statistics of the SGD iterates, as the local gradient
sensitivity and variance parameters are evaluated along the path taken by SGD. Consequently, the
bound becomes small whenever the gradients demonstrate little variability along the path, both in
terms of varying w and Z. Finally, the bound also depends on the sensitivity of the loss function
to perturbations around the final output WT , measured both on the training set S and the test set
S′. Intuitively, this term becomes small if SGD outputs a parameter vector in a flat area of the loss
surface.

While it may feel unsatisfying that the tradeoffs involving σ are not characterized explicitly,
one can find consolation in the remarkable fact that the bound simultaneously holds for all possible
choices of σ. Indeed, this is a very useful property given that the bound presents some delicate
tradeoffs involving the parameters σ: large values of σ2

t decrease the first term in the bound related to
the variability of the gradients, at the expense of increasing the second term related to the flatness of
the loss around the final iterate. More generally, the optimal choice of these parameters can depend
on the local properties of the loss functions along the expected SGD path. One important limitation
is that the bound only holds for fixed sequences, and in particular that σt is not allowed to depend on
the past iterates W1:t. Similarly, the theorem crucially requires the sequence of learning rate schedule
to be fixed independently of the data. We provide a more detailed discussion of this issue at the
end of Section 5.3. On the other hand, it is possible to further extend the flexibility of the bound by
allowing more general perturbation covariances; details are provided in Section 5.1.
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3.1. Generalization-error guarantees for smooth loss functions

To provide some intuition about the magnitude of the terms in the bound, we state the following
corollary that provides a simpler bound under some concrete assumptions on the loss function and
the parameters:

Corollary 2 Suppose that ηt = η and bt = b for all t and the minibatches are chosen so that
for each i ∈ [n], there is exactly one index t such that i ∈ Jt. Furthermore, suppose that
E
[
‖g(w,Z)− g(w)‖2

]
≤ v for all w and that ` is globally µ-smooth in the sense that the in-

equality ‖g(w, z)− g(w + u, z)‖ ≤ µ ‖u‖ holds for all w, u ∈ Rd and all z ∈ Z . Then, the
generalization error of the final iterate of SGD satisfies the following bound for any σ:

|gen(WT , S)| = O

(√
R2η2T

n

(
µ2dT +

v

bσ2

)
+ µσ2dT

)
.

The proof follows from noticing that

Γσ1:t(w) = E
[
‖g(w + ξt, z)− g(w, z)‖2

]
≤ µ2E

[
‖ξt‖2

]
= µ2dσ2

1:t = µ2dσ2t

and that ∆σ1:T (WT , S) and ∆σ1:T (WT , S
′) can be bounded using

|E [`(WT , z)− `(WT + ξT , z)]| ≤ |E [〈∇`(w, z), ξT 〉]|+
µ

2
E
[
‖ξT ‖2

]
=
µσ2

1:Td

2
=
µσ2dT

2
,

where the equality follows from using E [ξT ] = 0 and the independence of WT and ξT . Furthermore,
the independence of ZJt and Wt implies that Vt(Wt) = 1

bE
[
‖g(Wt, Z)− E [g(Wt, Z

′)]‖2
]
≤ v

b .
The rates become better as T and η are decreased, but doing so can hurt the fit on the training

data. Furthermore, the rates also improve as b is increased, although only until a critical value where
the term µ2dT becomes dominant. Such tradeoffs involving the batch size are not uncommon in the
related literature (see, e.g., Lin et al., 2020). The noise variance σ2 still influences the bound in a
relatively complex way, but should be tuned as a function of the minibatch gradient variance v/b:
as this quantity approaches zero, one can afford to set smaller perturbations and improve the last
sensitivity term in the bound. Once again, we highlight that the optimal tuning of σ does not require
prior knowledge of problem parameters like v and µ.

We discuss the rates that can be derived from the bound in some important settings:

Small-batch SGD: Setting T = O(n) and b = O(1), it is not possible derive a bound that vanishes
with large n under the classic stepsize choice η = O(1/

√
n). That said, using η = O(1/n)

and σ = Θ(n−4/3), it is possible to guarantee the vanishing rate |gen(W ;S)| = O(n−1/3). of

Large-batch SGD: Setting T = O(
√
n) and b = Ω(

√
n), the stepsize as η = O(1/T ) =

O(1/
√
n), and σ = Θ(1/

√
n) we obtain a rate of |gen(W ;S)| = O(1/

√
n).

