Online-to-PAC Conversions: Generalization Bounds via Regret Analysis

Gergely Neu

Pompeu Fabra
Barcelona
Funded by
joint work with Gábor Lugosi

The plan for today

- Statistical learning crash course
- Online learning crash course
- From regret analysis to generalization bounds
- Some examples

The plan for today

- Statistical learning crash course
- Online learning crash course
- From regret analysis to generalization bounds
- Some examples

We will construct online learning algorithms that will certify bounds on the generalization error of a given statistical learning algorithm.

The plan for today

- Statistical learning crash course
- Online learning crash course
- From regret analysis to generalization bounds
- Some examples

We will construct online learning algorithms that will certify bounds on the generalization error of a given statistical learning algorithm.

Setup: Statistical learning

- Data set: $S_{n}=\left\{Z_{i}\right\}_{i=1}^{n} \in Z^{n}=\mathcal{S}$, drawn i.i.d. $\sim \mu$
- e.g., regression: $Z_{i}=\left(X_{i}, Y_{i}\right)$ with $X_{i} \in \mathbb{R}^{m}$ and $Y_{i} \in \mathbb{R}$
- Hypothesis class: \mathcal{W}
- e.g., neural network weights
- Loss function: $\ell: \mathcal{W} \times Z \rightarrow \mathbb{R}$
- e.g., square loss: $\ell(w,(x, y))=(f(w, x)-y)^{2}$
- Learning algorithm $\mathcal{A}: \mathcal{S} \rightarrow \mathcal{W}$ produces hypothesis $W_{n}=\mathcal{A}\left(S_{n}\right)$

Setup: Statistical learning

- Data set: $S_{n}=\left\{Z_{i}\right\}_{i=1}^{n} \in Z^{n}=\mathcal{S}$, drawn i.i.d. $\sim \mu$
- e.g., regression: $Z_{i}=\left(X_{i}, Y_{i}\right)$ with $X_{i} \in \mathbb{R}^{m}$ and $Y_{i} \in \mathbb{R}$
- Hypothesis class: \mathcal{W}
- e.g., neural network weights
- Loss function: $\ell: \mathcal{W} \times \mathcal{Z} \rightarrow \mathbb{R}$
- e.g., square loss: $\ell(w,(x, y))=(f(w, x)-y)^{2}$
- Learning algorithm $\mathcal{A}: \mathcal{S} \rightarrow \mathcal{W}$ produces hypothesis $W_{n}=\mathcal{A}\left(S_{n}\right)$

Goal:

understand when algorithm \mathcal{A} produces W_{n} with small risk $R\left(W_{n}\right)=\mathbb{E}_{Z^{\prime}}\left[\ell\left(W_{n}, Z^{\prime}\right) \mid W_{n}\right]$

Risk vs. empirical risk

- Risk: $R(w)=\mathbb{E}_{Z}[\ell(w, Z)]$
- Empirical risk: $\hat{R}\left(w, S_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(w, Z_{i}\right)$
- Risk decomposition for $W_{n}=\mathcal{A}\left(S_{n}\right)$:

$$
R\left(W_{n}\right)=\hat{R}\left(W_{n}, S_{n}\right)+\left(R\left(W_{n}\right)-\hat{R}\left(W_{n}, S_{n}\right)\right)
$$

Risk vs. empirical risk

- Risk: $R(w)=\mathbb{E}_{Z}[\ell(w, Z)]$
- Empirical risk: $\hat{R}\left(w, S_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(w, Z_{i}\right)$
- Risk decomposition for $W_{n}=\mathcal{A}\left(S_{n}\right)$:

$$
R\left(W_{n}\right)=\hat{R}\left(W_{n}, S_{n}\right)+\underbrace{\left(R\left(W_{n}\right)-\hat{R}\left(W_{n}, S_{n}\right)\right.}_{\begin{array}{c}
\text { generalization error } \\
\text { gen }\left(W_{n}, S_{n}\right)
\end{array}})
$$

Risk vs. empirical risk

- Risk: $R(w)=\mathbb{E}_{Z}[\ell(w, Z)]$
- Empirical risk: $\hat{R}\left(w, S_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(w, Z_{i}\right)$
- Risk decomposition for $W_{n}=\mathcal{A}\left(S_{n}\right)$:

$$
R\left(W_{n}\right)=\hat{R}\left(W_{n}, S_{n}\right)+\left(R\left(W_{n}\right)-\hat{R}\left(W_{n}, S_{n}\right)\right)
$$

generalization error $\operatorname{gen}\left(W_{n}, S_{n}\right)$

Directly controlled by algorithm

Risk vs. empirical risk

- Risk: $R(w)=\mathbb{E}_{Z}[\ell(w, Z)]$
- Empirical risk: $\hat{R}\left(w, S_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(w, Z_{i}\right)$
- Risk decomposition for $W_{n}=\mathcal{A}\left(S_{n}\right)$:

$$
R\left(W_{n}\right)=\hat{R}\left(W_{n}, S_{n}\right)+\underbrace{\left(R\left(W_{n}\right)-\hat{R}\left(W_{n}, S_{n}\right)\right.})
$$

generalization error $\operatorname{gen}\left(W_{n}, S_{n}\right)$
Directly controlled by algorithm

