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EXAMPLE: SEQUENTIAL ROUTING

Decision set: set of all 𝑢 → 𝑤 paths

Delay on each edge can change arbitrarily over time

Goal: minimize total delay

𝑤𝑢
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ONLINE COMBINATORIAL OPTIMIZATION

• For each time step 𝑡 = 1,2, … , 𝑇
• Learner chooses action 𝑉𝑡 ∈ 𝑆 ⊆ 0,1 𝑑

• Adversary selects loss vector ℓ𝑡 ∈ [0,1]𝑑

• Learner suffers loss 𝑉𝑡
⊤ℓ𝑡

• Learner observes feedback based on 𝑉𝑡

and ℓ𝑡

Decision set:

𝑆 = 𝑣𝑖 𝑖=1
𝑁 ⊆ 0,1 𝑑

𝑣𝑖 1 ≤ 𝑚



FEEDBACK ASSUMPTIONS

Full bandit:
𝑉𝑡

⊤ℓ𝑡 ∈ [0,𝑚]

Semi-bandit:
ℓ𝑡,𝑖 for all 𝑖 s.t. 𝑉𝑡,𝑖 = 1

Full info:

ℓ𝑡 ∈ 0,1 𝑑



REGRET

Goal: minimize (expected) regret

𝑅𝑇 = max
𝑣∈𝑆

𝐄  

𝑡=1

𝑇

𝑉𝑡 − 𝑣 ⊤ℓ𝑡



FOLLOW THE PERTURBED LEADER (FPL)

Parameter: learning rate 𝜂 > 0, 𝐿0 = 0
For each time step 𝑡 = 1,2, … , 𝑇
• Draw perturbation vector 𝑍𝑡 with 

𝑍𝑡,𝑖 ∼ Exp 𝜂 i.i.d. for all 𝑖 ∈ 1,2, … , 𝑑

• Choose 𝑉𝑡 = argmin
𝑣∈𝑆

𝑣⊤ 𝐿𝑡−1,𝑖 − 𝑍𝑡,𝑖

• Observe ℓ𝑡 and let 𝐿𝑡 = 𝐿𝑡−1 + ℓ𝑡



THE ADVANTAGE OF FPL

Examples:

 Shortest paths

FPL is efficient whenever the optimization
min
𝑣∈𝑆

𝑣⊤ℓ

can be solved efficiently
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THE ADVANTAGE OF FPL

Examples:

 Shortest paths

 Ranking

 Perfect matchings

 Spanning trees

 etc.

FPL is efficient whenever the optimization
min
𝑣∈𝑆

𝑣⊤ℓ

can be solved efficiently



“PROBLEMS” WITH FPL

“FPL is suboptimal by far!” 

“FPL only works for 

oblivious adversaries!” 

“FPL doesn’t work with 

bandit feedback!” 



BEST KNOWN RESULTS

Full info Semi-bandit Full bandit Efficient

EWA/EXP3 𝑚3/2 𝑇 log 𝑑/𝑚 𝑚 𝑑𝑇 log 𝑑/𝑚 𝑚3/2 𝑑𝑇 log 𝑑/𝑚 sometimes

Mirror 

descent
𝑚 𝑇 log 𝑑/𝑚 𝑚𝑑𝑇 ??? sometimes

FPL 𝑚 𝑑𝑇 log 𝑑 ??? ??? always



BEST KNOWN RESULTS + OUR NEW 
RESULTS

Full info Semi-bandit Full bandit Efficient
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Mirror 

descent
𝑚 𝑇 log 𝑑/𝑚 𝑚𝑑𝑇 ??? sometimes

FPL 𝑚3/2 𝑇 log𝑑 𝑚 𝑑𝑇 log 𝑑 ??? always



“FPL DOESN’T WORK WITH BANDIT 
FEEDBACK”

Q: how do we estimate unobserved losses?

A: use the estimates

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝐏𝑡 𝑉𝑡,𝑖 = 1
𝑉𝑡,𝑖

Unbiased since 𝐄t 𝑉𝑡,𝑖 = 𝐏𝑡 𝑉𝑡,𝑖 = 1 …

… but how do we compute this?



“FPL DOESN’T WORK WITH BANDIT 
FEEDBACK”

𝑉𝑡 = argmin
𝑣

𝑣⊤  𝐿𝑡−1 + 𝑍𝑡 𝑞𝑡,𝑖 = 𝐏𝑡[𝑉𝑡,𝑖 = 1]

Poland (2005):

Estimate 𝑞𝑡,⋅ by 𝑂 𝑇2 samples



IDEA: GEOMETRIC RESAMPLING

Observe that we need to estimate 1/𝑞𝑡,𝑖 , not 𝑞𝑡,𝑖 !