Interestingly, the rates for the latter case saturate when setting b = Θ(
√
n) and do not improve any

further even when setting b = ω(
√
n). Thus, even if the bounds of Corollary 2 remain qualitatively

true for larger batch sizes, no further improvement is to be expected. In both cases discussed above,
the rates are obviously far from being tight in general, especially in the small-batch case where using
stepsizes of order 1/

√
n are known to lead to bounds of order 1/

√
n for general convex functions,
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and even better rates are known when a smoothness assumption is also in place. That said, the above
examples show that it is indeed possible to achieve generalization-error bounds that are vanishing in
n, for parameter settings that are not entirely unrealistic. Notably, unlike the rates proved by Hardt
et al. (2016), the exponent of the rates we can guarantee is independent of the smoothness parameter
and the rates themselves are independent of the Lipschitz constant of the loss function. One downside
of our guarantees is their direct dependence on the dimension d which can be attenuated by using
more general perturbation distributions that are better adapted to the geometry of the loss function
(cf. Section 5.1).

3.2. Comparison with SGLD

To put our result into perspective, we now also describe the Stochastic Gradient Langevin Dynamics
(SGLD) algorithm that is essentially a variant of SGD that adds isotropic Gaussian noise to its iterates
(Gelfand and Mitter, 1991; Welling and Teh, 2011). Specifically, the iterates of SGLD are given by
the recursion

Wt+1 = Wt − ηtg(Wt, ZJt) + εt, (3)

for all t, where εt ∼ N (0, σ2
t I), and the hyperparameters ηt, σt and Jt are chosen according to an

arbitrary rule oblivious to the data set S. As first shown by Pensia et al. (2018), the generalization
error of this algorithm can be directly bounded in terms of the mutual information betweenWT and S,
which itself can be shown to be of order C2

∑T
t=1 η

2
t /σ

2
t , under the assumption that the loss function

is C-Lipschitz. This bound has been improved by Negrea et al. (2019) and Haghifam et al. (2020),
who replace the Lipschitz constant by a data-dependent quantity that is often orders of magnitude
smaller. Instead of reproducing their rather involved definitions, we state the following simple
guarantee that can be obtained via a straightforward modification of the proof of our Theorem 1:

Proposition 3 The generalization error of the final iterate of SGLD satisfies

gen(WT , S) ≤

√√√√R2

n

T∑
t=1

η2
t

σ2
t

E [Vt(Wt)].

While this bound can be weaker than the data-dependent ones mentioned above, they are quite
directly comparable to our results concerning SGD. One key difference is that the sensitivity terms
disappear from the generalization bound, which can be attributed to SGLD being inherently more
stable than SGD. This improved generalization-error guarantee however comes at the price of a worse
training error, owing to the presence of the perturbations in the updates. While this degradation is
difficult to quantify in general, it is qualitatively related to the effect captured by the sensitivity terms
in our bound for SGD: intuitively, large sensitivity of the gradients to perturbations along the path
can negatively impact the convergence speed in convex settings, and can result in large variations of
the final iterate in nonconvex settings. Thus, in a certain sense, the sensitivity terms in our bound for
SGD are pushed into the training error of SGLD. That said, there are known cases (e.g., strongly
convex loss functions) where adding perturbations to the iterates incrementally is known to result
in significantly better excess-risk guarantees than perturbing the final iterate (Feldman et al., 2018).
The extent to which this holds for general non-convex functions is unclear.

A major downside of SGLD is that it requires prior commitment to the sequence of perturbation
parameters σ. This is made complicated by the poorly-understood tradeoffs between the generaliza-
tion error and the training error: while the former is improved by setting large perturbation variances,
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the latter is clearly hurt by it. Since this tradeoff is characterized even less explicitly than in our main
result regarding SGD, it is virtually impossible to set σ in a way that optimizes both terms of the
excess risk. Thus, even if the sensitivity terms in our bound are worse than the excess training loss
of SGLD for a fixed σ, our bounds still have the major advantage of simultaneously holding for all
noise distributions, thus obviating the need to tune hyperparameters of the algorithm itself. Based
on the above discussion, we find it plausible that SGLD may generally be able to achieve better
excess risk than SGD, although with the major caveat that tuning its hyperparameters is prohibitively
complex as compared to SGD.

4. Analysis

The core idea of our analysis is applying the generalization bound (1) to a perturbed version of the
output WT , making sure that the mutual information between the input and the perturbed output is
bounded. To be precise, we define a perturbed version of the output as W̃T = WT + ξT , where ξT is
a random perturbation independent from the data and WT . For the proof of our main theorem, we
will use perturbations from a zero-mean isotropic Gaussian distribution with variance σ2

1:T , that is,
ξT ∼ N (0, σ2

1:T I). It is then straightforward to apply the generalization-error guarantee (1) to the
pair (W̃T , S) and bound the generalization error as

gen(WT , S) = gen(W̃T , S) + E
[
L(WT , S

′)− L(W̃T , S
′)
]

+ E
[
L(W̃T , S)− L(WT , S)

]
.