The BIG question:

 why/when is this small?
Analyzing the generalization error

- Uniform convergence: bound $\sup _{w}\left|R(w)-\hat{R}\left(w, S_{n}\right)\right|$
- Distribution-agnostic: VC-dimension
- Distribution-dependent: Rademacher complexity, margin conditions

Analyzing the generalization error

- Uniform convergence: bound $\sup _{w}\left|R(w)-\hat{R}\left(w, S_{n}\right)\right|$
- Distribution-agnostic: VC-dimension
- Distribution-dependent: Rademacher complexity, margin conditions
- Algorithm-dependent:
- Stability (Bousquet \& Eliseeff, 2002)
- PAC-Bayes (Shawe-Taylor \& Williamson, 1997, McAllester, 1998, Langford and Seeger, 2001)
- Information-theoretic (Russo \& Zou, 2016, Xu \& Raginsky, 2017)

Information-theoretic generalization

Theorem

(Russo \& Zou, 2016, Xu \& Raginsky, 2017)
Suppose that $\ell(w, Z)$ is σ-subgaussian for all $w \in \mathcal{W}$.
Then, for any learning algorithm \mathcal{A},

$$
\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right)\right]\right| \leq \sqrt{\frac{2 \sigma^{2} \mathcal{D}_{\mathrm{KL}}\left(P_{W_{n}, S_{n}} \mid P_{W_{n}} \otimes P_{S_{n}}\right)}{n}}
$$

Information-theoretic generalization

Theorem

(Russo \& Zou, 2016, Xu \& Raginsky, 2017)
Suppose that $\ell(w, Z)$ is σ-subgaussian for all $w \in \mathcal{W}$.
Then, for any learning algorithm \mathcal{A},
$\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right)\right]\right| \leq \sqrt{\frac{2 \sigma^{2} \mathcal{D}_{\mathrm{KL}}}{} \frac{\left(P_{W_{n}, S_{n}} \mid P_{W_{n}} \otimes P_{S_{n}}\right)}{n}}$
Mutual information between

$$
W_{n} \text { and } S_{n}
$$

PAC-Bayes

Theorem

(McAllester, Catoni, Langford, Seeger, etc.)
Suppose that $\ell(w, Z)$ is σ-subgaussian for all $w \in \mathcal{W}$.
Then, for any prior $P_{0} \in \Delta_{\mathcal{W}}$, w.p. $\geq 1-\delta$ the following holds for any learning algorithm \mathcal{A} :
$\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right]\right| \leq \sqrt{\frac{2 \sigma^{2} \mathcal{D}_{\mathrm{KL}}\left(P_{\left.W_{n}\left|S_{n}\right| P_{0}\right)}^{n}\right.}{\frac{\sigma^{2} \log (\log n / \delta)}{n}}}$

The plan for today

- Statistical learning crash course
- Online learning crash course
- From regret analysis to generalization bounds
- Some examples

We will construct online learning algorithms that will certify bounds on the generalization error of a given statistical learning algorithm.

Online learning

The protocol of Online Linear Optimization (OLO)

For each $t=1,2, \ldots, T$, repeat

- Online learner picks decision $P_{t} \in \mathcal{P}$
- Environment / adversary picks cost function $c_{t} \in \mathcal{C}$
- Online learner incurs cost $\left\langle P_{t}, c_{t}\right\rangle$
- Online learner observes cost function c_{t}
- \mathcal{P} and \mathcal{C} are convex sets in appropriate Banach spaces
- Environment can use all info from the past and even knowledge of the online learner's algorithm

Regret analysis

Performance of the online learner is measured by its regret:

$$
\Re_{T}\left(P^{*}\right)=\sum_{t=1}^{T}\left\langle P_{t}, c_{t}\right\rangle-\sum_{t=1}^{T}\left\langle P^{*}, c_{t}\right\rangle
$$

Regret analysis

Performance of the online learner is measured by its regret:

$$
\mathfrak{R}_{T}\left(P^{*}\right)=\sum_{t=1}^{T}\left\langle P_{t}, c_{t}\right\rangle-\sum_{t=1}^{T}\left\langle P^{*}, c_{t}\right\rangle
$$

total cost of online learner
total cost of a fixed comparator $P^{*} \in \mathcal{P}$

Regret analysis

Performance of the online learner is measured by its regret:

$$
\Re_{T}\left(P^{*}\right)=\sum_{t=1}^{T}\left\langle P_{t}, c_{t}\right\rangle-\sum_{t=1}^{T}\left\langle P^{*}, c_{t}\right\rangle
$$

total cost of online learner

How can we possibly bound this?

