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Setup: Statistical learning

▪ Data set: 𝑆𝑛 = 𝑍𝑖 𝑖=1
𝑛 ∈ 𝒵𝑛 = 𝒮, drawn i.i.d. ~𝜇

▪ e.g., regression: 𝑍𝑖 = 𝑋𝑖 , 𝑌𝑖  with 𝑋𝑖 ∈ ℝ𝑚 and 𝑌𝑖 ∈ ℝ

▪Hypothesis class: 𝒲
▪ e.g., neural network weights

▪ Loss function: ℓ: 𝒲 × 𝒵 → ℝ
▪ e.g., square loss: ℓ 𝑤, 𝑥, 𝑦 = 𝑓 𝑤, 𝑥 − 𝑦 2

▪ Learning algorithm 𝒜: 𝒮 → 𝒲 produces hypothesis 𝑊𝑛 = 𝒜 𝑆𝑛
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▪ e.g., square loss: ℓ 𝑤, 𝑥, 𝑦 = 𝑓 𝑤, 𝑥 − 𝑦 2

▪ Learning algorithm 𝒜: 𝒮 → 𝒲 produces hypothesis 𝑊𝑛 = 𝒜 𝑆𝑛

Goal:
understand when algorithm 𝒜 produces 𝑊𝑛 
with small risk 𝑅 𝑊𝑛 = 𝔼𝑍′ ℓ 𝑊𝑛, 𝑍′ 𝑊𝑛



Risk vs. empirical risk

▪ Risk: 𝑅 𝑤 = 𝔼𝑍 ℓ 𝑤, 𝑍

▪ Empirical risk: ෠𝑅 𝑤, 𝑆𝑛 =
1

𝑛
σ𝑖=1

𝑛 ℓ 𝑤, 𝑍𝑖

▪ Risk decomposition for 𝑊𝑛 = 𝒜 𝑆𝑛 :

𝑅 𝑊𝑛 = ෠𝑅 𝑊𝑛, 𝑆𝑛 + 𝑅 𝑊𝑛 − ෠𝑅 𝑊𝑛, 𝑆𝑛
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𝑅 𝑊𝑛 = ෠𝑅 𝑊𝑛, 𝑆𝑛 + 𝑅 𝑊𝑛 − ෠𝑅 𝑊𝑛, 𝑆𝑛

The BIG question: 
why/when is this small?

Directly controlled 
by algorithm

generalization error
gen(𝑊𝑛, 𝑆𝑛)



Analyzing the generalization error

▪Uniform convergence: bound sup𝑤 𝑅 𝑤 − ෠𝑅 𝑤, 𝑆𝑛

▪ Distribution-agnostic: VC-dimension

▪ Distribution-dependent: Rademacher complexity, margin conditions
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▪ Distribution-agnostic: VC-dimension

▪ Distribution-dependent: Rademacher complexity, margin conditions

▪ Algorithm-dependent:
▪ Stability (Bousquet & Eliseeff, 2002)

▪ PAC-Bayes (Shawe-Taylor & Williamson, 1997, McAllester, 1998, Langford and Seeger, 2001)

▪ Information-theoretic (Russo & Zou, 2016, Xu & Raginsky, 2017)



Information-theoretic generalization

Theorem 

(Russo & Zou, 2016, Xu & Raginsky, 2017)

Suppose that ℓ(𝑤, 𝑍) is 𝜎-subgaussian for all 𝑤 ∈ 𝒲. 
Then, for any learning algorithm 𝒜, 

𝔼 gen 𝑊𝑛, 𝑆𝑛 ≤
2𝜎2𝒟KL 𝑃𝑊𝑛,𝑆𝑛
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⊗ 𝑃𝑆𝑛
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Mutual information between 
𝑊𝑛 and 𝑆𝑛



PAC-Bayes

Theorem 

(McAllester, Catoni, Langford, Seeger, etc.)

