Gergely Neu

INRIA Lille, SequeL → Universitat Pompeu Fabra, Barcelona

Explore no more

Improved high-probability regret bounds for non-stochastic bandits

Non-stochastic bandits

For each round t = 1, 2, ..., T

- Learner chooses action/arm $I_t \in \{1, 2, ..., K\}$
- Environment chooses losses $\ell_{t,i} \in [0,1]$ ($\forall i$)
- Learner suffers and observes loss ℓ_{t,I_t}

No assumptions about the environment \rightarrow we need randomized algorithms Goal: minimize regret in some probabilistic sense Pseudo-regret:

Classical algorithms

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002) **Parameters:** $\eta > 0$. **Initialization:** For all *i*, set $w_{1,i} = 1$. For each round t = 1, 2, ..., T• For all *i*, let $p_{t,i} = \frac{w_{t,i}}{\sum_i w_{t,i}}.$ • Draw $I_t \sim p_t$. • For all *i*, let $\hat{\ell}_{t,i} = \frac{\tau_{t,i}}{p_{t,i}} \mathbf{1}_{\{I_t=i\}}$

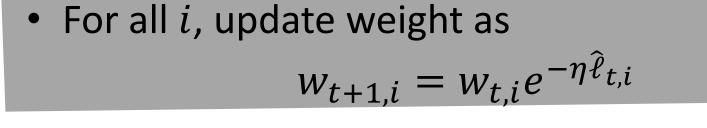
EXP3.P (Auer, Cesa-Bianchi, Freund and Schapire, 2002) Parameters: $\eta > 0, \gamma \in [0,1], \beta > 0$. **Initialization:** For all *i*, set $w_{1,i} = 1$. For each round t = 1, 2, ..., T• For all *i*, let $p_{t,i} = (1-\gamma) \frac{w_{t,i}}{\sum_i w_{t,i}} + \frac{\gamma}{K}.$ • Draw $I_t \sim p_t$. • For all *i*, let $\hat{r}_{t,i} = \frac{r_{t,i}}{p_{t,i}} \mathbf{1}_{\{I_t=i\}} + \frac{\beta}{p_{t,i}}.$

$$\widehat{R}_{T} = \mathbf{E} \left[\sum_{t=1}^{T} \ell_{t,I_{t}} \right] - \min_{i \in [K]} \mathbf{E} \left[\sum_{t=1}^{T} \ell_{t,i} \right]$$
Expected regret:
$$\mathbf{E} \left[\sum_{t=1}^{T} \ell_{t,I_{t}} \right] = \mathbf{E} \left[\sum_{t=1}^{T} \ell_{t,I_{t}} \right]$$

Regret:

 $R_T = \sum_{t=1}^{N} \ell_{t,I_t} - \min_{i \in [K]} \sum_{t=1}^{N} \ell_{t,i}$

 $\lim_{i \in [K]} \sum_{t=1}^{\iota_{t,i}}$



Can we...

Theorem: when tuned properly, EXP3 guarantees $\hat{R}_T \leq \sqrt{2KT \log K}$.

• For all *i*, update weight as $w_{t+1,i} = w_{t,i} e^{\eta \hat{r}_{t,i}}$

Theorem: when tuned properly, EXP3.P guarantees w.p. at least $1 - \delta$ $R_T \leq 5.25\sqrt{KT\log(K/\delta)}$.

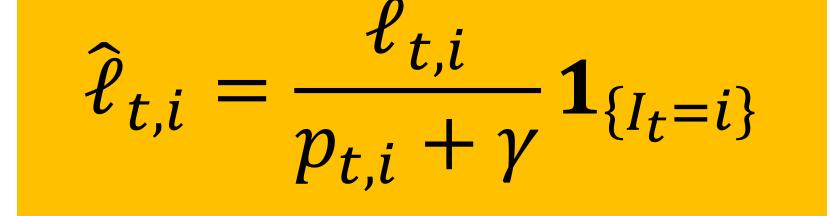
- remove explicit exploration ($\gamma > 0$)? ightarrow
- work with losses? lacksquare
- improve the constants? ullet
- make it actually work well?

