Online-to-PAC Conversions: Generalization Bounds via Regret Analysis

joint work with Gábor Lugosi

Funded by ERC StG

- Statistical learning crash course
- Online learning crash course
- From regret analysis to generalization bounds
- Some examples

- Statistical learning crash course
- Online learning crash course
- From regret analysis to generalization bounds
- Some examples

We will construct online learning algorithms that will certify bounds on the generalization error of a given statistical learning algorithm.

~

- Statistical learning crash course
- Online learning crash course
- From regret analysis to generalization bounds
- Some examples

We will construct online learning algorithms that will certify bounds on the generalization error of a given statistical learning algorithm.

~

Setup: Statistical learning

- Data set: $S_n = \{Z_i\}_{i=1}^n \in \mathbb{Z}^n = S$, drawn i.i.d. $\sim \mu$ ■ e.g., regression: $Z_i = (X_i, Y_i)$ with $X_i \in \mathbb{R}^m$ and $Y_i \in \mathbb{R}$
- Hypothesis class: *W*
 - e.g., neural network weights
- Loss function: $\ell: \mathcal{W} \times \mathcal{Z} \to \mathbb{R}$
 - e.g., square loss: $\ell(w, (x, y)) = (f(w, x) y)^2$
- Learning algorithm $\mathcal{A}: S \to W$ produces hypothesis $W_n = \mathcal{A}(S_n)$

Setup: Statistical learning

- Data set: $S_n = \{Z_i\}_{i=1}^n \in \mathbb{Z}^n = S$, drawn i.i.d. $\sim \mu$ ■ e.g., regression: $Z_i = (X_i, Y_i)$ with $X_i \in \mathbb{R}^m$ and $Y_i \in \mathbb{R}$
- Hypothesis class: *W*
 - e.g., neural network weights
- Loss function: $\ell: \mathcal{W} \times \mathcal{Z} \to \mathbb{R}$
 - e.g., square loss: $\ell(w, (x, y)) = (f(w, x) y)^2$
- Learning algorithm $\mathcal{A}: S \to W$ produces hypothesis $W_n = \mathcal{A}(S_n)$

Goal:

understand when algorithm \mathcal{A} produces W_n with small risk $R(W_n) = \mathbb{E}_{Z'} [\ell(W_n, Z') | W_n]$

- Risk: $R(w) = \mathbb{E}_{Z}[\ell(w, Z)]$
- Empirical risk: $\hat{R}(w, S_n) = \frac{1}{n} \sum_{i=1}^n \ell(w, Z_i)$
- Risk decomposition for $W_n = \mathcal{A}(S_n)$: $R(W_n) = \hat{R}(W_n, S_n) + (R(W_n) - \hat{R}(W_n, S_n))$

- Risk: $R(w) = \mathbb{E}_{Z}[\ell(w, Z)]$
- Empirical risk: $\hat{R}(w, S_n) = \frac{1}{n} \sum_{i=1}^n \ell(w, Z_i)$
- Risk decomposition for $W_n = \mathcal{A}(S_n)$: $R(W_n) = \hat{R}(W_n, S_n) + (R(W_n) - \hat{R}(W_n, S_n))$

generalization error $gen(W_n, S_n)$

- Risk: $R(w) = \mathbb{E}_{Z}[\ell(w, Z)]$
- Empirical risk: $\hat{R}(w, S_n) = \frac{1}{n} \sum_{i=1}^n \ell(w, Z_i)$
- Risk decomposition for $W_n = \mathcal{A}(S_n)$: $R(W_n) = \hat{R}(W_n, S_n) + (R(W_n) - \hat{R}(W_n, S_n))$

generalization error $gen(W_n, S_n)$

Directly controlled by algorithm

• Risk: $R(w) = \mathbb{E}_{Z}[\ell(w, Z)]$ • Empirical risk: $\hat{R}(w, S_n) = \frac{1}{n} \sum_{i=1}^n \ell(w, Z_i)$ • Risk decomposition for $W_n = \mathcal{A}(S_n)$: $\widehat{R}(W_n) = \widehat{R}(W_n, S_n) + \left(R(W_n) - \widehat{R}(W_n, S_n)\right)$ generalization error $gen(W_n, S_n)$ Directly controlled The BIG question: by algorithm

why/when is this small?