Suppose that ℓ(𝑤, 𝑍) is 𝜎-subgaussian for all 𝑤 ∈ 𝒲. 
Then, for any prior 𝑃0 ∈ Δ𝒲 , w.p. ≥ 1 − 𝛿

the following holds for any learning algorithm 𝒜:

𝔼 gen 𝑊𝑛, 𝑆𝑛 𝑆𝑛 ≤
2𝜎2𝒟KL 𝑃𝑊𝑛|𝑆𝑛

𝑃0

𝑛
+

𝜎2 log(log 𝑛 /𝛿)

𝑛
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Online learning

▪𝒫 and 𝒞 are convex sets in appropriate Banach spaces

▪ Environment can use all info from the past and even knowledge of 
the online learner’s algorithm

The protocol of Online Linear Optimization (OLO)

For each 𝑡 = 1,2, … , 𝑇, repeat
• Online learner picks decision 𝑃𝑡  ∈ 𝒫
• Environment / adversary picks cost function 𝑐𝑡 ∈ 𝒞
• Online learner incurs cost 𝑃𝑡 , 𝑐𝑡

• Online learner observes cost function 𝑐𝑡



Regret analysis

Performance of the online learner is measured by its regret:

 ℜ𝑇 𝑃∗ = σ𝑡=1
𝑇 𝑃𝑡 , 𝑐𝑡 − σ𝑡=1

𝑇 𝑃∗, 𝑐𝑡
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How can we possibly 
bound this?

total cost of online learner



Regret analysis

Performance of the online learner is measured by its regret:

 ℜ𝑇 𝑃∗ = σ𝑡=1
𝑇 𝑃𝑡 , 𝑐𝑡 − σ𝑡=1

𝑇 𝑃∗, 𝑐𝑡
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(picture related)



A classic online learning result

▪ Let 𝒫 = Δ𝒲  be a probability simplex and 𝒞 ∈ −𝜎, 𝜎 𝒲

▪ Cost is defined as 𝑃, 𝑐 = 𝔼𝑊∼𝑃 𝑐 𝑊

Theorem 

(Vovk 1990, Littlestone & Warmuth 1994, Freund & Schapire 1997)

The Exponentially Weighted Averaging algorithm that predicts 

𝑃𝑡+1 𝑤 ∝ 𝑃𝑡 𝑤 𝑒−𝜂𝑐𝑡 𝑤  satisfies the following regret bound:

ℜ𝑇 𝑃∗ ≤
𝒟𝐾𝐿 𝑃∗ 𝑃1

𝜂
+

𝜂𝜎2𝑇

2
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Reduction to online learning

The generalization game

For each 𝑡 = 1,2, … , 𝑛, repeat
• Online learner picks 𝑃𝑡 = Law( ෩𝑊𝑡)  ∈ Δ𝒲

• Environment picks cost function 𝑐𝑡 𝑤 = ℓ 𝑤, 𝑍𝑡 − 𝔼𝑍′ ℓ 𝑤, 𝑍′

• Online learner incurs cost 𝑃𝑡 , 𝑐𝑡 = 𝔼 ෩𝑊𝑡∼𝑃𝑡
𝑐𝑡( ෩𝑊𝑡)

• Online learner observes cost function 𝑐𝑡
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For each 𝑡 = 1,2, … , 𝑛, repeat
• Online learner picks 𝑃𝑡 = Law( ෩𝑊𝑡)  ∈ Δ𝒲

• Environment picks cost function 𝑐𝑡 𝑤 = ℓ 𝑤, 𝑍𝑡 − 𝔼𝑍′ ℓ 𝑤, 𝑍′

• Online learner incurs cost 𝑃𝑡 , 𝑐𝑡 = 𝔼 ෩𝑊𝑡∼𝑃𝑡
𝑐𝑡( ෩𝑊𝑡)

• Online learner observes cost function 𝑐𝑡

Fits into online learning framework with 𝑇 = 𝑛, 𝒫 = Δ𝒲. 
The costs are i.i.d. and zero-mean for any fixed 𝑤.