The trick: Implicit eXploration (IX)

Replace the standard loss estimate

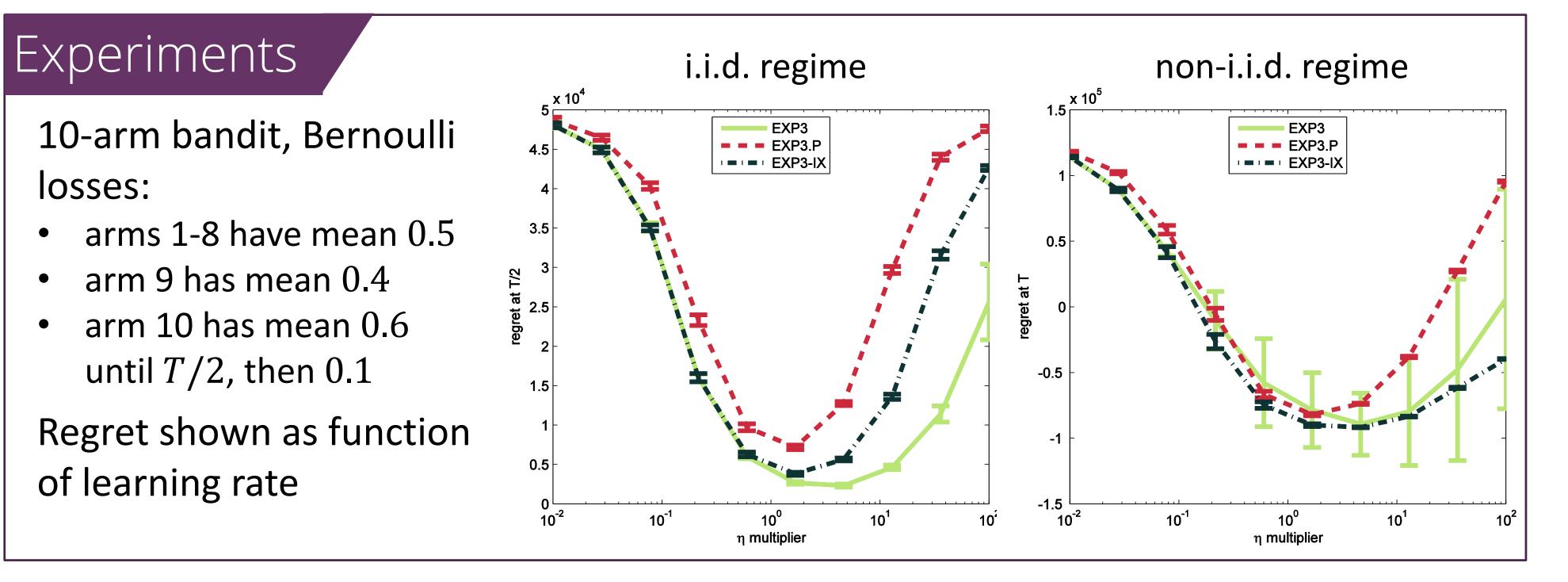
 $\hat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i}} \mathbf{1}_{\{I_t=i\}}$ in EXP3 by

Main results		
Setting	Best known bound	Our bound
Multi-armed bandits	$5.25\sqrt{KT \log(K/\delta)}$ (Bubeck and Cesa-Bianchi, 2012)	$2\sqrt{2KT\log(K/\delta)}$
Bandits with expert advice (<i>N</i> experts)	$6\sqrt{KT \log(N/\delta)}$ (Beygelzimer et al., 2011)	$2\sqrt{2KT\log(N/\delta)}$
Tracking the best arm (S switches)	$7\sqrt{KTS}\log(KT/\delta S)$ (Audibert and Bubeck, 2010)	$2\sqrt{2KTS\log(KT/\delta S)}$
Bandits with side observations	$ ilde{O}(\sqrt{mT})$ (Alon et al., 2014)	$ \tilde{O}(\sqrt{\alpha T}) \\ (\alpha \ll m) $