Analyzing the generalization error

- Uniform convergence: bound $\sup_{w} |R(w) \hat{R}(w, S_n)|$
 - Distribution-agnostic: VC-dimension
 - Distribution-dependent: Rademacher complexity, margin conditions

Analyzing the generalization error

- Uniform convergence: bound $\sup_{w} |R(w) \hat{R}(w, S_n)|$
 - Distribution-agnostic: VC-dimension
 - Distribution-dependent: Rademacher complexity, margin conditions

Algorithm-dependent:

- Stability (Bousquet & Eliseeff, 2002)
- PAC-Bayes (Shawe-Taylor & Williamson, 1997, McAllester, 1998, Langford and Seeger, 2001)
- Information-theoretic (Russo & Zou, 2016, Xu & Raginsky, 2017)

Information-theoretic generalization

Theorem

(Russo & Zou, 2016, Xu & Raginsky, 2017) Suppose that $\ell(w, Z)$ is σ -subgaussian for all $w \in \mathcal{W}$. Then, for any learning algorithm \mathcal{A} ,

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)]| \leq \sqrt{\frac{2\sigma}{m}}$$

$$\frac{\sigma^2 \mathcal{D}_{\mathrm{KL}} (P_{W_n, S_n} | P_{W_n} \otimes P_{S_n})}{n}$$

Information-theoretic generalization

Theorem

(Russo & Zou, 2016, Xu & Raginsky, 2017) Suppose that $\ell(w, Z)$ is σ -subgaussian for all $w \in \mathcal{W}$. Then, for any learning algorithm \mathcal{A} ,

$$|\mathbb{E}[\operatorname{gen}(W_n, S_n)]| \leq$$

$$\frac{\sigma^2 \mathcal{D}_{\mathrm{KL}} \left(P_{W_n, S_n} \middle| P_{W_n} \otimes P_{S_n} \right)}{n}$$

Mutual information between W_n and S_n

PAC-Bayes

Theorem

(McAllester, Catoni, Langford, Seeger, etc.) Suppose that $\ell(w, Z)$ is σ -subgaussian for all $w \in \mathcal{W}$. Then, for any prior $P_0 \in \Delta_{\mathcal{W}}$, w.p. $\geq 1 - \delta$ the following holds for any learning algorithm \mathcal{A} : $|\mathbb{E}[gen(W_n, S_n)|S_n]| \leq \sqrt{\frac{2\sigma^2 \mathcal{D}_{\mathrm{KL}}(P_{W_n|S_n}|P_0)}{n}} + \sqrt{\frac{\sigma^2 \log(\log n / \delta)}{n}}$

- Statistical learning crash course
- Online learning crash course
- From regret analysis to generalization bounds
- Some examples

We will construct online learning algorithms that will certify bounds on the generalization error of a given statistical learning algorithm.

~

Online learning

The protocol of Online Linear Optimization (OLO)

For each t = 1, 2, ..., T, repeat

- Online learner picks decision $P_t \in \mathcal{P}$
- Environment / adversary picks cost function $c_t \in C$
- Online learner incurs cost $\langle P_t, c_t \rangle$
- Online learner observes cost function c_t
- \mathcal{P} and \mathcal{C} are convex sets in appropriate Banach spaces
- Environment can use all info from the past and even knowledge of the online learner's algorithm

Regret analysis

Performance of the online learner is measured by its regret: $\Re_T(P^*) = \sum_{t=1}^T \langle P_t, c_t \rangle - \sum_{t=1}^T \langle P^*, c_t \rangle$

Regret analysis

Performance of the online learner is measured by its regret: $\Re_T(P^*) = \sum_{t=1}^T \langle P_t, c_t \rangle - \sum_{t=1}^T \langle P^*, c_t \rangle$

total cost of online learner

total cost of a fixed comparator $P^* \in \mathcal{P}$

Regret analysis

Performance of the online learner is measured by its regret: $\Re_T(P^*) = \sum_{t=1}^T \langle P_t, c_t \rangle - \sum_{t=1}^T \langle P^*, c_t \rangle$

total cost of a fixed comparator $P^* \in \mathcal{P}$

How can we possibly bound this?