Let’s do some math

▪ Generalization error can be written as follows:

𝔼 gen 𝑊𝑛, 𝑆𝑛 𝑆𝑛 =
1
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Magic trick

Lemma
Suppose that the loss function is 𝜎-subgaussian for all 𝑤. 

Then, with probability ≥ 1 − 𝛿,

1

𝑛
෍

𝑡=1

𝑛

𝑃𝑡 , 𝑐𝑡 ≤
𝜎2 log(1/𝛿)

2𝑛

Inspired by 

“On the Complexity of Linear Prediction: Risk Bounds, Margin Bounds, 
and Regularization” 

by Kakade, Sridharan, and Tewari (2008)



Proof of magic lemma

▪ Let’s think about the conditional expectation of the cost:

𝔼𝑡 𝑐𝑡
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෩𝑊𝑡 , 𝑍𝑡 − ℓ𝑡
෩𝑊𝑡 , 𝑍′ ෩𝑊𝑡 = 0
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෩𝑊𝑡  is a martingale, so we can use 

Azuma—Hoeffding to bound it!!
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Online-to-PAC conversion

Theorem 

Fix an online learning algorithm and let ℜ𝑛(𝑃∗) be its regret against 

comparator 𝑃∗. Suppose that 𝔼 ℓ 𝑤, 𝑍
2

≤ 𝑉. Then, with probability at 

least 1 − 𝛿, the generalization error of all statistical learning algorithms 
𝑊𝑛 = 𝒜 𝑆𝑛  simultaneously satisfy the following bound :

𝔼 gen 𝑊𝑛, 𝑆𝑛 𝑆𝑛 ≤
ℜ𝑛 𝑃𝑊𝑛|𝑆𝑛

𝑛
+

𝑉 log(1/𝛿)

2𝑛



Online-to-PAC conversion

Theorem 

Fix an online learning algorithm and let ℜ𝑛(𝑃∗) be its regret against 

comparator 𝑃∗. Suppose that 𝔼 ℓ 𝑤, 𝑍
2

≤ 𝑉. Then, with probability at 

least 1 − 𝛿, the generalization error of all statistical learning algorithms 
𝑊𝑛 = 𝒜 𝑆𝑛  simultaneously satisfy the following bound :

𝔼 gen 𝑊𝑛, 𝑆𝑛 𝑆𝑛 ≤
ℜ𝑛 𝑃𝑊𝑛|𝑆𝑛

𝑛
+

𝑉 log(1/𝛿)

2𝑛

the existence of an online learning algorithm with bounded 
regret certifies a bound on the generalization error!!



The plan for today

▪ Statistical learning crash course

▪Online learning crash course

▪ From regret analysis to generalization bounds

▪ Some examples

~
We will construct online learning algorithms that 
will certify bounds on the generalization error of 

a given statistical learning algorithm.
~



Examples

▪ PAC-Bayes via Exponential Weighted Averaging
▪ McAllester-style bounds

▪ Data-dependent bounds

▪ Parameter-free bounds

▪ Generalized PAC-Bayes via Following the Regularized Leader
▪ Strongly convex regularizers

▪ Empirical bounds via optimistic FTRL

▪ Examples: 𝑝-norm regularizers, smoothed relative entropy
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PAC-Bayes via EWA

Regret bound of EWA

ℜ𝑇 𝑃∗ ≤
𝒟𝐾𝐿 𝑃∗ 𝑃1

𝜂
+

𝜂𝜎2𝑇

2

Online-to-PAC

ℜ𝑛 𝑃𝑊𝑛|𝑆𝑛

𝑛
+

𝜎2 log(1/𝛿)