A classic online learning result

- Let $\mathcal{P}=\Delta_{\mathcal{W}}$ be a probability simplex and $\mathcal{C} \in[-\sigma, \sigma]^{\mathcal{W}}$
- Cost is defined as $\langle P, c\rangle=\mathbb{E}_{W \sim P}[c(W)]$

Theorem

(Vovk 1990, Littlestone \& Warmuth 1994, Freund \& Schapire 1997)
The Exponentially Weighted Averaging algorithm that predicts $P_{t+1}(w) \propto P_{t}(w) e^{-\eta c_{t}(w)}$ satisfies the following regret bound:

$$
\mathfrak{R}_{T}\left(P^{*}\right) \leq \frac{\mathcal{D}_{K L}\left(P^{*} \mid P_{1}\right)}{\eta}+\frac{\eta \sigma^{2} T}{2}
$$

A classic online learning result

- Let $\mathcal{P}=\Delta_{\mathcal{W}}$ be a probability simplex and $\mathcal{C} \in[-\sigma, \sigma]^{\mathcal{W}}$
- Cost is defined as $\langle P, c\rangle=\mathbb{E}_{W \sim P}[c(W)]$

Theorem

(Vovk 1990, Littlestone \& Warmuth 1994, Freund \& Schapire 1997) The Exponentially Weighted Averaging algorithm that predicts $P_{t+1}(w) \propto P_{t}(w) e^{-\eta c_{t}(w)}$ satisfies the following regret bound:

$$
\mathfrak{R}_{T}\left(P^{*}\right) \leq \sqrt{T \sigma^{2} \mathcal{D}_{K L}\left(P^{*} \mid P_{1}\right)}
$$

The plan for today

- Statistical learning crash course
- Online learning crash course
- From regret analysis to generalization bounds
- Some examples

We will construct online learning algorithms that will certify bounds on the generalization error of a given statistical learning algorithm.

Reduction to online learning

The generalization game

For each $t=1,2, \ldots, n$, repeat

- Online learner picks $P_{t}=\operatorname{Law}\left(\widetilde{W}_{t}\right) \in \Delta_{\mathcal{W}}$
- Environment picks cost function $c_{t}(w)=\ell\left(w, Z_{t}\right)-\mathbb{E}_{Z^{\prime}}\left[\ell\left(w, Z^{\prime}\right)\right]$
- Online learner incurs cost $\left\langle P_{t}, c_{t}\right\rangle=\mathbb{E}_{\widetilde{W}_{t} \sim P_{t}}\left[c_{t}\left(\widetilde{W}_{t}\right)\right]$
- Online learner observes cost function c_{t}

Reduction to online learning

The generalization game

For each $t=1,2, \ldots, n$, repeat

- Online learner picks $P_{t}=\operatorname{Law}\left(\widetilde{W}_{t}\right) \in \Delta_{\mathcal{W}}$
- Environment picks cost function $c_{t}(w)=\ell\left(w, Z_{t}\right)-\mathbb{E}_{Z^{\prime}}\left[\ell\left(w, Z^{\prime}\right)\right]$
- Online learner incurs cost $\left\langle P_{t}, c_{t}\right\rangle=\mathbb{E}_{\widetilde{W}_{t} \sim P_{t}}\left[c_{t}\left(\widetilde{W}_{t}\right)\right]$
- Online learner observes cost function c_{t}

Fits into online learning framework with $T=n, \mathcal{P}=\Delta_{w}$. The costs are i.i.d. and zero-mean for any fixed w.

Let's do some math

- Generalization error can be written as follows:

$$
\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right]=\frac{1}{n} \sum_{t=1}^{n} \mathbb{E}\left[\left(\mathbb{E}_{Z^{\prime}}\left[\ell\left(W_{n}, Z^{\prime}\right)\right]-\ell\left(W_{n}, Z_{t}\right)\right) \mid S_{n}\right]
$$

Let's do some math

- Generalization error can be written as follows:

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right] & =\frac{1}{n} \sum_{t=1}^{n} \mathbb{E}\left[\left(\mathbb{E}_{Z^{\prime}}\left[\ell\left(W_{n}, Z^{\prime}\right)\right]-\ell\left(W_{n}, Z_{t}\right)\right) \mid S_{n}\right] \\
& =-\frac{1}{n} \sum_{t=1}\left\langle P_{W_{n} \mid S_{n}}, c_{t}\right\rangle
\end{aligned}
$$

Let's do some math

- Generalization error can be written as follows:

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right] & =\frac{1}{n} \sum_{t=1}^{n} \mathbb{E}\left[\left(\mathbb{E}_{Z^{\prime}}\left[\ell\left(W_{n}, Z^{\prime}\right)\right]-\ell\left(W_{n}, Z_{t}\right)\right) \mid S_{n}\right] \\
& =-\frac{1}{n} \sum_{n=1}\left\langle P_{W_{n} \mid S_{n}}, c_{t}\right\rangle \\
& =\frac{1}{n} \sum_{t=1}^{n}\left\langle P_{t}-P_{W_{n} \mid S_{n}}, c_{t}\right\rangle-\frac{1}{n} \sum_{t=1}^{n}\left\langle P_{t}, c_{t}\right\rangle
\end{aligned}
$$

Let's do some math

- Generalization error can be written as follows:

$$
\begin{aligned}
& \mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right]=\frac{1}{n} \sum_{t=1}^{n} \mathbb{E}\left[\left(\mathbb{E}_{Z^{\prime}}\left[\ell\left(W_{n}, Z^{\prime}\right)\right]-\ell\left(W_{n}, Z_{t}\right)\right) \mid S_{n}\right] \\
&=-\frac{1}{n} \sum_{n}\left\langle P_{W_{n} \mid S_{n}}, c_{t}\right\rangle \\
&=\frac{1}{n} \sum_{t=1}^{n t=1}\left\langle P_{t}-P_{W_{n} \mid S_{n}}, c_{t}\right\rangle-\frac{1}{n} \sum_{t=1}^{n}\left\langle P_{t}, c_{t}\right\rangle \\
& \begin{aligned}
& \text { regret of online learner } \\
& \text { against comparator } P_{W_{n} \mid S_{n}} \text { onlal cost of } \\
& \text { online learner }
\end{aligned}
\end{aligned}
$$

