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Combinatorial semi-bandits

Foreachroundt = 1.2, ... T * Goal: minimize regret A well-known improvement:

* Environment chooses decision set $; € S

° i C d X
Learner chooses action I/, € S € {0,1} , — max E (Vt _ U)Tft L

* Environment chooses loss vector £, € [0,1] VES T

e Learner suffers loss V,' ¢,

* Learner observes losses V. ;¥ ; * Minimax regret 1S where LT — mlgl UT(Z —1 ft)
Ve

Decision set: .R.T = 6(\/7.”(171) | * Many examples for full feedback
= v}, c{0,1}¢ ° Besteffruent algorithm (FPL) gives » A handful of results for bandits:
Ivilly < m Ry = 0(m,/dT log(d)) » Stoltz (2005): dv/L

» Allenberg et al. (2006): \/d L%
> Rakhlin and Sridharan (2013): d/dL"

E.g: sequential routing

Can we do

None of these generalize efficiently to

combinatorial settings!

The key idea

e A typical regret bound (EXP3 FPL,...):

better?
Trick #1

Algorithm: FPL-TRIX
Truncated perturbations (TR)
T + n: CZ 2 2 { * f(z|B) x e_Zl{ze[O,B]}

* Suppresses suboptimal

t=1 1=
where n>0isa Iearnmg rate actions a.s.
o |f E[?t i| = £+, then this becomes
C, Follow the perturbed
—+n-C,-d max Ly, leader (FPL)

T Trick #2
giving 0(\/d max; LT,l-) = O(W) -

Idea: introduce a bias in £ ; that
ensures for all i

Implicit exploration (I1X)
* Provides “optimistic” bias
* Ensures that ?t,i is bounded

Ly < min vl + 0

VE: With the right tuning, FPL-TRIX guarantees
raclt R =0 (mdL’fT log(d/m))
if E[minv v ZT] < L7 also holds ..and also Ry = 0(m,/dT log(d/m))
Proot steps Why does it work?
Let D = log(d/m),B; = log(1/B;) <+ Thissuggestsy; =n,m = B,d * Truncation actually not necessary
» Akey result about the bias of #;;: * Static learning rates: * Implicit exploration is necessary

_ The IX effect
Lemma 2: For any i and v,

m(D + BT)
nr

Corollary 4:
Settingn = /3(D + 1)/dL7 gives True losses IX estimates |

Ry <5.2my/dL%(D + 1) + 0(logT) |

S

LT,i S UTZT +

 The regret of FPL-TRIX: * Self-confident learning rates:

Theorem 5: S a5 5 o S+ & s 10
x 10* x 10*
x 10* x 10*

: — 1 t d D 5 - - - - 5 . . .
Setting 5; = D T Zk=1 Zi=1£k,i ~ EX estimates*” OX esti

and n; = /D /S;_q gives y L

Theorem 3: If :d < y;, then

R; <13mydL5(D + 1) + 0(logT)

Proof: quite tricky as S; = O(t)... oo s

. : : : : x 10* x 10*
~-butit's much more practical than using a doubling trick *unbiased estimates with and without explicit exploration