gret analysis

ons and Trends" in learning

Gábor Lugosi

PREDICTION, LEARNING, AND GAMES

line Learning and **Convex Optimizat**

hai Shaley-Shwartz

(picture related)

Online Convex Optimization

Introduction to

second edition

Elad Hazan

A classic online learning result

• Let $\mathcal{P} = \Delta_{\mathcal{W}}$ be a probability simplex and $\mathcal{C} \in [-\sigma, \sigma]^{\mathcal{W}}$

• Cost is defined as $\langle P, c \rangle = \mathbb{E}_{W \sim P}[c(W)]$

Theorem

(Vovk 1990, Littlestone & Warmuth 1994, Freund & Schapire 1997) The Exponentially Weighted Averaging algorithm that predicts $P_{t+1}(w) \propto P_t(w)e^{-\eta c_t(w)}$ satisfies the following regret bound: $\Re_T(P^*) \leq \frac{\mathcal{D}_{KL}(P^*|P_1)}{\eta} + \frac{\eta \sigma^2 T}{2}$

A classic online learning result

• Let $\mathcal{P} = \Delta_{\mathcal{W}}$ be a probability simplex and $\mathcal{C} \in [-\sigma, \sigma]^{\mathcal{W}}$

• Cost is defined as $\langle P, c \rangle = \mathbb{E}_{W \sim P}[c(W)]$

Theorem

(Vovk 1990, Littlestone & Warmuth 1994, Freund & Schapire 1997) The Exponentially Weighted Averaging algorithm that predicts $P_{t+1}(w) \propto P_t(w)e^{-\eta c_t(w)}$ satisfies the following regret bound:

$$\Re_T(P^*) \leq \sqrt{T\sigma^2 \mathcal{D}_{KL}(P^*|P_1)}$$

- Statistical learning crash course
- Online learning crash course
- From regret analysis to generalization bounds
- Some examples

We will construct online learning algorithms that will certify bounds on the generalization error of a given statistical learning algorithm.

~

Reduction to online learning

The generalization game

For each t = 1, 2, ..., n, repeat

- Online learner picks $P_t = \text{Law}(\widetilde{W}_t) \in \Delta_{\mathcal{W}}$
- Environment picks cost function $c_t(w) = \ell(w, Z_t) \mathbb{E}_{Z'}[\ell(w, Z')]$
- Online learner incurs cost $\langle P_t, c_t \rangle = \mathbb{E}_{\widetilde{W}_t \sim P_t} [c_t(\widetilde{W}_t)]$
- Online learner observes cost function c_t

Reduction to online learning

The generalization game

For each t = 1, 2, ..., n, repeat

- Online learner picks $P_t = \text{Law}(\widetilde{W}_t) \in \Delta_{\mathcal{W}}$
- Environment picks cost function $c_t(w) = \ell(w, Z_t) \mathbb{E}_{Z'}[\ell(w, Z')]$
- Online learner incurs cost $\langle P_t, c_t \rangle = \mathbb{E}_{\widetilde{W}_t \sim P_t} [c_t(\widetilde{W}_t)]$
- Online learner observes cost function c_t

Fits into online learning framework with T = n, $\mathcal{P} = \Delta_{\mathcal{W}}$. The costs are i.i.d. and zero-mean for any fixed w.

• Generalization error can be written as follows: $\mathbb{E}[\operatorname{gen}(W_n, S_n)|S_n] = \frac{1}{n} \sum_{t=1}^n \mathbb{E}[\left(\mathbb{E}_{Z'}[\ell(W_n, Z')] - \ell(W_n, Z_t)\right)|S_n]$

• Generalization error can be written as follows: $\mathbb{E}[\operatorname{gen}(W_n, S_n) | S_n] = \frac{1}{n} \sum_{t=1}^n \mathbb{E}[\left(\mathbb{E}_{Z'}[\ell(W_n, Z')] - \ell(W_n, Z_t)\right) | S_n]$ $= -\frac{1}{n} \sum_{t=1}^n \langle P_{W_n | S_n}, c_t \rangle$