2𝑛
+



PAC-Bayes via EWA

Regret bound of EWA

ℜ𝑇 𝑃∗ ≤
𝒟𝐾𝐿 𝑃∗ 𝑃1

𝜂
+

𝜂𝜎2𝑇

2

PAC-Bayes

𝔼 gen 𝑊𝑛, 𝑆𝑛 𝑆𝑛 ≤
𝒟𝐾𝐿 𝑃𝑊𝑛|𝑆𝑛

𝑃1

𝜂𝑛
+

𝜂𝜎2

2
+

𝜎2 log(1/𝛿)

2𝑛

Online-to-PAC

ℜ𝑛 𝑃𝑊𝑛|𝑆𝑛

𝑛
+

𝜎2 log(1/𝛿)

2𝑛
+

=



EWA + steroids

Second-order optimistic EWA

Input: learning rate 𝜂 > 0, prior ෨𝑃1 ∈ Δ𝒲

Initialization: 𝐶0 = 0
For each 𝑡 = 1,2, … , 𝑛, repeat
• Calculate 𝑃𝑡(𝑤) ∝ ෨𝑃𝑡 𝑤 exp −𝜂𝑔𝑡(𝑤)
• Play action 𝑃𝑡, incur cost 𝑃𝑡 , 𝑐𝑡 , observe 𝑐𝑡

• Calculate auxiliary update 

෨𝑃𝑡+1 𝑤 ∝ ෨𝑃𝑡 𝑤 exp −𝜂𝑐𝑡 𝑤 − 𝜂2 𝑐𝑡 𝑤 − 𝑔𝑡 𝑤
2



A data-dependent bound

(A regret bound for second-
order optimistic EWA)

Online-to-PAC

ℜ𝑛 𝑃𝑊𝑛|𝑆𝑛

𝑛
+

log(1/𝛿)

2𝑛
+



A data-dependent bound

(A regret bound for second-
order optimistic EWA)

Second-order PAC-Bayes
𝔼 gen 𝑊𝑛, 𝑆𝑛 𝑆𝑛

≤
𝒟𝐾𝐿 𝑃𝑊𝑛|𝑆𝑛

𝑃1

𝜂𝑛
+

𝜂

𝑛
෍

𝑡=1

𝑛

𝔼 ℓ 𝑊𝑛, 𝑍𝑡
2

𝑆𝑛 +
log(1/𝛿)

2𝜂𝑛

Online-to-PAC

ℜ𝑛 𝑃𝑊𝑛|𝑆𝑛

𝑛
+

log(1/𝛿)

2𝑛
+

=



A data-dependent bound

(A regret bound for second-
order optimistic EWA)

Second-order PAC-Bayes
𝔼 gen 𝑊𝑛, 𝑆𝑛 𝑆𝑛

≤
𝒟𝐾𝐿 𝑃𝑊𝑛|𝑆𝑛

𝑃1

𝜂𝑛
+

𝜂

𝑛
෍

𝑡=1

𝑛

𝔼 ℓ 𝑊𝑛, 𝑍𝑡
2

𝑆𝑛 +
log(1/𝛿)

2𝜂𝑛

Online-to-PAC

ℜ𝑛 𝑃𝑊𝑛|𝑆𝑛

𝑛
+

log(1/𝛿)

2𝑛
+

=Fast rate if training error = 0!!



A parameter-free PAC-Bayes bound

Online-to-PAC

ℜ𝑛 𝑃𝑊𝑛|𝑆𝑛

𝑛
+

𝜎2 log(1/𝛿)

2𝑛
+

Orabona and Pál (2016)

Regret of “coin-betting”

ℜ𝑇 𝑃∗ ≤ 3𝑇𝒟𝐾𝐿 𝑃∗ 𝑃1 + 9𝑇



A parameter-free PAC-Bayes bound

Parameter-free PAC-Bayes

𝔼 gen 𝑊𝑛, 𝑆𝑛 𝑆𝑛 ≤
3𝒟𝐾𝐿 𝑃𝑊𝑛|𝑆𝑛

𝑃1 + 9

𝑛
+

𝜎2 log(1/𝛿)

