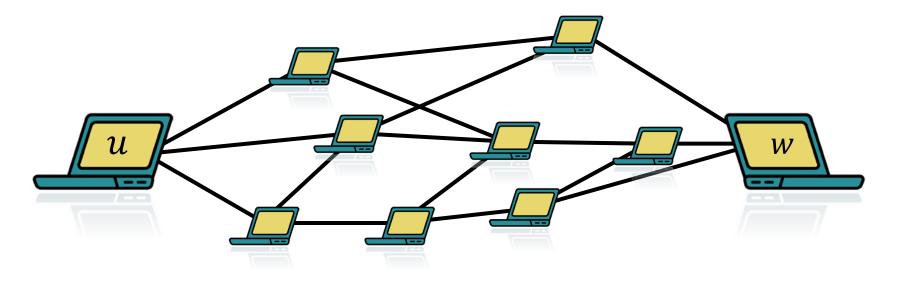


AN EFFICIENT ALGORITHM FOR LEARNING WITH SEMI-BANDIT FEEDBACK

Gergely Neu INRIA Lille

Gábor Bartók ETH Zürich

EXAMPLE: SEQUENTIAL ROUTING

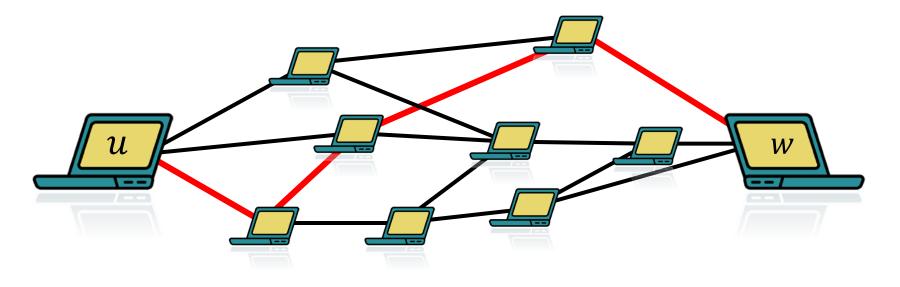


Decision set: set of all $u \rightarrow w$ paths

Delay on each edge can change arbitrarily over time

Goal: minimize total delay

EXAMPLE: SEQUENTIAL ROUTING



Decision set: set of all $u \rightarrow w$ paths

Delay on each edge can change arbitrarily over time

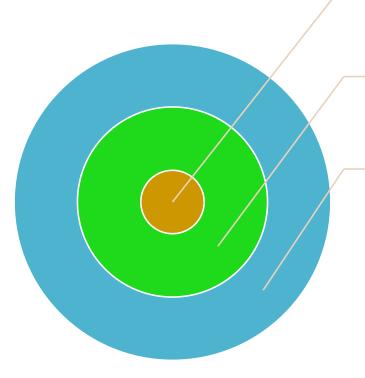
Goal: minimize total delay

ONLINE COMBINATORIAL OPTIMIZATION

- For each time step t = 1, 2, ..., T
 - Learner chooses action $V_t \in S \subseteq \{0,1\}^d$
 - Adversary selects loss vector $\ell_t \in [0,1]^d$
 - Learner suffers loss $V_t^{\mathsf{T}} \ell_t$
 - Learner observes feedback based on V_t and ℓ_t

Decision set: $S = \{v_i\}_{i=1}^N \subseteq \{0,1\}^d$ $\|v_i\|_1 \le m$

FEEDBACK ASSUMPTIONS

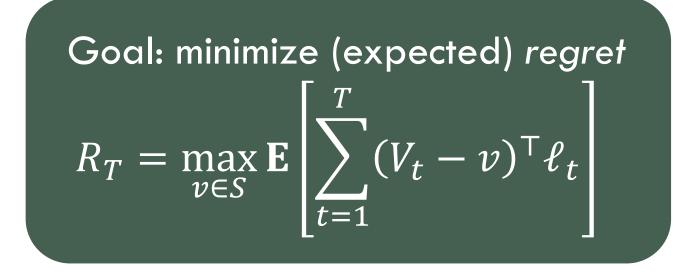


Full bandit: $V_t^{\top} \ell_t \in [0, m]$

Semi-bandit: $\ell_{t,i}$ for all *i* s.t. $V_{t,i} = 1$

Full info: $\ell_t \in [0,1]^d$

REGRET



FOLLOW THE PERTURBED LEADER (FPL)