≤

√
2R2I(W̃T ;S)

n
+ E

[
∆σ1:T (WT , S

′)−∆σ1:T (WT , S)
]
.

(4)

The key challenge in the proof is controlling the mutual information I(W̃T ;S). In order to bound
this term, our analysis makes direct use of techniques first introduced by Pensia et al. (2018), with
subtle modifications made to account for the fact that our perturbations do not appear as part of the
algorithm, but are only defined to aid the analysis.

Our main technical idea is constructing the perturbation ξT in an incremental manner, and
using these incremental perturbations to define a perturbed SGD path. In particular, we define the
perturbations εt ∼ N (0, σ2

t I) and the perturbed SGD iterates through the recursion

W̃t+1 = W̃t − ηtGt + εt = W̃t − ηtg(Wt, ZJt) + εt. (5)

This procedure can be seen to produce W̃t = Wt + ξt with ξt =
∑t−1

k=1 εk ∼ N (0, σ2
1:t), eventually

yielding W̃T = WT + ξT as output. Intuitively, these iterates can be thought of as being between the
SGD iterates (2) and the SGLD iterates (3) in that they add random perturbations to each update, but
the gradients themselves are evaluated at the unperturbed SGD iterates. This results in a solution path
that is strongly coupled with the SGD iterates, yet is still amenable to analysis techniques introduced
by Pensia et al. (2018) due to the presence of the perturbations.

For the analysis, it will be also useful to define the “ghost SGD” iterates and their perturbed
counterpart as

W ′t+1 = W ′t − ηtG′t and W̃ ′t+1 = W̃ ′t − ηtG′t + ε′t

that use the independently drawn data set S′ and minibatch B′t indexed by J ′t to construct the gradient
estimates G′t = g(W ′t , B

′
t), and the independent perturbation ε′t ∼ N (0, σ2

t I). As we will see,
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bounding the mutual information between W̃T and S can be reduced to bounding the relative entropy
between the conditional distribution of W̃T given S and the marginal distribution of W̃ ′T (which
matches the marginal distribution of WT by definition).

The analysis crucially relies on the following general lemma that quantifies the effect of random
perturbations on the relative entropy of random variables:

Lemma 4 Let X and Y be random variables taking values in Rd with bounded second moments
and let σ > 0. Letting ε ∼ N (0, σ2I) be independent of X and Y , the relative entropy between the
distributions of X + ε and Y + ε is bounded as

D (PX+ε‖PY+ε) ≤
1

2σ2
E
[
‖X − Y ‖2

]
.

The bound is tight in the sense that it holds with equality if X and Y are constants, although we
also note that it can be arbitrarily loose in some cases (e.g., the left-hand side is obviously zero
when X and Y are identically distributed, whereas the right-hand side can be positive if they are
independent). This looseness can be addressed by observing that the bound allows for arbitrary
dependence between X and Y , so one can pick the coupling between these random variables that
minimizes the bound. In other words, the term on the right-hand side can be replaced by the squared
2-Wasserstein distance. Essentially the same result has been previously shown as Lemma 3.4.2
by Raginsky and Sason (2013) and a similar (although much less general) connection between the
relative entropy and the Wasserstein distance has been made by Zhang et al. (2020). We provide the
straightforward proof of Lemma 4 in Appendix A.

We are now in position to state and prove our most important technical result that, together with
the inequality (4), will immediately imply the statement of Theorem 1:

Theorem 5 Fix any sequence σ = (σ1, σ2, . . . , σT ) of positive real numbers and let σ1:t =√∑t−1
k=1 σ

2
k for all t. Then, the mutual information between W̃T and S satisfies

I(W̃T ;S) ≤
T∑
t=1

2η2
t

σ2
t

E [Γσ1:t(Wt) + Vt(Wt)] .