2𝑛

Online-to-PAC

ℜ𝑛 𝑃𝑊𝑛|𝑆𝑛

𝑛
+

𝜎2 log(1/𝛿)

2𝑛
+

=
Orabona and Pál (2016)
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Orabona and Pál (2016)

A parameter-free PAC-Bayes bound

Regret of “coin-betting”

ℜ𝑇 𝑃∗ ≤ 3𝑇𝒟𝐾𝐿 𝑃∗ 𝑃1 + 9𝑇

Parameter-free PAC-Bayes

𝔼 gen 𝑊𝑛, 𝑆𝑛 𝑆𝑛 ≤
3𝒟𝐾𝐿 𝑃𝑊𝑛|𝑆𝑛

𝑃1 + 9

𝑛
+

𝜎2 log(1/𝛿)

2𝑛

Online-to-PAC

ℜ𝑛 𝑃𝑊𝑛|𝑆𝑛

𝑛
+

𝜎2 log(1/𝛿)

2𝑛
+

=Not even a log log 𝑛 factor!



Examples

▪ PAC-Bayes via Exponential Weighted Averaging
▪ McAllester-style bounds

▪ Data-dependent bounds

▪ Parameter-free bounds

▪ Generalized PAC-Bayes via Following the Regularized Leader
▪ Strongly convex regularizers

▪ Empirical bounds via optimistic FTRL

▪ Examples: 𝑝-norm regularizers, smoothed relative entropy



Our favorite workhorse: FTRL

Follow the regularized leader

Input: regularization function ℎ: Δ𝒲 → ℝ+, learning rate 𝜂 > 0
Initialization: 𝐶0 = 0
For each 𝑡 = 1,2, … , 𝑇, repeat
• Play action

𝑃𝑡 = arg min
𝑃∈Δ𝒲

𝑃, 𝐶𝑡−1 +
1

𝜂
ℎ 𝑃

• Observe cost function 𝑐𝑡  and update 𝐶𝑡 = 𝐶𝑡−1 + 𝑐𝑡



The regret of FTRL

Theorem 

Suppose that ℎ is 𝛼-strongly convex w.r.t. ⋅ . 

Then, the regret of FTRL satisfies ℜ𝑛 𝑃∗ ≤
ℎ 𝑃∗ −ℎ(𝑃1)

𝛼𝜂
+ 𝜂 σ𝑡=1

𝑇 𝑐𝑡 ∗
2.

▪ ℎ is said to be 𝛼-strongly convex w.r.t. ⋅  if it satisfies

ℎ 𝜆𝑃 + 1 − 𝜆 𝑃′ ≤ 𝜆ℎ 𝑃 + 1 − 𝜆 ℎ 𝑃′ −
𝛼𝜆 1 − 𝜆

2
𝑃 − 𝑃′ 2

▪ ⋅ ∗ is the associated dual norm: 𝑐 ∗ = sup
𝑃−𝑃′ ≤1

𝑃 − 𝑃′, 𝑐



Theorem 

Suppose that ℎ is 𝛼-strongly convex w.r.t. ⋅ . 

Then, the regret of FTRL satisfies ℜ𝑛 𝑃∗ ≤
ℎ 𝑃∗ −ℎ(𝑃1)

𝛼𝜂
+ 𝜂 σ𝑡=1

𝑇 𝑐𝑡 ∗
2.