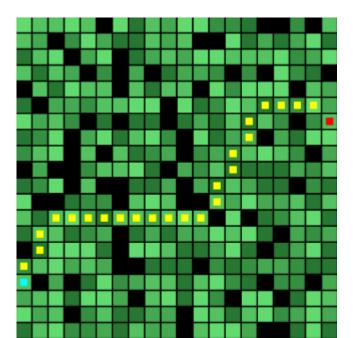
Parameter: learning rate $\eta > 0$, $L_0 = 0$ For each time step t = 1, 2, ..., T

- Draw perturbation vector Z_t with $Z_{t,i} \sim \operatorname{Exp}(\eta)$ i.i.d. for all $i \in \{1, 2, ..., d\}$
- Choose $V_t = \arg\min_{v \in S} v^{\mathsf{T}} (L_{t-1,i} Z_{t,i})$
- Observe ℓ_t and let $L_t = L_{t-1} + \ell_t$

FPL is efficient whenever the optimization $\min_{v \in S} v^{\top} \ell$ can be solved efficiently

Examples:

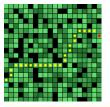
Shortest paths



FPL is efficient whenever the optimization $\min_{v \in S} v^{\top} \ell$ can be solved efficiently

Examples:

- Shortest paths
- Ranking



FPL is efficient whenever the optimization $\min_{v \in S} v^{\top} \ell$ can be solved efficiently

Examples:

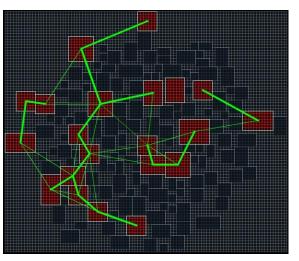
- Shortest paths
- Ranking
- Perfect matchings

FPL is efficient whenever the optimization $\min_{v \in S} v^{\top} \ell$ can be solved efficiently

Examples:

- Shortest paths
- Ranking
- Perfect matchings
- Spanning trees

etc.



"FPL only works for oblivious adversaries!"

"FPL is suboptimal by far!"

DON'T FOLLOW THE PERTURBED LEADER

"FPL doesn't work with bandit feedback!"

"PROBLEMS" WITH FPL

BEST KNOWN RESULTS

	Full info	Semi-bandit	Full bandit	Efficient
EWA/EXP3	$m^{3/2}\sqrt{T\log(d/m)}$	$m\sqrt{dT\log(d/m)}$	$m^{3/2}\sqrt{dT\log(d/m)}$	sometimes
Mirror descent	$m\sqrt{T\log(d/m)}$	\sqrt{mdT}	ŚŚŚ	sometimes
FPL	$m\sqrt{dT\log d}$	śśś	ŚŚŚ	always

BEST KNOWN RESULTS + OUR NEW RESULTS

	Full info	Semi-bandit	Full bandit	Efficient
EWA/EXP3	$m^{3/2}\sqrt{T\log(d/m)}$	$m\sqrt{dT\log(d/m)}$	$m^{3/2}\sqrt{dT\log(d/m)}$	sometimes
Mirror descent	$m\sqrt{T\log(d/m)}$	\sqrt{mdT}	ŚŚŚ	sometimes
FPL	$m^{3/2}\sqrt{T\log d}$	$m\sqrt{dT\log d}$	śśś	always

"FPL DOESN'T WORK WITH BANDIT FEEDBACK"

Q: how do we estimate unobserved losses?