Proof We start by defining some useful notation. For all t, we let Qt|X and Q̃t|X respectively denote
the distributions of Wt and W̃t conditioned on the random variable X , and Q̃1:T |X denote the joint
distribution of W̃1:T = (W̃1, . . . , W̃T ) given X . Further, we will denote the distribution of the data
set as ν. Then, the mutual information between W̃T and S can be bounded as

I(W̃T ;S) = E
[
D
(
Q̃T |S

∥∥∥Q̃T)] ≤ E
[
D
(
Q̃1:T |S

∥∥∥Q̃1:T

)]
=

T∑
t=1

E
[
D
(
Q̃
t|W̃1:t−1,S

∥∥∥Q̃t|W̃1:t−1

)]
,

where the inequality follows from the data-processing inequality, and the last step uses the chain rule
of the relative entropy. Using the notation introduced above, we rewrite each term as

E
[
D
(
Q̃
t+1|W̃1:t,S

∥∥∥Q̃t+1|W̃1:t

)]
=

∫
s

∫
w̃1:t

D
(
Q̃t+1|w̃1:t,s

∥∥∥Q̃t+1|w̃1:t

)
dQ̃1:t|s(w̃1:t)dν(s)

=

∫
s

∫
w̃1:t

Ψt(w̃1:t, s)dQ̃1:t|s(w̃1:t)dν(s), (6)

9
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where we defined Ψt(w̃1:t, s) as the relative entropy between W̃t+1 and W̃ ′t+1 conditioned on the
previous perturbed iterates W̃1:t = W̃ ′1:t = w̃1:t and the data set S = s. It remains to bound these
terms for all t.

To proceed, notice that under these conditions, the updates can be written as

W̃t+1 = w̃t − ηtGt + εt and W̃ ′t+1 = w̃t − ηtG′t + ε′t.

Thus, given the condition W̃1:t = W̃ ′1:t = w̃1:t, the relative entropy between W̃t+1|S and W̃ ′t+1

equals the relative entropy between ηtGt − εt|S, w̃1:t and ηtG′t − ε′t|w̃1:t. Furthermore, under the
same condition, we have Gt = g(Wt, Bt) = g(w̃t − ξt, Bt) and G′t = g(W ′t , B

′
t) = g(w̃t − ξ′t, B′t),

so we can appeal to Lemma 4 to obtain the bound

Ψt(w̃1:t, s) ≤
η2
t

2σ2
t

E
[∥∥∥g(W̃t − ξt, Bt)− g(W̃t − ξ′t, B′t)

∥∥∥2
∣∣∣∣ W̃1:t = W̃ ′1:t = w̃1:t, S = s

]
.

Introducing the population gradient g(w) = E [g(w,Z)], and still using the condition that W̃t = W̃ ′t ,
we upper-bound the term in the above expectation as follows:∥∥∥g(W̃t − ξt, Bt)− g(W̃t − ξ′t, B′t)

∥∥∥2
=
∥∥∥g(W̃t − ξt, Bt)− g(W̃t) + g(W̃t)− g(W̃t − ξ′t, B′t)

∥∥∥2

≤ 2
∥∥∥g(W̃t − ξt, Bt)− g(W̃t)

∥∥∥2
+ 2

∥∥∥g(W̃t)− g(W̃t − ξ′t, B′t)
∥∥∥2

≤ 4
∥∥∥g(W̃t − ξt, Bt)− g(W̃t − ξt)

∥∥∥2
+ 4

∥∥∥g(W̃t − ξt)− g(W̃t)
∥∥∥2

+ 4
∥∥∥g(W̃t − ξ′t)− g(W̃t − ξ′t, B′t)

∥∥∥2
+
∥∥∥g(W̃t − ξ′t)− g(W̃t)

∥∥∥2

= 4 ‖g(Wt, Bt)− g(Wt)‖2 + 4 ‖g(Wt)− g(Wt + ξt)‖2

+ 4
∥∥g(W ′t)− g(W ′t , B

′
t)
∥∥2

+ 4
∥∥g(W ′t)− g(W ′t + ξ′t)

∥∥2
,

where each inequality follows from an application of Cauchy–Schwartz. Plugging the result into
Equation (6), we are left with integrating all terms with respect to the joint distribution of (W̃1:t, S).

To proceed, note that

E
[
‖g(Wt, Bt)− g(Wt)‖2

∣∣∣ W̃1:t = W̃ ′1:t = w̃1:t, S = s
]

= E
[
‖g(Wt, Bt)− g(Wt)‖2

∣∣∣ W̃1:t = w̃1:t, S = s
]

due to the independence of Wt, Bt from W̃ ′t . Thus, we have∫
s

∫
w̃1:t

E
[
‖g(Wt, Bt)− g(Wt)‖2

∣∣∣ W̃1:t = W̃ ′1:t = w̃1:t, S = s
]

dQ̃1:t|s(w̃1:t)dν(s)∫
s

∫
w̃1:t

E
[
‖g(Wt, Bt)− g(Wt)‖2

∣∣∣ W̃1:t = w̃1:t, S = s
]

dQ̃1:t|s(w̃1:t)dν(s)

= E
[
‖g(Wt, Bt)− g(Wt)‖2

]
.