Magic trick

Lemma

Suppose that the loss function is σ-subgaussian for all w. Then, with probability $\geq 1-\delta$,

$$
\frac{1}{n} \sum_{t=1}^{n}\left\langle P_{t}, c_{t}\right\rangle \leq \sqrt{\frac{\sigma^{2} \log (1 / \delta)}{2 n}}
$$

Inspired by
"On the Complexity of Linear Prediction: Risk Bounds, Margin Bounds, and Regularization"
by Kakade, Sridharan, and Tewari (2008)

Proof of magic lemma

- Let's think about the conditional expectation of the cost:

$$
\mathbb{E}_{t}\left[c_{t}\left(\widetilde{W}_{t}\right)\right]=\mathbb{E}_{t}\left[\mathbb{E}_{t}\left[c_{t}\left(\widetilde{W}_{t}\right) \mid \widetilde{W}_{t}\right]\right]
$$

Proof of magic lemma

- Let's think about the conditional expectation of the cost:

$$
\begin{aligned}
\mathbb{E}_{t}\left[c_{t}\left(\widetilde{W}_{t}\right)\right] & =\mathbb{E}_{t}\left[\mathbb{E}_{t}\left[c_{t}\left(\widetilde{W}_{t}\right) \mid \widetilde{W}_{t}\right]\right] \\
& =\mathbb{E}_{t}\left[\mathbb{E}_{t}\left[\ell_{t}\left(\widetilde{W}_{t}, Z_{t}\right)-\ell_{t}\left(\widetilde{W}_{t}, Z^{\prime}\right) \mid \widetilde{W}_{t}\right]\right]
\end{aligned}
$$

Proof of magic lemma

- Let's think about the conditional expectation of the cost:

$$
\begin{aligned}
\mathbb{E}_{t}\left[c_{t}\left(\widetilde{W}_{t}\right)\right] & =\mathbb{E}_{t}\left[\mathbb{E}_{t}\left[c_{t}\left(\widetilde{W}_{t}\right) \mid \widetilde{W}_{t}\right]\right] \\
& =\mathbb{E}_{t}\left[\mathbb{E}_{t}\left[\ell_{t}\left(\widetilde{W}_{t}, Z_{t}\right)-\ell_{t}\left(\widetilde{W}_{t}, Z^{\prime}\right) \mid \widetilde{W}_{t}\right]\right]=0
\end{aligned}
$$

these two terms are equal because \widetilde{W}_{t} is conditionally independent of Z_{t} :

$$
\left(\widetilde{W}_{t}, Z_{t}\right)\left|\mathcal{F}_{t-1} \sim\left(\widetilde{W}_{t}, Z^{\prime}\right)\right| \mathcal{F}_{t-1}
$$

Proof of magic lemma

- Let's think about the conditional expectation of the cost:

$$
\begin{aligned}
\mathbb{E}_{t}\left[c_{t}\left(\widetilde{W}_{t}\right)\right] & =\mathbb{E}_{t}\left[\mathbb{E}_{t}\left[c_{t}\left(\widetilde{W}_{t}\right) \mid \widetilde{W}_{t}\right]\right] \\
& =\mathbb{E}_{t}\left[\mathbb{E}_{t}\left[\ell_{t}\left(\widetilde{W}_{t}, Z_{t}\right)-\ell_{t}\left(\widetilde{W}_{t}, Z^{\prime}\right) \mid \widetilde{W}_{t}\right]\right]=0
\end{aligned}
$$

these two terms are equal because \widetilde{W}_{t} is conditionally independent of Z_{t} :

$$
\left(\widetilde{W}_{t}, Z_{t}\right)\left|\mathcal{F}_{t-1} \sim\left(\widetilde{W}_{t}, Z^{\prime}\right)\right| \mathcal{F}_{t-1}
$$

$\sum_{t=1}^{n} c_{t}\left(\widetilde{W}_{t}\right)$ is a martingale, so we can use
Azuma-Hoeffding to bound it!!

Proof of magic lemma

- Let's think about the conditional expectation of the cost:

$$
\begin{aligned}
\mathbb{E}_{t}\left[c_{t}\left(\widetilde{W}_{t}\right)\right] & =\mathbb{E}_{t}\left[\mathbb{E}_{t}\left[c_{t}\left(\widetilde{W}_{t}\right) \mid \widetilde{W}_{t}\right]\right] \\
& =\mathbb{E}_{t}\left[\mathbb{E}_{t}\left[\ell_{t}\left(\widetilde{W}_{t}, Z_{t}\right)-\ell_{t}\left(\widetilde{W}_{t}, Z^{\prime}\right) \mid \widetilde{W}_{t}\right]\right]=0
\end{aligned}
$$

these two terms are equal because \widetilde{W}_{t} is conditionally independent of Z_{t} :

$$
\left(\widetilde{W}_{t}, Z_{t}\right)\left|\mathcal{F}_{t-1} \sim\left(\widetilde{W}_{t}, Z^{\prime}\right)\right| \mathcal{F}_{t-1}
$$

$\sum_{t=1}^{n} c_{t}\left(\widetilde{W}_{t}\right)$ is a martingale, so we can use
Azuma-Hoeffding to bound it!!