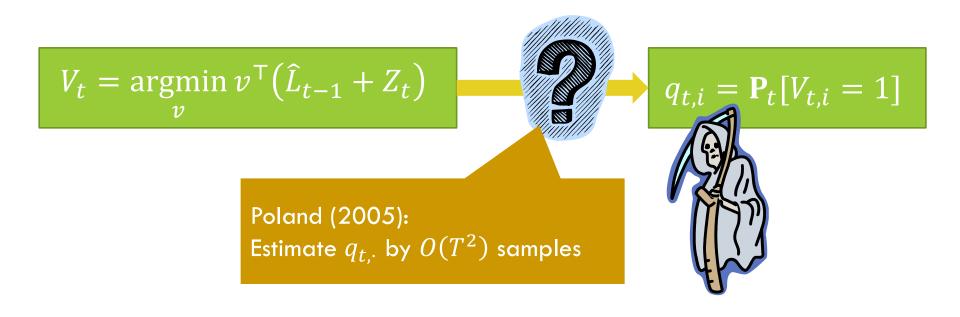
A: use the estimates

$$\hat{\ell}_{t,i} = \frac{\ell_{t,i}}{\mathbf{P}_t [V_{t,i} = 1]} V_{t,i}$$

Unbiased since $\mathbf{E}_{t}[V_{t,i}] = \mathbf{P}_{t}[V_{t,i} = 1]...$

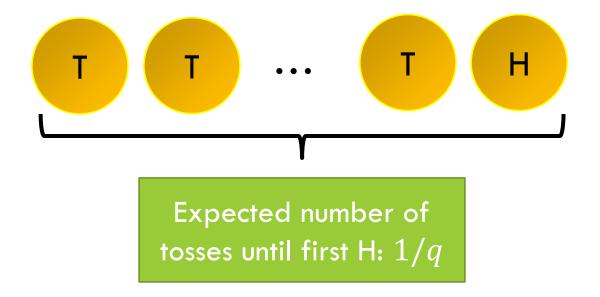
... but how do we compute this?

"FPL DOESN'T WORK WITH BANDIT FEEDBACK"



IDEA: GEOMETRIC RESAMPLING

Observe that we need to estimate $1/q_{t,i}$, not $q_{t,i}$! Back to school: biased coin with $\mathbf{P}[\text{heads}] = q$



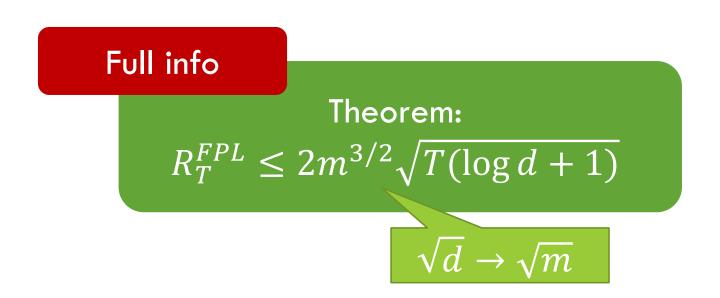
GEOMETRIC RESAMPLING FOR SEMI-BANDIT INFO

- Draw $V_t \sim p_t$
- Observe $\{V_{t,i}\ell_{t,i}\}$
- Draw $V'_t(1), V'_t(2), ... \sim p_t$
- Let $K_{t,i} = \min\{k: V'_t(k) = 1\}$
- Let $\widehat{\ell}_{t,i} = \ell_{t,i} K_{t,i} V_{t,i}$

Unbiased since • $\mathbf{E}_{t}[V_{t,i}] = q_{t,i}$ • $\mathbf{E}_{t}[K_{t,i}] = 1/q_{t,i}$

REGRET GUARANTEES

Semi-bandit Theorem: $R_T^{FPL+GR} \leq 2m\sqrt{2dT(\log d + 1)}$



FULL INFO PROOF SKETCH — STANDARD PART

For the analysis, introduce $\tilde{Z} \sim Z_1$

Introduce

$$\tilde{V}_t = \arg\min_{v \in S} v^{\mathsf{T}} (\hat{L}_t - \tilde{Z})$$

Notice that $\tilde{V}_t \sim V_{t+1}$ and the two are independent

Be-the-leader lemma: for any $v \in S$, $\mathbf{E}\left[\sum_{t=1}^{T} (\tilde{V}_t - v)^{\mathsf{T}} \ell_t\right] \leq \frac{m(\log d + 1)}{\eta}$