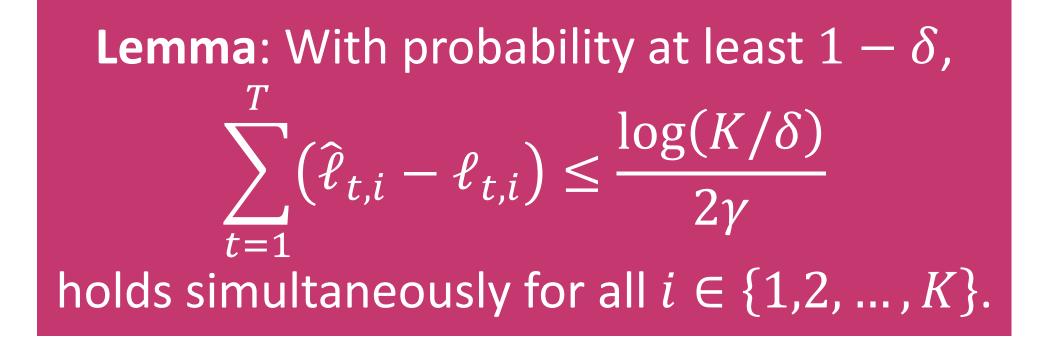


Our algorithm: \bullet

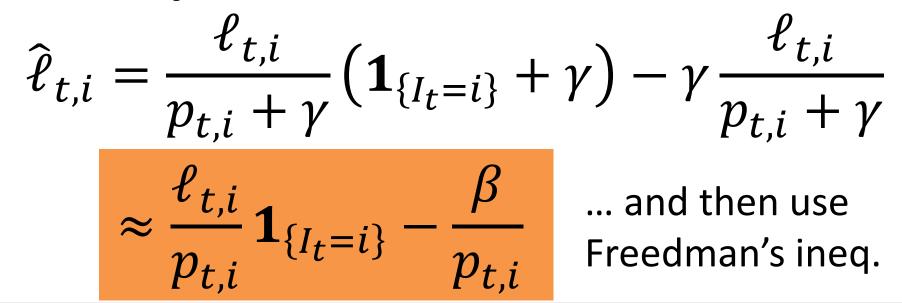
EXP3-IX **Parameters:** $\eta > 0$, $\gamma > 0$. **Initialization:** For all *i*, set $w_{1,i} = 1$. For each round t = 1, 2, ..., T• For all *i*, let $p_{t,i} = \frac{w_{t,i}}{\sum_{i} w_{t,i}}.$ • Draw $I_t \sim p_t$. • For all *i*, let • For all *i*, update weight as $w_{t+1,i} = w_{t,i} e^{-\eta \hat{\ell}_{t,i}}$



How does it work?

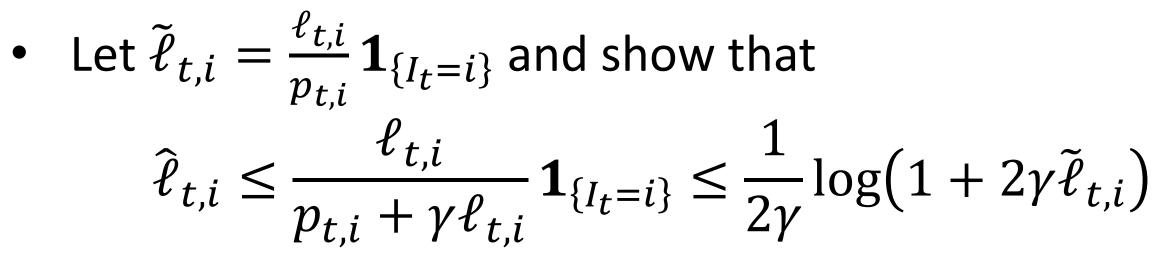


Intuitive proof:

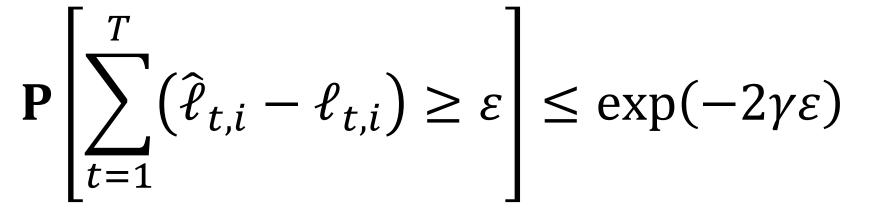


A better proof:

losses:



- Show that
 - $\mathbf{E}_t \left[e^{2\gamma \hat{\ell}_{t,i}} \right] = \mathbf{E}_t \left[1 + 2\gamma \tilde{\ell}_{t,i} \right] \le 1 + 2\gamma \ell_{t,i} \le e^{2\gamma \ell_{t,i}}$
- This implies that $\mathbf{E}\left[\exp\left(2\gamma\sum_{t=1}^{T}(\hat{\ell}_{t,i}-\ell_{t,i})\right)\right] \leq 1$
- Thus, by Markov's inequality,



Extra panel

"Optimal" parameters: $\eta = 2\gamma = \sqrt{2 \log K / KT}$ Anytime version: $\eta_t = 2\gamma_t = \sqrt{\log K / Kt}$ Alternatives for $\hat{\ell}_{t,i}$: $\frac{\ell_{t,i}}{p_{t,i} + \gamma \ell_{t,i}} \mathbf{1}_{\{I_t=i\}}$ $\frac{\mathbf{1}_{\{I_t=i\}}}{2\gamma}\log\left(1+2\gamma\frac{\ell_{t,i}}{n_{L,i}}\right)$