Online-to-PAC conversion

Theorem

Fix an online learning algorithm and let $\Re_{n}\left(P^{*}\right)$ be its regret against comparator P^{*}. Suppose that $\mathbb{E}\left[(\ell(w, Z))^{2}\right] \leq V$. Then, with probability at least $1-\delta$, the generalization error of all statistical learning algorithms $W_{n}=\mathcal{A}\left(S_{n}\right)$ simultaneously satisfy the following bound:

$$
\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right]\right| \leq \frac{\Re_{n}\left(P_{W_{n}} \mid S_{n}\right)}{n}+\sqrt{\frac{V \log (1 / \delta)}{2 n}}
$$

Online-to-PAC conversion

Theorem

Fix an online learning algorithm and let $\Re_{n}\left(P^{*}\right)$ be its regret against comparator P^{*}. Suppose that $\mathbb{E}\left[(\ell(w, Z))^{2}\right] \leq V$. Then, with probability at least $1-\delta$, the generalization error of all statistical learning algorithms $W_{n}=\mathcal{A}\left(S_{n}\right)$ simultaneously satisfy the following bound:

$$
\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right]\right| \leq \frac{\Re_{n}\left(P_{W_{n} \mid S_{n}}\right)}{n}+\sqrt{\frac{V \log (1 / \delta)}{2 n}}
$$

the existence of an online learning algorithm with bounded regret certifies a bound on the generalization error!!

The plan for today

- Statistical learning crash course
- Online learning crash course
- From regret analysis to generalization bounds
- Some examples

We will construct online learning algorithms that will certify bounds on the generalization error of a given statistical learning algorithm.

Examples

- PAC-Bayes via Exponential Weighted Averaging
- McAllester-style bounds
- Data-dependent bounds
- Parameter-free bounds
- Generalized PAC-Bayes via Following the Regularized Leader
- Strongly convex regularizers
- Empirical bounds via optimistic FTRL
- Examples: p-norm regularizers, smoothed relative entropy

Examples

- PAC-Bayes via Exponential Weighted Averaging
- McAllester-style bounds
- Data-dependent bounds
- Parameter-free bounds
- Generalized PAC-Bayes via Following the Regularized Leader
- Strongly convex regularizers
- Empirical bounds via optimistic FTRL
- Examples: p-norm regularizers, smoothed relative entropy

PAC-Bayes via EWA

Regret bound of EWA

$\Re_{T}\left(P^{*}\right) \leq \frac{\mathcal{D}_{K L}\left(P^{*} \mid P_{1}\right)}{\eta}+\frac{\eta \sigma^{2} T}{2}$
$+\frac{\mathfrak{R}_{n}\left(P_{W_{n} \mid S_{n}}\right)}{n}+\sqrt{\frac{\sigma^{2} \log (1 / \delta)}{2 n}}$

PAC-Bayes via EWA

Regret bound of EWA

$$
\Re_{T}\left(P^{*}\right) \leq \frac{\mathcal{D}_{K L}\left(P^{*} \mid P_{1}\right)}{\eta}+\frac{\eta \sigma^{2} T}{2}
$$

Online-to-PAC

$+\frac{\Re_{n}\left(P_{W_{n} \mid S_{n}}\right)}{n}+\sqrt{\frac{\sigma^{2} \log (1 / \delta)}{2 n}}$

PAC-Bayes

$\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right]\right| \leq \frac{\mathcal{D}_{K L}\left(P_{W_{n} \mid S_{n}} \mid P_{1}\right)}{\eta n}+\frac{\eta \sigma^{2}}{2}+\sqrt{\frac{\sigma^{2} \log (1 / \delta)}{2 n}}$

EWA + steroids

Second-order optimistic EWA

Input: learning rate $\eta>0$, prior $\tilde{P}_{1} \in \Delta_{\mathcal{W}}$
Initialization: $C_{0}=0$
For each $t=1,2, \ldots, n$, repeat

- Calculate $P_{t}(w) \propto \tilde{P}_{t}(w) \exp \left(-\eta g_{t}(w)\right)$
- Play action P_{t}, incur cost $\left\langle P_{t}, c_{t}\right\rangle$, observe c_{t}
- Calculate auxiliary update

$$
\tilde{P}_{t+1}(w) \propto \tilde{P}_{t}(w) \exp \left(-\eta c_{t}(w)-\eta^{2}\left(c_{t}(w)-g_{t}(w)\right)^{2}\right)
$$

A data-dependent bound

(A regret bound for secondorder optimistic EWA)

A data-dependent bound

(A regret bound for secondorder optimistic EWA)

Second-order PAC-Bayes

$\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right]\right|$
$\leq \frac{\mathcal{D}_{K L}\left(P_{W_{n} \mid S_{n}} \mid P_{1}\right)}{\eta n}+\frac{\eta}{n} \sum_{t=1}^{n} \mathbb{E}\left[\left(\ell\left(W_{n}, Z_{t}\right)\right)^{2} \mid S_{n}\right]+\frac{\log (1 / \delta)}{2 \eta n}$

A data-dependent bound

(A regret bound for second-

 order optimistic EWA)$$
+\begin{gathered}
\text { Online-to-PAC } \\
+\frac{\Re_{n}\left(P_{W_{n} \mid S_{n}}\right)}{n}+\sqrt{\frac{\log (1 / \delta)}{2 n}}
\end{gathered}
$$

Fast rate if training error = 0!!