Generalization error can be written as follows: $\mathbb{E}[\operatorname{gen}(W_n, S_n)|S_n] = \frac{1}{n} \sum_{n=1}^{n} \mathbb{E}\left[\left(\mathbb{E}_{Z'}[\ell(W_n, Z')] - \ell(W_n, Z_t)\right)|S_n\right]$ $t=1_n$ $= -\frac{1}{n} \sum_{\substack{n=1 \\ n \ t=1}}^{n} \langle P_{W_n | S_n}, c_t \rangle$ $= \frac{1}{n} \sum_{\substack{t=1 \\ t=1}}^{n} \langle P_t - P_{W_n | S_n}, c_t \rangle - \frac{1}{n} \sum_{\substack{t=1 \\ t=1}}^{n} \langle P_t, c_t \rangle$

Generalization error can be written as follows: $\mathbb{E}[\operatorname{gen}(W_n, S_n)|S_n] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left(\mathbb{E}_{Z'}[\ell(W_n, Z')] - \ell(W_n, Z_t)\right)|S_n\right]$ $t=1_n$ $= -\frac{1}{n} \sum_{\substack{n=1\\n \neq i=1}}^{n} \langle P_{W_n|S_n}, c_t \rangle$ $= \frac{1}{n} \sum_{\substack{t=1\\t=1}}^{n} \langle P_t - P_{W_n|S_n}, c_t \rangle - \frac{1}{n} \sum_{\substack{t=1\\t=1}}^{n} \langle P_t, c_t \rangle$ total cost of regret of online learner online learner against comparator $P_{W_n|S_n}$

Magic trick

Lemma

Suppose that the loss function is σ -subgaussian for all w. Then, with probability $\geq 1 - \delta$, $\frac{1}{n} \sum_{t=1}^{n} \langle P_t, c_t \rangle \leq \sqrt{\frac{\sigma^2 \log(1/\delta)}{2n}}$

Inspired by

"On the Complexity of Linear Prediction: Risk Bounds, Margin Bounds, and Regularization" by Kakade, Sridharan, and Tewari (2008)

• Let's think about the conditional expectation of the cost: $\mathbb{E}_t [c_t(\widetilde{W}_t)] = \mathbb{E}_t \left[\mathbb{E}_t [c_t(\widetilde{W}_t) | \widetilde{W}_t] \right]$

• Let's think about the conditional expectation of the cost: $\mathbb{E}_t [c_t(\widetilde{W}_t)] = \mathbb{E}_t \left[\mathbb{E}_t [c_t(\widetilde{W}_t) | \widetilde{W}_t] \right]$ $= \mathbb{E}_t \left[\mathbb{E}_t [\ell_t(\widetilde{W}_t, Z_t) - \ell_t(\widetilde{W}_t, Z') | \widetilde{W}_t] \right]$

• Let's think about the conditional expectation of the cost: $\mathbb{E}_t [c_t(\widetilde{W}_t)] = \mathbb{E}_t \left[\mathbb{E}_t [c_t(\widetilde{W}_t) | \widetilde{W}_t] \right]$ $= \mathbb{E}_t \left[\mathbb{E}_t [\ell_t(\widetilde{W}_t, Z_t) - \ell_t(\widetilde{W}_t, Z') | \widetilde{W}_t] \right] = 0$

these two terms are equal because \widetilde{W}_t is conditionally independent of Z_t : $\left(\widetilde{W}_t, Z_t\right) | \mathcal{F}_{t-1} \sim \left(\widetilde{W}_t, Z'\right) | \mathcal{F}_{t-1}$

• Let's think about the conditional expectation of the cost: $\mathbb{E}_t [c_t(\widetilde{W}_t)] = \mathbb{E}_t \left[\mathbb{E}_t [c_t(\widetilde{W}_t) | \widetilde{W}_t] \right]$ $= \mathbb{E}_t \left[\mathbb{E}_t [\ell_t(\widetilde{W}_t, Z_t) - \ell_t(\widetilde{W}_t, Z') | \widetilde{W}_t] \right] = 0$

these two terms are equal because \widetilde{W}_t is conditionally independent of Z_t : $(\widetilde{W}_t, Z_t) | \mathcal{F}_{t-1} \sim (\widetilde{W}_t, Z') | \mathcal{F}_{t-1}$

 $\sum_{t=1}^{n} c_t(\widetilde{W}_t) \text{ is a martingale, so we can use}$ Azuma—Hoeffding to bound it!!

