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LEARNING WITH | — ™
SEMI-BANDIT FEEDBACK | aims™

AN EFFICIENT ALGORITHM FOR |~ ceroety ne.



EXAMPLE: SEQUENTIAL ROUTING

Decision set: set of all u &> w paths
Delay on each edge can change arbitrarily over time

Goal: minimize total delay
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ONLINE COMBINATORIAL OPTIMIZATION

* For eachtimestept = 1,2,...,T

* Learner chooses V., eSc{01}¢

* Adversary selects ¢, €10,1]¢

e Learner suffers loss V' £,

* Learner observes based on V;
and ¥

Decision set:
S ={v;}iL, €{0,1}4




FEEDBACK ASSUMPTIONS

Full bandit:
V. ¢, € [0,m]

Semi-bandit:

Ceiforallist. V=1
Full info:
¢, €[0,1]¢




REGRET

Goal: minimize (expec’red) regret

RT — maXE Z(Vt — U)T‘gt




FOLLOW THE PERTURBED LEADER (FPL)

Parameter: learning rate n > 0, Ly = 0
For each time step t = 1,2, ..., T
Draw perturbation vector Z; with

Zy; ~ Exp(n) iid. foralli € {1,2,...,d}

Choose V; = arg I}}el? UT(Lt—l,i - Zt,i)

Observe £ and let Ly = L1 + £,




THE ADVANTAGE OF FPL

FPL is efficient whenever the optimization
minv ' ¢

veS
can be solved efficiently

Examples:
* Shortest paths
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THE ADVANTAGE OF FPL
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Examples:
Shortest paths
Ranking
Perfect matchings
Spanning trees

etc.




“FPL only works for
oblivious adversaries!”

“FPL is suboptimal by far!” \ 7

DON'7FOLLOW THE PERT iRRpr
LEADER

“FPL doesn’t work with
bandit feedback!”

“PROBLEMS™ WITH FPL




| BEST KNOWN RESULTS

ERETEEAETEE

EWA/EXP3  m3/2,/Tlog(d/m) m./dT log(d/m) m3?2/dTlog(d/m) sometimes

Mirror

m+/T log(d/m) VvmdT 222 sometimes

descent

FPL m,/dT logd e22 222 always



BEST KNOWN RESULTS + OUR NEW
RESULTS

ERETEEAETEE

EWA/EXP3  m3/2,/Tlog(d/m) m./dT log(d/m) m3?2/dTlog(d/m) sometimes

Mirror

m+/T log(d/m) VvmdT 222 sometimes

descent

FPL m3/2 /T logd m,/dT logd %22 always




“FPL DOESN'T WORK WITH BANDIT
FEEDBACK™

Q: how do we estimate unobserved losses?

A: use the estimates

Unbiased since E|V,;| = P|V;; = 1]...

... but how do we compute this?




“FPL DOESN'T WORK WITH BANDIT
FEEDBACK™

////// /7

V., = inv' (L, +Z
£ arg;nlnv (tl t) ////

/

Poland (2005):
Estimate g¢. by O(T?) samples




| IDEA: GEOMETRIC RESAMPLING

Observe that we need to estimate 1/q; ;, not q; ;!

Back to school: biased coin with P[heads]

Expected number of

tosses until first H: 1/g




GEOMETRIC RESAMPLING FOR SEMI-
BANDIT INFO

* Draw V; ~ p;
* Observe {Vi;?:;}
* Draw Vt'(l), Vt'(Z), ™~ Pt

* Let K;; = min{k:V; (k) = 1}
* Llet¥y; =€ K iV

Unbiased since
: Et[Vt,i] = Q¢
. Et[Kt,i] =1/q:,;




REGRET GUARANTEES

Semi-bandit

Theorem:

REPL+GR < 2m [2dT (logd + 1)

Full info

Theorem:

REPL < 2m3/2/T(logd + 1)




FULL INFO PROOF SKETCH — STANDARD
PART

For the analysis, introduce Z ~ Z;
Introduce
V., =argminv' (L, — Z)
VES
Notice that V; ~ V., and the two are

independent

Be- fhe leader lemma: for any v € §,

E(V 5 v) m(logd +1)




FULL INFO PROOF SKETCH — NEW PART

Let P (v) = P[V; = v]

Show that
(V) = P (v)(1 — UVTft),
and thus

E[V,¢,] <E[V.¢]+n 2 Deq(0)(w'4,)?
< E[VTe,] +nm?



FULL INFO PROOF SKETCH — PUTTING IT
TOGETHER

Eventually, we get

T
m(logd + 1
E Z(Vt—v)Tft < ( g77 )+17sz
t=1




SEMI-BANDIT PROOF SKETCH

m(logd + 1) m(logd + 1)




WHERE DOES THE SAMPLING HURT?

Had we known the q; ;’s, we could do

2nmd - nmd

How much samples do we need?
* Expectation: d ©

* Worst-case: 00 @

Stop sampling after M steps!

dr

Additional regret: —
eM




WHERE DOES THE SAMPLING HURT?

Theorem:

REPL+GR < 2m [2dT (logd + 1)

M = 0(\dT /m)

Theorem:

REPLTGR < 3m. /2dT (logd + 1)




COMPUTATIONAL COMPLEXITY

f(S) £ Time to solve optimization on S
“ Shortest paths: f(S) = 0(d)

“ Spanning trees: f(S) = 0(dlogd)

* Perfect matchings: f(S) = 0(md?)

Total running time:

* Expectation: dTf(S)

e Worst-case: VAT 32 f(S)/m



| CONCLUSIONS & FUTURE WORK

Results Open problems

* Most efficient method for * Full bandit feedback?

online learning with semi- * Even stronger bounds for
bandit feedback FPL?2

* Closed the gap between * |s there an inherent

performance guarantees of computation/performance
expanded EXP3 and FPL tradeoff in online learning?