Trcer PAC-Bayes

$\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right]\right|$
$\leq \frac{\mathcal{D}_{K L}\left(P_{W_{n}}\left|S_{n}\right| P_{1}\right)}{\eta n}+\frac{\eta}{n} \sum_{t=1}^{n} \mathbb{E}\left[\left(\ell\left(W_{n}, Z_{t}\right)\right)^{2} \mid S_{n}\right]+\frac{\log (1 / \delta)}{2 \eta n}$

A parameter-free PAC-Bayes bound

Regret of "coin-betting"

 $\mathfrak{R}_{T}\left(P^{*}\right) \leq \sqrt{3 T \mathcal{D}_{K L}\left(P^{*} \mid P_{1}\right)+9 T}$

Orabona and Pál (2016)

A parameter-free PAC-Bayes bound

$$
\begin{aligned}
& \text { Regret of "coin-betting" } \\
& \mathfrak{R}_{T}\left(P^{*}\right) \leq \sqrt{3 T \mathcal{D}_{K L}\left(P^{*} \mid P_{1}\right)+9 T}
\end{aligned}
$$

Orabona and Pál (2016)

Online-to-PAC

Parameter-free PAC-Bayes
$\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right]\right| \leq \sqrt{\frac{3 \mathcal{D}_{K L}\left(P_{W_{n} \mid S_{n}} \mid P_{1}\right)+9}{n}}+\sqrt{\frac{\sigma^{2} \log (1 / \delta)}{2 n}}$

A parameter-free PAC-Bayes bound

Regret of "coin-betting" $\Re_{T}\left(P^{*}\right) \leq \sqrt{3 T \mathcal{D}_{K L}\left(P^{*} \mid P_{1}\right)+9 T}$ $+$| Online-to-PAC |
| :---: |
| $\frac{\Re_{n}\left(P_{W_{n}} \mid S_{n}\right)}{n}+\sqrt{\frac{\sigma^{2} \log (1 / \delta)}{2 n}}$ |

Orabona a Not even a $\log \log n$ factor!
Parameter-free PAC-Bray
$\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right]\right| \leq \sqrt{\frac{3 \mathcal{D}_{K L}\left(P_{W_{n} \mid S_{n}} \mid P_{1}\right)+9}{n}}+\sqrt{\frac{\sigma^{2} \log (1 / \delta)}{2 n}}$

Examples

- PAC-Bayes via Exponential Weighted Averaging
- McAllester-style bounds
- Data-dependent bounds
- Parameter-free bounds
- Generalized PAC-Bayes via Following the Regularized Leader
- Strongly convex regularizers
- Empirical bounds via optimistic FTRL
- Examples: p-norm regularizers, smoothed relative entropy

Our favorite workhorse: FTRL

Follow the regularized leader

Input: regularization function $h: \Delta_{\mathcal{W}} \rightarrow \mathbb{R}_{+}$, learning rate $\eta>0$ Initialization: $C_{0}=0$
For each $t=1,2, \ldots, T$, repeat

- Play action

$$
P_{t}=\arg \min _{P \in \Delta w}\left\{\left\langle P, C_{t-1}\right\rangle+\frac{1}{\eta} h(P)\right\}
$$

- Observe cost function c_{t} and update $C_{t}=C_{t-1}+c_{t}$

The regret of FTRL

Theorem

Suppose that h is α-strongly convex w.r.t. $\|\cdot\|$.
Then, the regret of FTRL satisfies $\Re_{n}\left(P^{*}\right) \leq \frac{h\left(P^{*}\right)-h\left(P_{1}\right)}{\alpha \eta}+\eta \sum_{t=1}^{T}\left\|c_{t}\right\|_{*}^{2}$.

- h is said to be α-strongly convex w.r.t. $\|\cdot\|$ if it satisfies

$$
h\left(\lambda P+(1-\lambda) P^{\prime}\right) \leq \lambda h(P)+(1-\lambda) h\left(P^{\prime}\right)-\frac{\alpha \lambda(1-\lambda)}{2}\left\|P-P^{\prime}\right\|^{2}
$$

$\cdot\|\cdot\|_{*}$ is the associated dual norm: $\|c\|_{*}=\sup _{\left\|P-P^{\prime}\right\| \leq 1}\left\langle P-P^{\prime}, c\right\rangle$

The regret of FTRL

Theorem

Suppose that h is α-strongly convex w.r.t. \|•.\|. Then, the regret of FTRL satisfies $\Re_{n}\left(P^{*}\right) \leq \sqrt{T h\left(P^{*}\right) B^{2} / \alpha}$
(if $\max _{t}\left\|c_{t}\right\|_{*} \leq B$)