FULL INFO PROOF SKETCH - NEW PART

Let
$$\tilde{p}_t(v) = \mathbf{P}[\tilde{V}_t = v]$$

Show that

$$\tilde{p}_t(v) \geq \tilde{p}_{t-1}(v)(1 - \eta v^{\top} \ell_t),$$

and thus

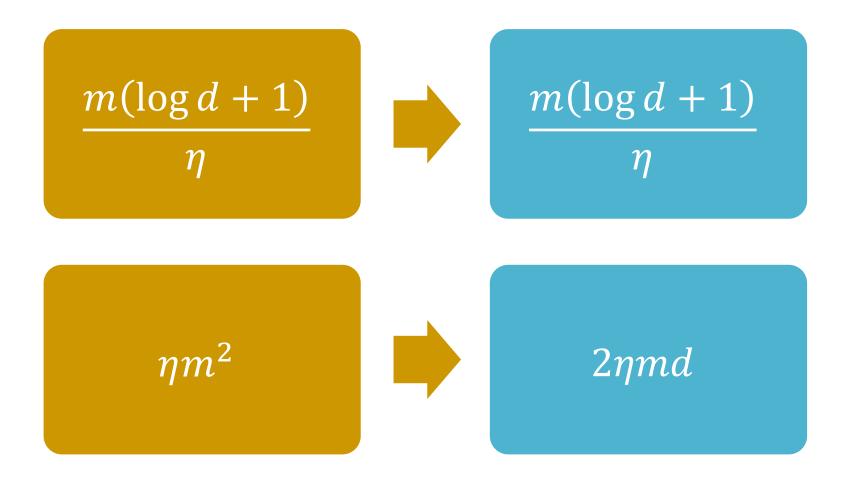
$$\begin{split} \mathbf{E}[V_t^{\top} \boldsymbol{\ell}_t] &\leq \mathbf{E}[\tilde{V}_t^{\top} \boldsymbol{\ell}_t] + \eta \sum_{v \in \mathbf{S}} \tilde{p}_{t-1}(v) (v^{\top} \boldsymbol{\ell}_t)^2 \\ &\leq \mathbf{E}[\tilde{V}_t^{\top} \boldsymbol{\ell}_t] + \eta m^2 \end{split}$$

FULL INFO PROOF SKETCH — PUTTING IT TOGETHER

Eventually, we get

$$E\left[\sum_{t=1}^{T} (V_t - v)^{\mathsf{T}} \ell_t\right] \leq \frac{m(\log d + 1)}{\eta} + \eta m^2 T$$

SEMI-BANDIT PROOF SKETCH



WHERE DOES THE SAMPLING HURT?

Had we known the $q_{t,i}\mbox{'s, we could do} 2\eta md \rightarrow \eta md$

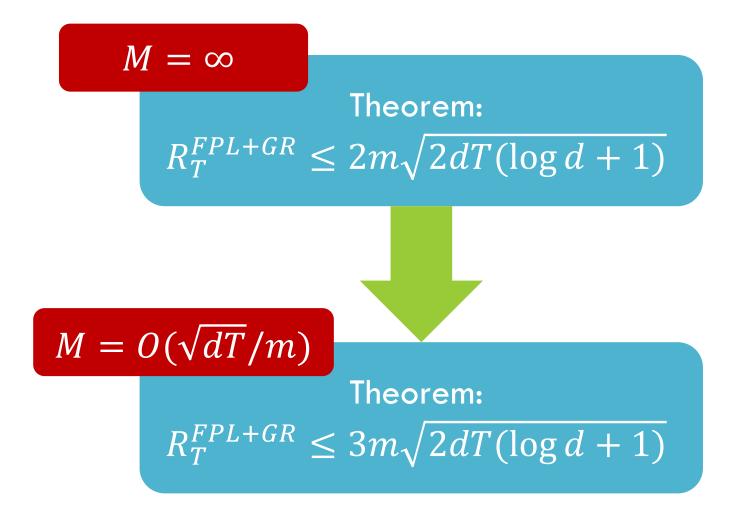
How much samples do we need?

• Expectation: d $\textcircled{\odot}$

• Worst-case: ∞ $igodol {igodol {igodol {B}}}$

Stop sampling after M steps! Additional regret: $\frac{dT}{eM}$

WHERE DOES THE SAMPLING HURT?



COMPUTATIONAL COMPLEXITY

- $f(S) \triangleq$ Time to solve optimization on S
- Shortest paths: f(S) = O(d)
- Spanning trees: $f(S) = O(d \log d)$
- Perfect matchings: $f(S) = O(md^2)$

Total running time: • Expectation: dTf(S)• Worst-case: $\sqrt{d}T^{3/2}f(S)/m$

CONCLUSIONS & FUTURE WORK

Results

- Most efficient method for online learning with semibandit feedback
- Closed the gap between performance guarantees of expanded EXP3 and FPL

Open problems

- Full bandit feedback?
- Even stronger bounds for FPL?
- Is there an inherent computation/performance tradeoff in online learning?