10
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Similarly, we observe that

E
[∥∥g(W ′t , B

′
t)− g(W ′t)

∥∥2
∣∣∣ W̃1:t = w̃1:t, W̃

′
1:t = w̃1:t, S = s

]
= E

[∥∥g(W ′t , B
′
t)− g(W ′t)

∥∥2
∣∣∣ W̃ ′1:t = w̃1:t

]
due to the independence of W̃ ′t , B

′
t from W̃t and S, so we can write∫

s

∫
w̃1:t

E
[∥∥g(W ′t , B

′
t)− g(W ′t)

∥∥2
∣∣∣ W̃1:t = W̃ ′1:t = w̃1:t, S = s

]
dQ̃1:t|s(w̃1:t)dν(s)

=

∫
s

∫
w̃1:t

E
[∥∥g(W ′t , B

′
t)− g(W ′t)

∥∥2
∣∣∣ W̃ ′1:t = w̃1:t

]
dQ̃1:t|s(w̃1:t)dν(s)

=

∫
w̃1:t

E
[∥∥g(W ′t , B

′
t)− g(W ′t)

∥∥2
∣∣∣ W̃ ′1:t = w̃1:t

]
dQ̃1:t(w̃1:t)

= E
[∥∥g(W ′t , B

′
t)− g(W ′t)

∥∥2
]

= E
[
‖g(Wt, Bt)− g(Wt)‖2

]
,

where the last step follows from noticing that the marginal distributions of Wt and W ′t are the same.
As for the remaining terms, we first have the following:∫

s

∫
w̃1:t

E
[
‖g(Wt + ξt)− g(Wt)‖2

∣∣∣ W̃1:t = w̃1:t, S = s
]

dQ̃1:t|s(w̃1:t)dν(s)

=

∫
w̃t

E
[
‖g(Wt + ξt)− g(Wt)‖2

∣∣∣ W̃t = w̃t

]
dQ̃t(w̃t)

=

∫
wt

∫
w̃t

E
[
‖g(wt + ξt)− g(wt)‖2

∣∣∣ W̃t = w̃t,Wt = wt

]
dQ̃t|wt

(w̃t)dQt(wt)

=

∫
wt

E
[
‖g(wt + ξt)− g(wt)‖2

∣∣∣Wt = wt

]
dQt(wt) = E [Γσ1:t(Wt)] ,

where the final step follows from noticing that the conditional distribution of ξt given Wt is a
zero-mean Gaussian with covariance σ2

1:tI , and recalling the definition of Γ. A similar derivation
gives∫

s

∫
w̃1:t

E
[∥∥g(W ′t + ξ′t)− g(W ′t)

∥∥2
∣∣∣ W̃ ′1:t = w̃1:t, S = s

]
dQ̃1:t|s(w̃1:t)dν(s)

=

∫
w̃t

E
[∥∥g(W ′t + ξ′t)− g(W ′t)

∥∥2
∣∣∣ W̃ ′t = w̃t

]
dQ̃t(w̃t)

=

∫
w′t

∫
w̃t

E
[∥∥g(w′t + ξ′t)− g(w′t)

∥∥2
∣∣∣ W̃ ′t = w̃t,W

′
t = w′t

]
dQ̃t|w′t(w̃t)dQt(w

′
t)

=

∫
w′t

∫
w̃t

E
[∥∥g(w′t + ξ′t)− g(w′t)

∥∥2
∣∣∣W ′t = w′t

]
dQt(w

′
t) = E

[
Γσ1:t(W

′
t)
]

= E [Γσ1:t(Wt)] ,

where we again used that the marginal distribution of W ′t matches that of Wt. The proof is concluded
by putting everything together.
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5. Extensions

In this section, we discuss some additional results that can be derived using the techniques developed
in previous parts of the paper, as well as propose some open problems for future research.