- h is said to be α-strongly convex w.r.t. ||•|| if it satisfies

$$
h\left(\lambda P+(1-\lambda) P^{\prime}\right) \leq \lambda h(P)+(1-\lambda) h\left(P^{\prime}\right)-\frac{\alpha \lambda(1-\lambda)}{2}\left\|P-P^{\prime}\right\|^{2}
$$

$\cdot\|\cdot\|_{*}$ is the associated dual norm: $\|c\|_{*}=\sup _{\left\|P-P^{\prime}\right\| \leq 1}\left\langle P-P^{\prime}, c\right\rangle$

Generalized PAC-Bayes via FTRL

Regret bound of FTRL

$$
\Re_{T}\left(P^{*}\right) \leq \frac{h\left(P^{*}\right)-h\left(P_{1}\right)}{\eta}+\frac{\eta B^{2} T}{2 \alpha}
$$

Online-to-PAC

$$
+\frac{\Re_{n}\left(P_{W_{n}} \mid S_{n}\right)}{n}+\sqrt{\frac{\sigma^{2} \log (1 / \delta)}{2 n}}
$$

Generalized PAC-Bayes

$\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right]\right| \leq \frac{h\left(P_{W_{n} \mid S_{n}}\right)-h\left(P_{1}\right)}{\eta n}+\frac{\eta B^{2}}{2 \alpha}+\sqrt{\frac{\sigma^{2} \log (1 / \delta)}{2 n}}$

Basic examples

Relative entropy

$\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right] \leq \sqrt{\frac{4 \mathcal{D}_{\mathrm{KL}}\left(P_{W_{n} \mid S_{n}} \mid P_{0}\right) \max _{t}\left\|c_{t}\right\|_{\infty}^{2}}{n}}+\sqrt{\frac{\sigma^{2} \log (\log n / \delta)}{2 n}}$
p-norm with $p \in(1,2]$
$\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right] \leq \sqrt{\frac{4\left\|P_{W_{n} \mid S_{n}}-P_{0}\right\|_{p}^{2} \max _{t}\left\|c_{t}\right\|_{q}^{2}}{(p-1) n}}+\sqrt{\frac{\sigma^{2} \log (\log n / \delta)}{2 n}}$
p-norm with $p>2$
$\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right] \leq \frac{2 p\left\|P_{W_{n} \mid S_{n}}-P_{0}\right\|_{p}^{p} \max _{t}\left\|c_{t}\right\|_{q}^{q}}{(p-1) n^{1 / p}}+\sqrt{\frac{\sigma^{2} \log (\log n / \delta)}{2 n}}$

Basic examples

Relative entropy

$\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right] \leq \sqrt{\frac{4 \mathcal{D}_{\mathrm{KL}}\left(P_{W_{n} \mid S_{n}} \mid P_{0}\right) \max _{t}\left\|c_{t}\right\|_{\infty}^{2}}{n}}+\sqrt{\frac{\sigma^{2} \log (\log n / \delta)}{2 n}}$
p-norm with $p \in(1,2]$
$\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right] \leq \sqrt{\frac{4\left\|P_{W_{n} \mid S_{n}}-P_{0}\right\|_{p}^{2} \max _{t}\left\|c_{t}\right\|_{q}^{2}}{(p-1) n}+\underbrace{\frac{\sigma^{2} \log (\log n / \delta)}{2 n}}_{\begin{array}{c}\text { These norms remain meaningful for } \\ \text { unbounded/heavy tailed losses }\end{array}}}$
p-norm with $p>2$
$\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right] \leq \frac{2 p\left\|P_{W_{n} \mid S_{n}}-P_{0}\right\|_{p}^{p} \max _{t}\left\|c_{t}\right\|_{q}^{q^{q}}}{(p-1) n^{1 / p}}+\sqrt{\frac{\sigma^{2} \log (\log n / \delta)}{2 n}}$

Basic examples

Relative entropy

$$
\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right] \leq \sqrt{\frac{4 \mathcal{D}_{\mathrm{KL}}\left(P_{W_{n} \mid S_{n}} \mid P_{0}\right) \max _{t}\left\|c_{t}\right\|_{\infty}^{2}}{n}}+\sqrt{\frac{\sigma^{2} \log (\log n / \delta)}{2 n}}
$$

p-norm with $p \in(1,2]$
$\theta \cdot \theta: \otimes$ All of these are potentially

$$
\begin{aligned}
& \mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right)!S_{n}\right] \leq \\
& \frac{4\left\|P_{W_{n} \mid S_{n}}-P_{0}\right\|_{p}^{2} \max _{t}\left\|c_{t}\right\|_{q}^{2}}{(p-1) n}+\sqrt{\frac{\sigma^{2} \log (\log n / \delta)}{2 n}} \\
& \mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right] \leq \frac{2 p\left\|P_{W_{n} \mid S_{n}}-P_{0}\right\|_{p}^{p} \max _{t}\left\|c_{t}\right\|_{q}^{q^{n}}}{(p-1) n^{1 / p}}+\sqrt{\frac{\sigma^{2} \log (\log n / \delta)}{2 n}}
\end{aligned}
$$

