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Non-stochastic bandits

For all rounds 𝑡 = 1,2, … , 𝑇
• Learner chooses action/arm 𝐼𝑡 ∈ {1,2, … , 𝐾}
• Environment chooses loss function ℓ𝑡,𝑖 ∈ 0,1 𝐾

• Learner suffers and observes loss ℓ𝑡,𝐼𝑡
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A classic algorithm

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)

Parameters: 𝜂 > 0, 𝛾 ∈ 0,1

Initialization: For all 𝑖, set 𝑤1,𝑖 = 0

For all rounds 𝑡 = 1,2,… , 𝑇
• For all 𝑖, let

𝑝𝑡,𝑖 = 1 − 𝛾
𝑤𝑡,𝑖

 𝑗=1
𝐾 𝑤𝑡,𝑗

+
𝛾

𝐾

• Sample 𝐼𝑡 ∼ 𝒑𝑡

• For all 𝑖, let

 𝑟𝑡,𝑖 =
𝑟𝑡,𝑖
𝑝𝑡,𝑖

𝟏 𝐼𝑡=𝑖

• For all 𝑖, update weights as 

𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖 ⋅ 𝑒
𝜂  𝑟𝑡,𝑖
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Theorem: When tuned 
properly, EXP3 guarantees

 𝑅𝑇 ≤ 2.63 𝐾𝑇 log𝐾
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An improved version
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Why explore then?

Conjecture (folklore): 
Setting 𝛾 > 0 is necessary to prove strong bounds on 

𝑅𝑇 that hold with high probability
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A high-confidence algorithm
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A high-confidence algorithm

EXP3.P (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)
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w.p. ≥ 1 − 𝛿
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EXP3.P (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)

Parameters: 𝜂 > 0, 𝛾 ∈ 0,1 , 𝛽 > 0
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properly, EXP3.P guarantees

𝑅𝑇 ≤ 5.25 𝐾𝑇 log(𝐾/𝛿)
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This requires setting 

𝛾 = Θ 𝐾/𝑇



Why not use losses then?

• For some reason…
• Cesa-Bianchi and Lugosi (2006)

• Bubeck and Cesa-Bianchi (2012)

• + ALL lecture notes



The main challenge

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖
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• Unbiased 
• Has HUGE variance 
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This work: Implicit eXploration (IX)

See also Kocák, Neu, Valko and Munos (NIPS 2014), Neu (COLT 2015)

The main challenge
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The algorithm

EXP3-IX
Parameters: 𝜂 > 0, 𝛾 > 0
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Initialization: For all 𝑖, set 𝑤1,𝑖 = 0

For all rounds 𝑡 = 1,2,… , 𝑇
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Theorem: When tuned 
properly, EXP3-IX guarantees

𝑅𝑇 ≤ 2 2𝐾𝑇 log(𝐾/𝛿)
w.p. ≥ 1 − 𝛿



The main tool

Lemma: With probability at least 1 − 𝛿,
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Proof idea:

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾
𝟏 𝐼𝑡=𝑖 =

ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾
𝟏 𝐼𝑡=𝑖 + 𝛾 −

𝛾ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾

Lemma: With probability at least 1 − 𝛿,

 

𝑡=1

𝑇

( ℓ𝑡,𝑖 − ℓ𝑡,𝑖) ≤
log 𝐾/𝛿

2𝛾

holds simultaneously for all 𝑖 ∈ 1,2,…𝐾 .

≈
ℓ𝑡,𝑖

𝑝𝑡,𝑖
𝟏 𝐼𝑡=𝑖 −

𝛽

𝑝𝑡,𝑖

And then use Freedman’s inequality as done 
by, e.g., Beygelzimer et al. (2011)



A more elementary proof



Other results

Setting Best known HP bound Our bound

Multi-armed bandits 5.25 𝐾𝑇 log(𝐾/𝛿)
(Bubeck and Cesa-Bianchi, 2011)

2 2𝐾𝑇 log(𝐾/𝛿)

Bandits with expert advice 6 𝐾𝑇 log(𝑁/𝛿)
(Beygelzimer et al., 2011)

2 2𝐾𝑇 log(𝑁/𝛿)

Tracking the best arm 7 𝐾𝑇𝑆 log(𝐾𝑇/𝛿𝑆)
(Audibert and Bubeck, 2009)

2 2𝐾𝑇𝑆 log(𝐾𝑇/𝛿𝑆)

Bandits with side-
observations

 𝑂 𝑚𝑇
(Alon et al., 2014)

 𝑂 𝛼𝑇

(𝛼 ≪ 𝑚)

+ whatever you can think about!



Empirical performance

IID losses non-IID losses



Conclusion

• Implicit exploration is cool
• Works with losses, no exploration

• See also Kocák et al. (NIPS 2014) and Neu (COLT 2015)

• Still not well-understood!
• Tikhonov regularization? Laplace smoothing? Shrinkage?

• Linear bandits?

• Reinforcement learning?

• Active learning?



Conclusion

• Implicit exploration is cool
• Works with losses, no exploration

• See also Kocák et al. (NIPS 2014) and Neu (COLT 2015)

• Still not well-understood!
• Tikhonov regularization? Laplace smoothing? Shrinkage?

• Linear bandits?

• Reinforcement learning?

• Active learning? THANKS!!!
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