• Let's think about the conditional expectation of the cost: $\mathbb{E}_t [c_t(\widetilde{W}_t)] = \mathbb{E}_t \left[\mathbb{E}_t [c_t(\widetilde{W}_t) | \widetilde{W}_t] \right]$ $= \mathbb{E}_t \left[\mathbb{E}_t [\ell_t(\widetilde{W}_t, Z_t) - \ell_t(\widetilde{W}_t, Z') | \widetilde{W}_t] \right] = 0$

these two terms are equal because \widetilde{W}_t is conditionally independent of Z_t : $(\widetilde{W}_t, Z_t) | \mathcal{F}_{t-1} \sim (\widetilde{W}_t, Z') | \mathcal{F}_{t-1}$

 $\sum_{t=1}^{n} c_t(\widetilde{W}_t) \text{ is a martingale, so we can use}$ Azuma—Hoeffding to bound it!!

Online-to-PAC conversion

Theorem

Fix an online learning algorithm and let $\Re_n(P^*)$ be its regret against comparator P^* . Suppose that $\mathbb{E}\left[\left(\ell(w,Z)\right)^2\right] \leq V$. Then, with probability at least $1 - \delta$, the generalization error of all statistical learning algorithms $W_n = \mathcal{A}(S_n)$ simultaneously satisfy the following bound :

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)|S_n]| \le \frac{\Re_n(P_{W_n|S_n})}{n} + \sqrt{\frac{V\log(1/\delta)}{2n}}$$

Online-to-PAC conversion

Theorem

Fix an online learning algorithm and let $\Re_n(P^*)$ be its regret against comparator P^* . Suppose that $\mathbb{E}\left[\left(\ell(w,Z)\right)^2\right] \leq V$. Then, with probability at least $1 - \delta$, the generalization error of all statistical learning algorithms $W_n = \mathcal{A}(S_n)$ simultaneously satisfy the following bound :

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)|S_n]| \le \frac{\Re_n(P_{W_n|S_n})}{n} + \sqrt{\frac{V\log(1/\delta)}{2n}}$$

the **existence** of an online learning algorithm with bounded regret certifies a bound on the generalization error!!

The plan for today

- Statistical learning crash course
- Online learning crash course
- From regret analysis to generalization bounds
- Some examples

We will construct online learning algorithms that will certify bounds on the generalization error of a given statistical learning algorithm.

~

Examples

PAC-Bayes via Exponential Weighted Averaging

- McAllester-style bounds
- Data-dependent bounds
- Parameter-free bounds

Generalized PAC-Bayes via Following the Regularized Leader

- Strongly convex regularizers
- Empirical bounds via optimistic FTRL
- Examples: p-norm regularizers, smoothed relative entropy

Examples

- PAC-Bayes via Exponential Weighted Averaging
 - McAllester-style bounds
 - Data-dependent bounds
 - Parameter-free bounds
- Generalized PAC-Bayes via Following the Regularized Leader
 - Strongly convex regularizers
 - Empirical bounds via optimistic FTRL
 - Examples: p-norm regularizers, smoothed relative entropy

PAC-Bayes via EWA

PAC-Bayes via EWA

EWA + steroids

Second-order optimistic EWA

Input: learning rate $\eta > 0$, prior $\tilde{P}_1 \in \Delta_W$ **Initialization:** $C_0 = 0$

For each t = 1, 2, ..., n, repeat

- Calculate $P_t(w) \propto \tilde{P}_t(w) \exp(-\eta g_t(w))$
- Play action P_t , incur cost $\langle P_t, c_t \rangle$, observe c_t
- Calculate auxiliary update

 $\tilde{P}_{t+1}(w) \propto \tilde{P}_t(w) \exp\left(-\eta c_t(w) - \eta^2 \left(c_t(w) - g_t(w)\right)^2\right)$

A data-dependent bound

A data-dependent bound

A data-dependent bound

A parameter-free PAC-Bayes bound

Orabona and Pál (2016)

A parameter-free PAC-Bayes bound

Orabona and Pál (2016)