▪ ℎ is said to be 𝛼-strongly convex w.r.t. ⋅  if it satisfies

ℎ 𝜆𝑃 + 1 − 𝜆 𝑃′ ≤ 𝜆ℎ 𝑃 + 1 − 𝜆 ℎ 𝑃′ −
𝛼𝜆 1 − 𝜆

2
𝑃 − 𝑃′ 2

▪ ⋅ ∗ is the associated dual norm: 𝑐 ∗ = sup
𝑃−𝑃′ ≤1

𝑃 − 𝑃′, 𝑐

𝑇ℎ 𝑃∗ 𝐵2/𝛼

The regret of FTRL

(if max
𝑡

𝑐𝑡 ∗ ≤ 𝐵)



Generalized PAC-Bayes via FTRL

Regret bound of FTRL

ℜ𝑇 𝑃∗ ≤
ℎ 𝑃∗ − ℎ(𝑃1)

𝜂
+

𝜂𝐵2𝑇

2𝛼

Generalized PAC-Bayes

𝔼 gen 𝑊𝑛, 𝑆𝑛 𝑆𝑛 ≤
ℎ 𝑃𝑊𝑛|𝑆𝑛

− ℎ(𝑃1)

𝜂𝑛
+

𝜂𝐵2

2𝛼
+

𝜎2 log(1/𝛿)

2𝑛

Online-to-PAC

ℜ𝑛 𝑃𝑊𝑛|𝑆𝑛

𝑛
+

𝜎2 log(1/𝛿)

2𝑛
+

=



Basic examples
Relative entropy

𝔼 gen 𝑊𝑛, 𝑆𝑛 |𝑆𝑛 ≤
4𝒟KL 𝑃𝑊𝑛|𝑆𝑛

𝑃0 max𝑡 𝑐𝑡 ∞
2  

𝑛
+

𝜎2 log(log 𝑛 /𝛿)

2𝑛

𝑝-norm with 𝑝 ∈ (1,2]

𝔼 gen 𝑊𝑛, 𝑆𝑛 |𝑆𝑛 ≤
4 𝑃𝑊𝑛|𝑆𝑛

− 𝑃0 𝑝

2
max𝑡 𝑐𝑡 𝑞

2

(𝑝 − 1)𝑛
+

𝜎2 log(log 𝑛 /𝛿)

2𝑛

𝑝-norm with 𝑝 > 2

𝔼 gen 𝑊𝑛, 𝑆𝑛 |𝑆𝑛 ≤
2𝑝 𝑃𝑊𝑛|𝑆𝑛

− 𝑃0 𝑝

𝑝
max𝑡 𝑐𝑡 𝑞

𝑞

𝑝 − 1 𝑛1/𝑝
+

𝜎2 log(log 𝑛 /𝛿)

2𝑛
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𝑞

𝑝 − 1 𝑛1/𝑝
+

𝜎2 log(log 𝑛 /𝛿)

2𝑛

These norms remain meaningful for 
unbounded/heavy tailed losses



Basic examples
Relative entropy

𝔼 gen 𝑊𝑛, 𝑆𝑛 |𝑆𝑛 ≤
4𝒟KL 𝑃𝑊𝑛|𝑆𝑛

𝑃0 max𝑡 𝑐𝑡 ∞
2  

𝑛
+

𝜎2 log(log 𝑛 /𝛿)

2𝑛

𝑝-norm with 𝑝 ∈ (1,2]

𝔼 gen 𝑊𝑛, 𝑆𝑛 |𝑆𝑛 ≤
4 𝑃𝑊𝑛|𝑆𝑛

− 𝑃0 𝑝

2
max𝑡 𝑐𝑡 𝑞

2

(𝑝 − 1)𝑛
+

𝜎2 log(log 𝑛 /𝛿)

2𝑛

𝑝-norm with 𝑝 > 2

𝔼 gen 𝑊𝑛, 𝑆𝑛 |𝑆𝑛 ≤
2𝑝 𝑃𝑊𝑛|𝑆𝑛

− 𝑃0 𝑝

𝑝
max𝑡 𝑐𝑡 𝑞

𝑞

𝑝 − 1 𝑛1/𝑝
+

𝜎2 log(log 𝑛 /𝛿)