5.1. Geometry-aware guarantees

One potential criticism regarding the bound of Theorem 1 is that it heavily depends on the parametriza-
tion of the loss function. Indeed, measuring the sensitivity of the values and the gradients of the
loss function in terms of isotropic Gaussian perturbations is somewhat arbitrary, and can result in
very conservative bounds. In particular, the loss function may have better smoothness properties and
the gradients could have lower variance when measured in terms of different norms, and the final
optimum may be more sensitive to perturbations in certain directions than in other ones. Luckily, our
framework allows addressing these issues by using perturbations of a more general form, specifically
Gaussian perturbations with general covariance matrices. The key technical result that allows us to
take advantage of this generalization is the following simple variant of Lemma 4:

Lemma 6 Let X and Y be random variables taking values in Rd with bounded second moments
and let Σ be an arbitrary symmetric positive definite matrix. Letting ε ∼ N (0,Σ) be independent of
X and Y , the relative entropy between the distributions of X + ε and Y + ε is bounded as

D (PX+ε‖PY+ε) ≤
1

2
E
[
‖X − Y ‖2Σ−1

]
.

Accordingly, we can define the generalized local gradient sensitivity and variance functions

ΓΣ,Σ′(w) = E
[
‖g(w)− g(w + ξ)‖2Σ−1

]
and Vt,Σ(w) = E

[
‖g(w,Bt)− g(w)‖2Σ−1

∣∣∣Wt = w
]
,

where ξ ∼ N (0,Σ′), and adapt the definition of ∆ as ∆Σ(w, s) = E [L(w, s)− L(w + ξ, s)] with
ξ ∼ N (0,Σ). Then, we can prove the following refined version of Theorem 1:

Theorem 7 Fix any sequence Σ = (Σ1,Σ2, . . . ,ΣT ) of symmetric positive definite matrices and
let Σ1:t =

∑t−1
k=1 Σk for all t. Then, the generalization error of the final iterate of SGD satisfies

|gen(WT , S)| ≤

√√√√4R2

n

T∑
t=1

η2
tE [ΓΣt,Σ1:t(Wt) + Vt,Σt(Wt)]+

∣∣∣E[∆Σ1:T
(WT , S

′)−∆Σ1:T
(WT , S)

]∣∣∣.
The proof is left as a straightforward exercise for the reader: one only needs to use the perturbations
εt ∼ N (0,Σt) and apply Lemma 6 instead of Lemma 4 in the proof of Theorem 1. As before, this
guarantee comes with the attractive property of simultaneously holding for all possible choices of Σ,
and is thus able to take advantage of potentially hidden geometric properties of the loss landscape.

5.2. Bounds for general learning algorithms

Our core idea of conducting a perturbation analysis of the output of SGD can be easily generalized
to prove generalization guarantees for a much broader family of algorithms. In fact, the following
bound can be proved without making any assumptions about how the output W is constructed:

12
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Proposition 8 Let W and W ′ be the Rd-dimensional outputs of a learning algorithm A run on the
independent and i.i.d. data sets S and S′. Then, the generalization error of A is bounded as

|gen(W,S)| ≤ inf
Σ∈S+

{√
R2

n
E
[
‖W −W ′‖2Σ−1

]
+
∣∣∣E[∆Σ(W,S′)−∆Σ(W,S)

]∣∣∣} .
Notably, this bound only depends on the norms of the parameter vectors and does not involve
undesirable quantities like Lipschitz constants or the total number of parameters. While we are aware
of generalization bounds with similar qualities for specific families of deep neural networks (e.g.,
Neyshabur et al., 2015; Bartlett et al., 2017; Neyshabur et al., 2018; Long and Sedghi, 2019), we are
not aware of any guarantee of comparable generality in the literature, and we believe that it might be
of independent interest. We also believe that this bound can be made tighter in special cases by using
the chaining techniques of Asadi et al. (2018) and Asadi and Abbe (2020).

It is tempting to use the above guarantee to study the generalization properties of SGD. As we
show below, this gives significantly weaker bounds than our main result. To see this, let us consider
the special case Σ = σ2

1:T I = σ2T · I and write

1

2σ2T
E
[∥∥WT −W ′T

∥∥2
]

=
1

2σ2T
E

∥∥∥∥∥
T∑
t=1

ηt(Gt −G′t)

∥∥∥∥∥
2
 ≤ 1

2σ2

T∑
t=1

η2
tE
[∥∥Gt −G′t∥∥2

]
,

where the last step follows from Jensen’s inequality. While superficially similar to the bound of
Theorem 1, this bound is in fact much weaker since it depends on the marginal variance of the
gradients, which can be very large in general. Nevertheless, assuming that the loss function is
C-Lipschitz, we can simply bound ‖Gt −G′t‖ ≤ C and obtain a mutual-information bound that is
comparable to the one proved for SGLD by Pensia et al. (2018): for constant ηt = η and σt = σ,
both bounds are of order η2C2T/σ2. Still, as previously discussed, the sensitivity term in our bound
can be much larger than the excess empirical risk of SGLD, making the guarantee derived using this
generic technique weaker overall.