A parameter-free PAC-Bayes bound

Examples

- PAC-Bayes via Exponential Weighted Averaging
 - McAllester-style bounds
 - Data-dependent bounds
 - Parameter-free bounds

Generalized PAC-Bayes via Following the Regularized Leader

- Strongly convex regularizers
- Empirical bounds via optimistic FTRL
- Examples: p-norm regularizers, smoothed relative entropy

Our favorite workhorse: FTRL

Follow the regularized leader

Input: regularization function $h: \Delta_{W} \to \mathbb{R}_{+}$, learning rate $\eta > 0$ **Initialization:** $C_{0} = 0$ **For each** t = 1, 2, ..., T, **repeat**

• Play action

$$P_{t} = \arg\min_{P \in \Delta_{\mathcal{W}}} \left\{ \langle P, C_{t-1} \rangle + \frac{1}{\eta} h(P) \right\}$$

• Observe cost function c_t and update $C_t = C_{t-1} + c_t$

The regret of FTRL

Theorem

Suppose that *h* is α -strongly convex w.r.t. $\|\cdot\|$. Then, the regret of FTRL satisfies $\Re_n(P^*) \leq \frac{h(P^*) - h(P_1)}{\alpha \eta} + \eta \sum_{t=1}^T \|c_t\|_*^2$.

• *h* is said to be α -strongly convex w.r.t. $\|\cdot\|$ if it satisfies $h(\lambda P + (1 - \lambda)P') \leq \lambda h(P) + (1 - \lambda)h(P') - \frac{\alpha\lambda(1 - \lambda)}{2}\|P - P'\|^2$ • $\|\cdot\|_*$ is the associated dual norm: $\|c\|_* = \sup_{n \to \infty} \langle P - P', c \rangle$

The regret of FTRL

Theorem

Suppose that *h* is α -strongly convex w.r.t. $\|\cdot\|$.

Then, the regret of FTRL satisfies $\Re_n(P^*) \leq$

$$\sqrt{Th(P^*)B^2/\alpha}$$
(if max $\|c_t\|_* < B$)

• *h* is said to be α -strongly convex w.r.t. $\|\cdot\|$ if it satisfies $h(\lambda P + (1 - \lambda)P') \le \lambda h(P) + (1 - \lambda)h(P') - \frac{\alpha\lambda(1 - \lambda)}{2}\|P - P'\|^2$

• $\|\cdot\|_*$ is the associated dual norm: $\|c\|_* = \sup_{\|P-P'\|\leq 1} \langle P-P', c \rangle$

Generalized PAC-Bayes via FTRL

$$\begin{split} & \textbf{Generalized PAC-Bayes} \\ & |\mathbb{E}[\text{gen}(W_n, S_n)|S_n]| \leq \frac{h(P_{W_n|S_n}) - h(P_1)}{\eta n} + \frac{\eta B^2}{2\alpha} + \sqrt{\frac{\sigma^2 \log(1/\delta)}{2n}} \end{split}$$

Basic examples

Relative entropy

$$\mathbb{E}[\text{gen}(W_{n}, S_{n})|S_{n}] \leq \sqrt{\frac{4\mathcal{D}_{\text{KL}}(P_{W_{n}|S_{n}}|P_{0})\max_{t}\|c_{t}\|_{\infty}^{2}}{n}} + \sqrt{\frac{\sigma^{2}\log(\log n/\delta)}{2n}}$$

$$\mathbb{E}[\text{gen}(W_{n}, S_{n})|S_{n}] \leq \sqrt{\frac{4\|P_{W_{n}|S_{n}} - P_{0}\|_{p}^{2}\max_{t}\|c_{t}\|_{q}^{2}}{(p-1)n}} + \sqrt{\frac{\sigma^{2}\log(\log n/\delta)}{2n}}$$

$$\mathbb{E}[\text{gen}(W_{n}, S_{n})|S_{n}] \leq \frac{2p\|P_{W_{n}|S_{n}} - P_{0}\|_{p}^{p}\max_{t}\|c_{t}\|_{q}^{q}}{(p-1)n^{1/p}} + \sqrt{\frac{\sigma^{2}\log(\log n/\delta)}{2n}}$$