2𝑛

   All of these are potentially 
unbounded / meaningless   

These norms remain meaningful for 
unbounded/heavy tailed losses



The smoothed relative entropy

▪ Let 𝒲 = ℝ𝑑  and define the Gaussian smoothing operator for 𝜎 > 0 
on distributions 𝑄 over 𝒲 as

𝐺𝜎𝑄 = Law(𝑊 + 𝜎𝜉) (𝑊 ∼ 𝑄, 𝜉 ∼ 𝒩 0, 𝐼 )



The smoothed relative entropy

▪ Let 𝒲 = ℝ𝑑  and define the Gaussian smoothing operator for 𝜎 > 0 
on distributions 𝑄 over 𝒲 as

𝐺𝜎𝑄 = Law(𝑊 + 𝜎𝜉)

▪ Define the smoothed relative entropy as
𝒟𝜎 𝑄 𝑄′ = 𝒟KL 𝐺𝜎𝑄 𝐺𝜎𝑄′

and the smoothed total variation distance as
𝑄 − 𝑄′

𝜎 = 𝐺𝜎𝑄 − 𝐺𝜎𝑄′
TV

(𝑊 ∼ 𝑄, 𝜉 ∼ 𝒩 0, 𝐼 )



Smoothing is cool

1

2
𝑄 − 𝑄′

𝜎
2 ≤ 𝒟𝜎 𝑄 𝑄′ ≤

1

2𝜎2
𝕎2

2(𝑄, 𝑄′)



Smoothing is cool

1

2
𝑄 − 𝑄′

𝜎
2 ≤ 𝒟𝜎 𝑄 𝑄′ ≤

1

2𝜎2
𝕎2

2(𝑄, 𝑄′)

Theorem 

For any learning algorithm 𝒜, 

𝔼 gen 𝑊𝑛, 𝑆𝑛 𝑆𝑛  ≤

1
𝜎2 𝕎2

2 𝑃𝑊𝑛|𝑆𝑛
, 𝑃0

1
𝑛

σ𝑡=1
𝑛 𝑐𝑡 𝜎,∗

2

𝑛
+

𝜎2 log(1/𝛿)

2𝑛



Smoothing is cool

1

2
𝑄 − 𝑄′

𝜎
2 ≤ 𝒟𝜎 𝑄 𝑄′ ≤

1

2𝜎2
𝕎2

2(𝑄, 𝑄′)

Theorem 

For any learning algorithm 𝒜, 

𝔼 gen 𝑊𝑛, 𝑆𝑛 𝑆𝑛  ≤

1
𝜎2 𝕎2

2 𝑃𝑊𝑛|𝑆𝑛
, 𝑃0

1
𝑛

σ𝑡=1
𝑛 𝑐𝑡 𝜎,∗

2

𝑛
+

𝜎2 log(1/𝛿)

2𝑛

When is this small??



The dual norm ‖ ⋅ ‖𝜎,∗

Lemma
Suppose that 𝑓 is infinitely smooth in the sense that all for all 𝑘, all of 

its partial derivatives of order 𝑘 are bounded as 𝐷𝑘𝑓(𝑤) ≤ 𝛽𝑘. 

Then, ‖𝑓‖𝜎,∗ ≤ σ𝑘=0
∞ 𝜎 𝑑

𝑘
𝛽𝑘.



The dual norm ‖ ⋅ ‖𝜎,∗

Lemma
Suppose that 𝑓 is infinitely smooth in the sense that all for all 𝑘, all of 

its partial derivatives of order 𝑘 are bounded as 𝐷𝑘𝑓(𝑤) ≤ 𝛽𝑘. 

Then, ‖𝑓‖𝜎,∗ ≤ σ𝑘=0
∞ 𝜎 𝑑

𝑘
𝛽𝑘.