Back to school: biased coin with 𝐏 heads = 𝑞

T T T H

Expected number of 

tosses until first H: 1/𝑞

…



GEOMETRIC RESAMPLING FOR SEMI-
BANDIT INFO

• Draw 𝑉𝑡 ∼ 𝒑𝑡

• Observe {𝑉𝑡,𝑖ℓ𝑡,𝑖}
• Draw 𝑉𝑡

′ 1 , 𝑉𝑡
′ 2 ,… ∼ 𝒑𝑡

• Let 𝐾𝑡,𝑖 = min 𝑘: 𝑉𝑡
′ 𝑘 = 1

• Let  ℓ𝑡,𝑖 = ℓ𝑡,𝑖𝐾𝑡,𝑖𝑉𝑡,𝑖

Unbiased since 

• 𝐄t 𝑉𝒕,𝒊 = 𝑞𝑡,𝑖

• 𝐄t[𝐾𝑡,𝑖] = 1/𝑞𝑡,𝑖



REGRET GUARANTEES

Theorem:

𝑅𝑇
𝐹𝑃𝐿+𝐺𝑅 ≤ 2𝑚 2𝑑𝑇(log 𝑑 + 1)

Theorem:

𝑅𝑇
𝐹𝑃𝐿 ≤ 2𝑚3/2 𝑇(log 𝑑 + 1)

Semi-bandit

Full info

𝑑 → 𝑚



FULL INFO PROOF SKETCH – STANDARD 
PART

For the analysis, introduce  𝑍 ∼ 𝑍1

Introduce
 𝑉𝑡 = argmin

𝑣∈𝑆
𝑣⊤( 𝐿𝑡 −  𝑍)

Notice that  𝑉𝑡 ∼ 𝑉𝑡+1 and the two are 
independent

Be-the-leader lemma: for any 𝑣 ∈ 𝑆,

𝐄  

𝑡=1

𝑇

 𝑉𝑡 − 𝑣
⊤
ℓ𝑡 ≤

𝑚 log 𝑑 + 1

𝜂



FULL INFO PROOF SKETCH – NEW PART

Let  𝑝𝑡 𝑣 = 𝐏[  𝑉𝑡 = 𝑣]

Show that
 𝑝𝑡 𝑣 ≥  𝑝𝑡−1 𝑣 1 − 𝜂𝑣⊤ℓ𝑡 ,

and thus

𝐄 𝑉𝑡
⊤ℓ𝑡 ≤ 𝐄  𝑉𝑡

⊤ℓ𝑡 + 𝜂  

𝑣∈S

 𝑝𝑡−1 𝑣 𝑣⊤ℓ𝑡
2

≤ 𝐄  𝑉𝑡
⊤ℓ𝑡 + 𝜂𝑚2



FULL INFO PROOF SKETCH – PUTTING IT 
TOGETHER

Eventually, we get

𝐸  

𝑡=1

𝑇

𝑉𝑡 − 𝑣 ⊤ℓ𝑡 ≤
𝑚 log 𝑑 + 1

𝜂
+ 𝜂𝑚2𝑇



SEMI-BANDIT PROOF SKETCH

𝑚 log 𝑑 + 1

𝜂

𝑚 log 𝑑 + 1

𝜂

𝜂𝑚2 2𝜂𝑚𝑑



WHERE DOES THE SAMPLING HURT?

Had we known the 𝑞𝑡,𝑖 ’s, we could do

2𝜂𝑚𝑑 → 𝜂𝑚𝑑

How much samples do we need?

 Expectation: 𝑑 

Worst-case: ∞ 

Stop sampling after 𝑀 steps!

Additional regret: 
𝑑𝑇

𝑒𝑀



WHERE DOES THE SAMPLING HURT?

Theorem:

𝑅𝑇
𝐹𝑃𝐿+𝐺𝑅 ≤ 2𝑚 2𝑑𝑇(log 𝑑 + 1)

Theorem:

𝑅𝑇
𝐹𝑃𝐿+𝐺𝑅 ≤ 3𝑚 2𝑑𝑇(log 𝑑 + 1)

𝑀 = ∞

𝑀 = 𝑂( 𝑑𝑇/𝑚)



COMPUTATIONAL COMPLEXITY

𝑓 𝑆 ≜ Time to solve optimization on 𝑆
 Shortest paths: 𝑓 𝑆 = 𝑂(𝑑)

 Spanning trees: 𝑓 𝑆 = 𝑂 𝑑 log 𝑑

 Perfect matchings: 𝑓 𝑆 = 𝑂 𝑚𝑑2

Total running time:

• Expectation: 𝑑𝑇𝑓 𝑆

• Worst-case: 𝑑𝑇3/2𝑓 𝑆 /𝑚



CONCLUSIONS & FUTURE WORK

Results

• Most efficient method for 
online learning with semi-
bandit feedback

• Closed the gap between 
performance guarantees of 
expanded EXP3 and FPL

Open problems

• Full bandit feedback?

• Even stronger bounds for 
FPL?

• Is there an inherent 
computation/performance 
tradeoff in online learning?


