
First-order boundsCombinatorial semi-bandits

A well-known improvement:

where 𝐿𝑇
∗ = min

𝑣∈𝑆
𝑣⊤  𝑡=1

𝑇 ℓ𝑡

• Many examples for full feedback
• A handful of results for bandits:

› Stoltz (2005): 𝑑 𝐿𝑇
∗

› Allenberg et al. (2006): 𝑑𝐿𝑇
∗

› Rakhlin and Sridharan (2013): 𝑑 𝑑𝐿𝑇
∗
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For each round 𝑡 = 1,2,… , 𝑇
• Environment chooses decision set 𝑆𝑡 ∈ 𝑆

• Learner chooses action 𝑉𝑡 ∈ 𝑆 ⊆ 0,1 𝑑

• Environment chooses loss vector ℓ𝑡 ∈ [0,1]𝑑

• Learner suffers loss 𝑉𝑡
⊤ℓ𝑡

• Learner observes losses 𝑉𝑡,𝑖ℓ𝑡,𝑖

Decision set:

𝑆 = 𝑣𝑖 𝑖=1
𝑁 ⊆ 0,1 𝑑

𝑣𝑖 1 ≤ 𝑚

E.g: sequential routing

𝑤𝑢

𝑇 𝐿𝑇
∗

Main 
result

Algorithm: FPL-TRIX

Parameters:
non-decreasing sequences 𝜂𝑡 , 𝛾𝑡 , 𝛽𝑡

Initialization:  𝐿0 = 𝟎
For each round 𝑡 = 1,2, … , 𝑇
• Draw perturbation vector 𝑍𝑡 with

𝑍𝑡,𝑖 ∼ 𝑓 ⋅ | log 1/𝛽𝑡

• Play action

𝑉𝑡 = min
𝑣∈𝑆

𝑣⊤ 𝜂𝑡
 𝐿𝑡−1 − 𝑍𝑡

• Compute 

 ℓ𝑡,𝑖 =
ℓ𝑡,𝑖𝑉𝑡,𝑖

𝐄𝑡 𝑉𝑡,𝑖 + 𝛾𝑡

• Let  𝐿𝑡 =  𝐿𝑡−1 +  ℓ𝑡

The key idea

• A typical regret bound (EXP3, FPL,…):

𝐶1

𝜂
+ 𝜂 ⋅ 𝐶2  

𝑡=1

𝑇

 

𝑖=1

𝑑

 ℓ𝑡,𝑖 ,

where 𝜂 > 0 is a learning rate

• If 𝐄[ ℓ𝑡,𝑖] = ℓ𝑡,𝑖, then this becomes
𝐶1

𝜂
+ 𝜂 ⋅ 𝐶2 ⋅ 𝑑 max

𝑖
𝐿𝑇,𝑖 ,

giving  𝑂 𝑑 max𝑖 𝐿𝑇,𝑖 =  𝑂 𝑑𝑇

• This allows proving 
𝐶1

𝜂
+ 𝜂 ⋅ 𝐶2 ⋅ 𝑑𝐿𝑇

∗ →  𝑂 𝑑𝐿𝑇
∗

if 𝐄 min𝑣 𝑣⊤ 𝐿𝑇 ≤ 𝐿𝑇
∗ also holds

• Goal: minimize regret

 𝑅𝑇 = max
𝑣∈𝑆

𝐄  

𝑡=1

𝑇

𝑉𝑡 − 𝑣 ⊤ℓ𝑡

• Minimax regret is
 𝑅𝑇 = Θ 𝑚𝑑𝑇

• Best efficient algorithm (FPL) gives
 𝑅𝑇 = 𝑂 𝑚 𝑑𝑇 log(𝑑)

Can we do 
better? None of these generalize efficiently to 

combinatorial settings!

Idea: introduce a bias in  ℓ𝑡,𝑖 that 
ensures for all 𝑖

 𝐿𝑇,𝑖 ≤ min
𝑣∈𝑆

𝑣⊤ 𝐿𝑇 +  𝑂
1

𝜂

Truncated perturbations (TR)
• 𝑓 𝑧 𝐵 ∝ 𝑒−𝑧𝟏 𝑧∈ 0,𝐵

• Suppresses suboptimal 
actions a.s.

Trick #1

Follow the perturbed 
leader (FPL)

Implicit exploration (IX)
• Provides “optimistic” bias

• Ensures that  ℓ𝑡,𝑖 is bounded

Trick #2

Proof steps

Let 𝐷 = log(𝑑/𝑚) , 𝐵𝑡 = log(1/𝛽𝑡)

• A key result about the bias of  ℓ𝑡,𝑖:

• The regret of FPL-TRIX:

• This suggests 𝛾𝑡 = 𝜂𝑡𝑚 = 𝛽𝑡𝑑

• Static learning rates:

• Self-confident learning rates:

• Proof: quite tricky as 𝑆𝑡 ≠ 𝑂 𝑡 …
…but it’s much more practical than using a doubling trick

Theorem 3: If 𝛽𝑡𝑑 ≤ 𝛾𝑡, then 

 

𝑡=1

𝑇

𝑉𝑡
⊤ℓ𝑡 ≤ 𝑣⊤ 𝐿𝑇 +

𝑚𝐷

𝜂𝑇

+ 

𝑡=1

𝑇

𝜂𝑡𝑚 + 𝛽𝑡𝑑 + 𝛾𝑡  

𝑖=1

𝑑

 ℓ𝑡,𝑖

Lemma 2: For any 𝑖 and 𝑣,

 𝐿𝑇,𝑖 ≤ 𝑣⊤ 𝐿𝑇 +
𝑚 𝐷 + 𝐵𝑇

𝜂𝑇
+

1

𝛾𝑇

Corollary 4: 

Setting 𝜂 = 3 𝐷 + 1 /𝑑𝐿𝑇
∗ gives

 𝑅𝑇 ≤ 5.2 𝑚 𝑑𝐿𝑇
∗ 𝐷 + 1 + 𝑂 log 𝑇

Theorem 5:

Setting  𝑆𝑡 =
1

𝐷
+  𝑘=1

𝑡  𝑖=1
𝑑  ℓ𝑘,𝑖

and 𝜂𝑡 = 𝐷/𝑆𝑡−1 gives

 𝑅𝑇 ≤ 13 𝑚 𝑑𝐿𝑇
∗ 𝐷 + 1 + 𝑂 log 𝑇

Why does it work?

• Truncation actually not necessary
• Implicit exploration is necessary

The IX effect

*unbiased estimates with and without explicit exploration

True losses IX estimates

EX estimates* 0X estimates*

With the right tuning, FPL-TRIX guarantees

 𝑅𝑇 = 𝑂 𝑚 𝑑𝐿𝑇
∗ log 𝑑/𝑚

…and also  𝑅𝑇 = 𝑂 𝑚 𝑑𝑇 log 𝑑/𝑚