Basic examples

Relative entropy

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)|S_n] \leq \sqrt{\frac{4\mathcal{D}_{\mathrm{KL}}(P_{W_n|S_n}|P_0)\max_t \|c_t\|_{\infty}^2}{n}} + \sqrt{\frac{\sigma^2 \log(\log n/\delta)}{2n}}$$

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)|S_n] \leq \sqrt{\frac{4\|P_{W_n|S_n} - P_0\|_p^2\max_t \|c_t\|_q^2}{(p-1)n}} + \sqrt{\frac{\sigma^2 \log(\log n/\delta)}{2n}}$$

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)|S_n] \leq \frac{2p\|P_{W_n|S_n} - P_0\|_p^p\max_t \|c_t\|_q^q}{(p-1)n^{1/p}} + \sqrt{\frac{\sigma^2 \log(\log n/\delta)}{2n}}$$

Basic examples

Relative entropy

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)|S_n] \leq \sqrt{\frac{4\mathcal{D}_{\mathrm{KL}}(P_{W_n|S_n}|P_0)\max_t \|c_t\|_{\infty}^2}{n}} + \sqrt{\frac{\sigma^2 \log(\log n/\delta)}{2n}}$$

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)|S_n] \leq \sqrt{\frac{4\mathcal{D}_{\mathrm{KL}}(P_{W_n|S_n}|P_0)\max_t \|c_t\|_{\infty}^2}{4}} + \sqrt{\frac{\sigma^2 \log(\log n/\delta)}{2n}}$$

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)|S_n] \leq \sqrt{\frac{4\mathcal{D}_{\mathrm{KL}}(P_{W_n|S_n}-P_0\|_p^2\max_t \|c_t\|_q^2}{(p-1)n}} + \sqrt{\frac{\sigma^2 \log(\log n/\delta)}{2n}}$$

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)|S_n] \leq \frac{2p\|P_{W_n|S_n}-P_0\|_p^p\max_t \|c_t\|_q^4}{(p-1)n^{1/p}} + \sqrt{\frac{\sigma^2 \log(\log n/\delta)}{2n}}$$

The smoothed relative entropy

• Let $\mathcal{W} = \mathbb{R}^d$ and define the Gaussian smoothing operator for $\sigma > 0$ on distributions Q over \mathcal{W} as $G_{\sigma}Q = \operatorname{Law}(W + \sigma\xi) \quad (W \sim Q, \xi \sim \mathcal{N}(0, I))$

The smoothed relative entropy

• Let $\mathcal{W} = \mathbb{R}^d$ and define the Gaussian smoothing operator for $\sigma > 0$ on distributions Q over \mathcal{W} as

 $G_{\sigma}Q = \operatorname{Law}(W + \sigma\xi) \qquad (W \sim Q, \xi \sim \mathcal{N}(0, I))$

• Define the smoothed relative entropy as $\mathcal{D}_{\sigma}(Q|Q') = \mathcal{D}_{\mathrm{KL}}(G_{\sigma}Q|G_{\sigma}Q')$ and the smoothed total variation distance as $\|Q - Q'\|_{\sigma} = \|G_{\sigma}Q - G_{\sigma}Q'\|_{\mathrm{TV}}$

Smoothing is cool

$$\frac{1}{2} \|Q - Q'\|_{\sigma}^2 \leq \mathcal{D}_{\sigma}(Q|Q') \leq \frac{1}{2\sigma^2} \mathbb{W}_2^2(Q,Q')$$

$$\frac{1}{2} \|Q - Q'\|_{\sigma}^2 \leq \mathcal{D}_{\sigma}(Q|Q') \leq \frac{1}{2\sigma^2} \mathbb{W}_2^2(Q,Q')$$

For any learning algorithm \mathcal{A} ,

$$|\mathbb{E}[\operatorname{gen}(W_n, S_n)]S_n| \le \sqrt{\frac{\frac{1}{\sigma^2} \mathbb{W}_2^2 (P_{W_n | S_n}, P_0) \frac{1}{n} \sum_{t=1}^n ||c_t||_{\sigma,*}^2}{n}} + \sqrt{\frac{\sigma^2 \log(1/\delta)}{2n}}$$

$$\frac{1}{2} \|Q - Q'\|_{\sigma}^2 \leq \mathcal{D}_{\sigma}(Q|Q') \leq \frac{1}{2\sigma^2} \mathbb{W}_2^2(Q,Q')$$

The dual norm $\|\cdot\|_{\sigma,*}$

Lemma

Suppose that f is infinitely smooth in the sense that all for all k, all of its partial derivatives of order k are bounded as $|D^k f(w)| \le \beta_k$. Then, $||f||_{\sigma,*} \le \sum_{k=0}^{\infty} (\sigma \sqrt{d})^k \beta_k$.