5.3. Variations on SGD

It is natural to ask if our techniques are applicable for analyzing other iterative algorithms besides the
vanilla SGD variant considered in the previous sections. We discuss a few possible extensions below.

Momentum, extrapolation, and iterate averaging. Following Pensia et al. (2018), it is easy to
incorporate momentum into our updates by simply redefining w as the concatenation of the parameter
vector and the rolling geometric average of the gradients, and redefining the function g appropriately.
Gradient extrapolation can be also handled similarly—we refer the interested reader to Sections
4.3–4.4 of Pensia et al. (2018) for details of these extensions. An extension not covered in their work
is iterate averaging, which can be written as the recursion[

Wt+1

Ut+1

]
=

[
Wt − ηtg(Wt, ZJt)
γtUt + (1− γt)Wt

]
=

[
I 0

(1− γt)I γtI

] [
Wt+1

Ut+1

]
−
[
ηtg(Wt, ZJt)

0

]
,

where γt is a sequence of weights in [0, 1] (some common choices being t−1
t leading to uniform

averaging or a constant γ that leads to geometric tail-averaging). This SGD variant outputs UT =

13
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∑T
t=1(1 − γt)

∏T
k=t γkWt. It is easy to deduce that our guarantees continue to hold for all these

extensions, with the pathwise gradient statistics defined in terms of the appropriately redefined update
function g. Thus, our bounds do not show a qualitative improvement in terms of generalization error
for such methods, which may seem counterintuitive since interpolation and iterate averaging are
known to offer stabilization properties in a variety of settings (Neu and Rosasco, 2018; Mücke et al.,
2019; Lin et al., 2020). Not being able to account for this effect seems to be an inherent limitation of
our technique, most likely caused by upper bounding the mutual information between W̃T and S by
the mutual information between the entire SGD path and S in the very first step of the proof. We do
not believe that a simple fix is possible.

Adaptive learning rates and perturbations. While our analysis uses a fixed sequence of learning
rates ηt, it may be possible to replace these with adaptive stepsizes and even preconditioners such as
the ones used in AdaGrad or ADAM (Duchi et al., 2011; Kingma and Ba, 2015). A straightforward
way to do this is including these as part of the function g, but extra care needs to be taken due
to the long-term dependence of these stepsizes of the past gradients. We believe that the most
common incrementally defined stepsize rules can be incorporated in our framework by appropriately
conditioning the distribution of Wt on them, but we leave working out the details of this extension as
future work. Similarly, we believe that using adaptive perturbation distributions (i.e., choosing each
σt as a function of the history) is possible, but is subject to the same challenges. One caveat is that
it may be difficult to argue that ∆σ1:T (WT , S) would be small in this case, due to the complicated
dependence between the perturbations, WT , and S.

6. Discussion

While our work has arguably shed some new light on previously unknown aspects of SGD gener-
alization, our results are definitely far from being truly satisfactory. Indeed, while the key terms
concerning the perturbation-sensitivity of the loss function and the variance of the gradients have
clear intuitive meaning, it is entirely unclear if they are actually the right quantities for characterizing
the generalization properties of SGD. In fact, we believe that it may be extremely challenging to
verify our findings empirically and we find it unlikely that matching lower bounds could be shown.
Even if the quantities we identify turn out to correctly characterize generalization, our results fail
to explain why running SGD would ever result in trajectories with these quantities being small and
thus good generalization. For these reasons, we prefer to think of our work as a mere first step of a
potentially interesting line of research, rather than truly a mature contribution.

