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Non-stochastic bandits

For each round 𝑡 = 1,2,… , 𝑇
• Learner chooses action/arm 𝐼𝑡 ∈ {1,2, … , 𝐾}
• Environment chooses losses ℓ𝑡,𝑖 ∈ 0,1 (∀𝑖)

• Learner suffers and observes loss ℓ𝑡,𝐼𝑡

No assumptions about the environment → we 
need randomized algorithms
Goal: minimize regret in some probabilistic sense

Pseudo-regret:
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Classical algorithms

• remove explicit exploration (𝛾 > 0)?
• work with losses?
• improve the constants?
• make it actually work well?

Main results

• Replace the standard loss estimate

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖
𝟏 𝐼𝑡=𝑖 in EXP3 by

• Our algorithm:

The trick: Implicit eXploration (IX)

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)

Parameters: 𝜂 > 0.
Initialization: For all 𝑖, set 𝑤1,𝑖 = 1.
For each round 𝑡 = 1,2,… , 𝑇
• For all 𝑖, let

𝑝𝑡,𝑖 =
𝑤𝑡,𝑖

 𝑗 𝑤𝑡,𝑗
.

• Draw 𝐼𝑡 ∼ 𝒑𝑡.
• For all 𝑖, let

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖
𝟏 𝐼𝑡=𝑖 .

• For all 𝑖, update weight as

𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝑒
−𝜂 ℓ𝑡,𝑖

Theorem: when tuned properly, EXP3 
guarantees 

 𝑅𝑇 ≤ 2𝐾𝑇 log𝐾 .

EXP3.P (Auer, Cesa-Bianchi, Freund and Schapire, 2002)

Parameters: 𝜂 > 0, 𝛾 ∈ 0,1 , 𝛽 > 0.
Initialization: For all 𝑖, set 𝑤1,𝑖 = 1.
For each round 𝑡 = 1,2,… , 𝑇
• For all 𝑖, let

𝑝𝑡,𝑖 = 1 − 𝛾
𝑤𝑡,𝑖

 𝑗 𝑤𝑡,𝑗
+

𝛾

𝐾
.

• Draw 𝐼𝑡 ∼ 𝒑𝑡.
• For all 𝑖, let

 𝑟𝑡,𝑖 =
𝑟𝑡,𝑖
𝑝𝑡,𝑖

𝟏 𝐼𝑡=𝑖 +
𝛽

𝑝𝑡,𝑖
.

• For all 𝑖, update weight as

𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝑒
𝜂  𝑟𝑡,𝑖

Theorem: when tuned properly, EXP3.P 
guarantees w.p. at least 1 − 𝛿

𝑅𝑇 ≤ 5.25 𝐾𝑇 log(𝐾/𝛿) .

EXP3-IX
Parameters: 𝜂 > 0, 𝛾 > 0.
Initialization: For all 𝑖, set 𝑤1,𝑖 = 1.
For each round 𝑡 = 1,2,… , 𝑇
• For all 𝑖, let

𝑝𝑡,𝑖 =
𝑤𝑡,𝑖

 𝑗 𝑤𝑡,𝑗
.

• Draw 𝐼𝑡 ∼ 𝒑𝑡.
• For all 𝑖, let

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾
𝟏 𝐼𝑡=𝑖 .

• For all 𝑖, update weight as

𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝑒
−𝜂 ℓ𝑡,𝑖

Setting Best known bound Our bound

Multi-armed bandits 5.25 𝐾𝑇 log(𝐾/𝛿)
(Bubeck and Cesa-Bianchi, 2012)

2 2𝐾𝑇 log(𝐾/𝛿)

Bandits with expert advice
(𝑁 experts)

6 𝐾𝑇 log(𝑁/𝛿)
(Beygelzimer et al., 2011)

2 2𝐾𝑇 log(𝑁/𝛿)

Tracking the best arm
(𝑆 switches)

7 𝐾𝑇𝑆 log(𝐾𝑇/𝛿𝑆)
(Audibert and Bubeck, 2010)

2 2𝐾𝑇𝑆 log(𝐾𝑇/𝛿𝑆)

Bandits with side
observations

 𝑂 𝑚𝑇
(Alon et al., 2014)

 𝑂 𝛼𝑇

(𝛼 ≪ 𝑚)

Experiments

10-arm bandit, Bernoulli 
losses:
• arms 1-8 have mean 0.5
• arm 9 has mean 0.4
• arm 10 has mean 0.6

until 𝑇/2, then 0.1

Regret shown as function 
of learning rate

How does it work?

Lemma: With probability at least 1 − 𝛿,
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2𝛾

holds simultaneously for all 𝑖 ∈ 1,2, … , 𝐾 .

Intuitive proof:

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾
𝟏 𝐼𝑡=𝑖 + 𝛾 − 𝛾
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… and then use 
Freedman’s ineq.

A better proof:

• Let  ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖
𝟏 𝐼𝑡=𝑖 and show that

 ℓ𝑡,𝑖 ≤
ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾ℓ𝑡,𝑖
𝟏 𝐼𝑡=𝑖 ≤

1

2𝛾
log 1 + 2𝛾 ℓ𝑡,𝑖

• Show that

𝐄𝑡 𝑒2𝛾 ℓ𝑡,𝑖 = 𝐄𝑡 1 + 2𝛾 ℓ𝑡,𝑖 ≤ 1 + 2𝛾ℓ𝑡,𝑖 ≤ 𝑒2𝛾ℓ𝑡,𝑖

• This implies that 𝐄 exp 2𝛾  𝑡=1
𝑇  ℓ𝑡,𝑖 − ℓ𝑡,𝑖 ≤ 1

• Thus, by Markov’s inequality,

𝐏  

𝑡=1

𝑇

 ℓ𝑡,𝑖 − ℓ𝑡,𝑖 ≥ 𝜀 ≤ exp −2𝛾𝜀

Extra panel

• “Optimal” parameters:

𝜂 = 2𝛾 = 2 log𝐾 /𝐾𝑇
• Anytime version:

𝜂𝑡 = 2𝛾𝑡 = log𝐾 /𝐾𝑡

• Alternatives for  ℓ𝑡,𝑖:
ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾ℓ𝑡,𝑖
𝟏 𝐼𝑡=𝑖

𝟏 𝐼𝑡=𝑖

2𝛾
log 1 + 2𝛾

ℓ𝑡,𝑖

𝑝𝑡,𝑖

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖

𝑝𝑡,𝑖 + 𝛾
𝟏 𝐼𝑡=𝑖