The dual norm $\|\cdot\|_{\sigma,*}$

Lemma

Suppose that f is infinitely smooth in the sense that all for all k, all of its partial derivatives of order k are bounded as $|D^k f(w)| \leq \beta_k$. Then, $||f||_{\sigma,*} \leq \sum_{k=0}^{\infty} (\sigma \sqrt{d})^k \beta_k$.

Theorem

Suppose that $\ell(\cdot, z)$ is infinitely smooth with $\beta_k \leq \beta$ ($\forall k$). Then,

 $|\mathbb{E}[\operatorname{gen}(W_n, S_n)|S_n]| \leq \sqrt{\frac{8\beta^2 dW}{N}}$

$$\frac{\mathbb{V}_2^2(P_{W_n|S_n}, P_0)}{n} + \sqrt{\frac{\sigma^2 \log n}{n}}$$

2n

The dual norm $\|\cdot\|_{\sigma,*}$

What did we learn & what next?

- We can go beyond standard "information-theoretic" techniques!
- New since the COLT 2022 paper:
 - we can go beyond FTRL!
 - we can get high-probability bounds!
 - we can get data-dependent and parameter-free bounds!

What did we learn & what next?

- We can go beyond standard "information-theoretic" techniques!
- New since the COLT 2022 paper:
 - we can go beyond FTRL!
 - we can get high-probability bounds!
 - we can get data-dependent and parameter-free bounds!
- Many new possibilities:
 - data-dependent bounds? (non-trivial with current theory)
 - comparator-dependent bounds?
 - no need to worry about adaptivity!
 - no need to worry about implementability!

Thanks!!

Appendix

Strong convexity of \mathcal{D}_σ

Lemma

The function $h(Q) = \mathcal{D}_{\sigma}(Q|P_{W_n})$ is 1-strongly convex with respect to the smoothed total variation distance.

Proof steps:

- The Bregman divergence of h is $\mathcal{B}_h(Q|Q') = \mathcal{D}_\sigma(Q|Q')$
- Pinsker's inequality:

$$\mathcal{D}_{\sigma}(Q|Q') = \mathcal{D}_{\mathrm{KL}}(G_{\sigma}Q|G_{\sigma}Q') \ge \frac{1}{2} \|G_{\sigma}Q - G_{\sigma}Q'\|_{\mathrm{TV}}^{2} = \frac{1}{2} \|Q - Q'\|_{\sigma}^{2}$$

Boundedness of \mathcal{D}_{σ}

Lemma

The smoothed relative entropy is upper-bounded by the squared Wasserstein-2 distance: $\mathcal{D}_{\sigma}(Q|Q') \leq \frac{1}{2\sigma^2} \mathbb{W}_2^2(Q,Q')$

Proof steps:

• Let π be the coupling of Q and Q' that achieves the infimum in the def. of \mathbb{W}_2

$$\mathcal{D}_{\sigma}(Q|Q') = \mathcal{D}_{\mathrm{KL}}\left(\int_{\mathcal{W}} \mathcal{N}(w,\sigma^{2}I) \mathrm{d}\pi(w,w') \middle| \int_{\mathcal{W}} \mathcal{N}(w',\sigma^{2}I) \mathrm{d}\pi(w,w')\right) \\ \leq \int_{\mathcal{W}} \mathcal{D}_{\mathrm{KL}}(\mathcal{N}(w,\sigma^{2}I)|\mathcal{N}(w',\sigma^{2}I)) \mathrm{d}\pi(w,w') = \int_{\mathcal{W}} \frac{1}{2\sigma^{2}} ||w-w'||^{2} \mathrm{d}\pi(w,w')$$

Jensen's inequality + joint convexity of \mathcal{D}_{KL}