One important limitation of our bounds is that they feature a non-standard definition of gradient
variance, which can make interpretation of the results somewhat difficult. Indeed, while Vt(w) truly
corresponds to the variance of the stochastic gradient evaluated at w in the single-pass case, its
meaning is much less clear when performing multiple passes over the data set due to the complicated
dependence between the current iterate Wt and the previously sampled data points. Thus, in this
case, the effect of the choice of hyperparameters like the minibatch size and the number of passes is
difficult to quantify and requires further investigation. On a similar note, we remark that the particular
choice of g(Wt) as the population gradient in the definitions of Γ and V is not the only possible
one, and in fact it can be replaced by any σ(W1:t)-measurable function. A natural choice would
be the time-dependent gt = E [g(w,Z)|Wt = w] which would result in a more natural definition
of gradient variance, but a much less interpretable notion of gradient sensitivity. We leave the
exploration of other alternatives for future work.
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Arguably, the most interesting aspect of our work is the analysis technique we introduced for
proving Theorem 5. Of course, our proof technique builds on several elements that are familiar
from previous work. In particular, the core idea of adding noise to the output of learning algorithms
to ease analysis has been used in numerous works in the past decades. Indeed, early versions of
this idea have been proposed by Hinton and van Camp (1993) and Langford and Caruana (2002)
from the perspective of PAC-Bayesian generalization bounds (McAllester, 1999, 2013), which
approach has been adapted to modern deep neural networks by Dziugaite and Roy (2017). Since
then, PAC-Bayesian bounds have been successfully applied to prove a range of generalization bounds
for this important setting (see, e.g., Neyshabur et al., 2018; Dziugaite et al., 2021). More broadly, the
idea of adding noise to induce stability (and thus better generalization) has also been studied in the
literature on differential privacy (Dwork et al., 2006a,b; Chaudhuri et al., 2011; Bassily et al., 2014)
and adaptive data analysis (Dwork et al., 2015b,a; Feldman and Steinke, 2017, 2018). That said, we
believe that the particular idea of analyzing SGD through the noise decomposition in Equation (5) is
indeed novel, and we expect that this idea may have a chance to inspire future analyses of iterative
algorithms.
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Appendix A. The proof Lemma 4

Let us denote the joint distribution of X,Y by PX,Y and observe that the respective distributions of
X + ε and Y + ε can be written as

PX+ε =

∫
x,y
N (x, σ2I)dPX,Y (x, y) and PY+ε =

∫
x,y
N (y, σ2I)dPX,Y (x, y),

where N (x, σ2I) is the Gaussian distribution with mean x and covariance σ2I . Using this observa-
tion, we can write

D (PX+ε‖PY+ε) = D
(∫

x,y
N (x, σ2I)dPX,Y (x, y)

∥∥∥∥∫
x,y
N (y, σ2I)dPX,Y (x, y)

)
≤
∫
x,y
D
(
N (x, σ2I)

∥∥N (y, σ2I)
)

dPX,Y (x, y)

= EX,Y
[
D
(
N (X,σ2I)

∥∥N (Y, σ2I)
)]

=
1

2σ2
EX,Y

[
‖X − Y ‖2

]
,

where the second line uses Jensen’s inequality and the joint convexity of D (·‖·) in its arguments,
and the last line follows from noticing that D (N (x,Σ)‖N (y,Σ)) = 1

2 ‖x− y‖
2
Σ−1 for any x, y and

any symmetric positive definite covariance matrix Σ.

Appendix B. The proof of Proposition 3

The proof is very similar to that of Theorem 5, with a few simplifications that are made possible by
adding the perturbations directly to the iterates. We start by defining the auxiliary process

W ′t+1 = W ′t − ηtg(W ′t) + ε′t,

that is similar to the full-batch SGLD process, except in each iteration the gradient update equals to
the population gradient computed at the current point, i.e.,W ′t . Also, the perturbation ε′t ∼ N (0, σ2I)
is independent of W ′t , and the perturbations are independent across the iterations.
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Then, the mutual information between WT and S can be bounded as

I(WT ;S) ≤ E
[
D
(
QT |S

∥∥Q′T )] ≤ E
[
D
(
Q1:T |S

∥∥Q′1:T

)]
=

T∑
t=1

E
[
D
(
Qt|W1:t−1,S

∥∥∥Q′t|W1:t−1

)]
,

where the first inequality follows from the variational characterization of the mutual information
(Kemperman, 1974). Then, the second inequality follows from the data-processing inequality, and
the last step uses the chain rule of the relative entropy. Using the notation introduced above, we
rewrite each term as

E
[
D
(
Qt+1|W1:t,S

∥∥∥Q′t+1|W1:t

)]
=

∫
s

∫
w1:t

D
(
Qt+1|w1:t,s

∥∥∥Q′t+1|w1:t

)
dQ1:t|s(w1:t)dν(s)

=

∫
s

∫
w1:t

Ψt(w1:t, s)dQ1:t|s(w1:t)dν(s), (7)

where we defined Ψt(w1:t, s) as the relative entropy between Wt+1 and W ′t+1 conditioned on the
previous perturbed iterates W1:t = W ′1:t = w1:t and the data set S = s. It remains to bound these
terms for all t. To do so, we can appeal to Lemma 4 to obtain the bound

Ψt(w1:t, s) ≤
η2
t

2σ2
t

E
[
‖g(Wt, Bt)− g(Wt)‖2

∣∣∣W1:t = W ′1:t = w1:t, S = s
]
.

Finally, by plugging this bound into Equation (7), the desired result follows.
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