Theorem 

Suppose that ℓ(⋅, 𝑧) is infinitely smooth with 𝛽𝑘 ≤ 𝛽 (∀𝑘). Then,

𝔼 gen 𝑊𝑛, 𝑆𝑛 𝑆𝑛 ≤
8𝛽2𝑑𝕎2

2 𝑃𝑊𝑛|𝑆𝑛
, 𝑃0

𝑛
+

𝜎2 log(1/𝛿)

2𝑛



The dual norm ‖ ⋅ ‖𝜎,∗

Theorem 

Suppose that ℓ(⋅, 𝑧) is infinitely smooth with 𝛽𝑘 ≤ 𝛽 (∀𝑘). Then,

𝔼 gen 𝑊𝑛, 𝑆𝑛 𝑆𝑛 ≤
8𝛽2𝑑𝕎2

2 𝑃𝑊𝑛|𝑆𝑛
, 𝑃0

𝑛
+

𝜎2 log(1/𝛿)

2𝑛

Lemma
Suppose that 𝑓 is infinitely smooth in the sense that all for all 𝑘, all of 

its partial derivatives of order 𝑘 are bounded as 𝐷𝑘𝑓(𝑤) ≤ 𝛽𝑘. 

Then, ‖𝑓‖𝜎,∗ ≤ σ𝑘=0
∞ 𝜎 𝑑

𝑘
𝛽𝑘.

Generalization error of 𝒪 𝑅𝛽 𝑑/𝑛  when 

all 𝑊’s have norm bounded by 𝑅!



What did we learn & what next?

▪We can go beyond standard “information-theoretic” techniques!

▪New since the COLT 2022 paper:
▪ we can go beyond FTRL!

▪ we can get high-probability bounds!

▪ we can get data-dependent and parameter-free bounds!



What did we learn & what next?

▪We can go beyond standard “information-theoretic” techniques!

▪New since the COLT 2022 paper:
▪ we can go beyond FTRL!

▪ we can get high-probability bounds!

▪ we can get data-dependent and parameter-free bounds!

▪Many new possibilities:
▪ data-dependent bounds? (non-trivial with current theory)

▪ comparator-dependent bounds?

▪ no need to worry about adaptivity!

▪ no need to worry about implementability!



Thanks!!



Appendix



Strong convexity of 𝒟𝜎

Proof steps:

▪ The Bregman divergence of ℎ is ℬℎ 𝑄 𝑄′ = 𝒟𝜎 𝑄 𝑄′

▪ Pinsker’s inequality:

𝒟𝜎 𝑄 𝑄′ = 𝒟KL 𝐺𝜎𝑄 𝐺𝜎𝑄′ ≥
1

2
𝐺𝜎𝑄 − 𝐺𝜎𝑄′

TV
2 =

1

2
𝑄 − 𝑄′ 𝜎

2

Lemma
The function ℎ 𝑄 = 𝒟𝜎 𝑄 𝑃𝑊𝑛

 is 1-strongly convex 

with respect to the smoothed total variation distance.



Boundedness of 𝒟𝜎 

Lemma
The smoothed relative entropy is upper-bounded by the 

squared Wasserstein-2 distance: 𝒟𝜎 𝑄 𝑄′ ≤
1

2𝜎2 𝕎2
2(𝑄, 𝑄′)

Proof steps:

▪ Let 𝜋 be the coupling of 𝑄 and 𝑄′ that achieves the infimum in the def. of 𝕎2

▪ 𝒟𝜎 𝑄 𝑄′ = 𝒟KL 𝒲׬
𝒩 𝑤, 𝜎2𝐼 d𝜋 𝑤, 𝑤′ 𝒲׬

𝒩 𝑤′, 𝜎2𝐼 d𝜋 𝑤, 𝑤′

≤ න
𝒲

𝒟KL 𝒩 𝑤, 𝜎2𝐼 𝒩 𝑤′, 𝜎2𝐼 d𝜋 𝑤, 𝑤′ = න
𝒲

1

2𝜎2
𝑤 − 𝑤′ 2 d𝜋 𝑤, 𝑤′

Jensen’s inequality + joint convexity of 𝒟KL
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