The smoothed relative entropy

- Let $\mathcal{W}=\mathbb{R}^{d}$ and define the Gaussian smoothing operator for $\sigma>0$ on distributions Q over \mathcal{W} as

$$
G_{\sigma} Q=\operatorname{Law}(W+\sigma \xi) \quad(W \sim Q, \xi \sim \mathcal{N}(0, I))
$$

The smoothed relative entropy

- Let $\mathcal{W}=\mathbb{R}^{d}$ and define the Gaussian smoothing operator for $\sigma>0$ on distributions Q over \mathcal{W} as

$$
G_{\sigma} Q=\operatorname{Law}(W+\sigma \xi) \quad(W \sim Q, \xi \sim \mathcal{N}(0, I))
$$

- Define the smoothed relative entropy as

$$
\mathcal{D}_{\sigma}\left(Q \mid Q^{\prime}\right)=\mathcal{D}_{\mathrm{KL}}\left(G_{\sigma} Q \mid G_{\sigma} Q^{\prime}\right)
$$

and the smoothed total variation distance as

$$
\left\|Q-Q^{\prime}\right\|_{\sigma}=\left\|G_{\sigma} Q-G_{\sigma} Q^{\prime}\right\|_{\mathrm{TV}}
$$

Smoothing is cool

$$
\frac{1}{2}\left\|Q-Q^{\prime}\right\|_{\sigma}^{2} \leq \mathcal{D}_{\sigma}\left(Q \mid Q^{\prime}\right) \leq \frac{1}{2 \sigma^{2}} \mathbb{W}_{2}^{2}\left(Q, Q^{\prime}\right)
$$

Smoothing is cool

$$
\frac{1}{2}\left\|Q-Q^{\prime}\right\|_{\sigma}^{2} \leq \mathcal{D}_{\sigma}\left(Q \mid Q^{\prime}\right) \leq \frac{1}{2 \sigma^{2}} \mathbb{W}_{2}^{2}\left(Q, Q^{\prime}\right)
$$

Theorem

For any learning algorithm \mathcal{A},
$\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right)\right] S_{n}\right| \leq \sqrt{\frac{\frac{1}{\sigma^{2}} \mathbb{W}_{2}^{2}\left(P_{W_{n} \mid S_{n}}, P_{0}\right) \frac{1}{n} \sum_{t=1}^{n}\left\|c_{t}\right\|_{\sigma, *}^{2}}{n}}+\sqrt{\frac{\sigma^{2} \log (1 / \delta)}{2 n}}$

Smoothing is cool

$$
\frac{1}{2}\left\|Q-Q^{\prime}\right\|_{\sigma}^{2} \leq \mathcal{D}_{\sigma}\left(Q \mid Q^{\prime}\right) \leq \frac{1}{2 \sigma^{2}} \mathbb{W}_{2}^{2}\left(Q, Q^{\prime}\right)
$$

Theorem

For any learning algorithm \mathcal{A},
$\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right)\right] S_{n}\right| \leq \sqrt{\frac{\frac{1}{\sigma^{2}} \mathbb{W}_{2}^{2}\left(P_{W_{n} \mid S_{n}}, P_{0}\right) \frac{1}{n} \sum_{t=1}^{n}\left\|c_{t}\right\|_{\sigma, *}^{2}}{n}}+\sqrt{\frac{\sigma^{2} \log (1 / \delta)}{2 n}}$
When is this small??

The dual norm $\|\cdot\|_{\sigma, *}$

Lemma

Suppose that f is infinitely smooth in the sense that all for all k, all of its partial derivatives of order k are bounded as $\left|D^{k} f(w)\right| \leq \beta_{k}$.

Then, $\|f\|_{\sigma, *} \leq \sum_{k=0}^{\infty}(\sigma \sqrt{d})^{k} \beta_{k}$.

The dual norm $\|\cdot\|_{\sigma, *}$

Lemma

Suppose that f is infinitely smooth in the sense that all for all k, all of its partial derivatives of order k are bounded as $\left|D^{k} f(w)\right| \leq \beta_{k}$.

$$
\text { Then, }\|f\|_{\sigma, *} \leq \sum_{k=0}^{\infty}(\sigma \sqrt{d})^{k} \beta_{k}
$$

Theorem

Suppose that $\ell(\cdot, z)$ is infinitely smooth with $\beta_{k} \leq \beta(\forall k)$. Then,

$$
\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right]\right| \leq \sqrt{\frac{8 \beta^{2} d \mathbb{W}_{2}^{2}\left(P_{W_{n} \mid S_{n}}, P_{0}\right)}{n}}+\sqrt{\frac{\sigma^{2} \log (1 / \delta)}{2 n}}
$$

The dual norm $\|\cdot\|_{\sigma, *}$

Lemma

Suppose th its partia Generalization error of $\mathcal{O}(R \beta \sqrt{d / n})$ when $(w) \mid \leq \beta_{k}$. all W 's have norm bounded by R !

Theorem

Suppose that $\ell(\cdot, z)$ is infinitely smooth with $\beta_{k} \leq \beta(\forall k)$. Then,

$$
\left|\mathbb{E}\left[\operatorname{gen}\left(W_{n}, S_{n}\right) \mid S_{n}\right]\right| \leq \sqrt{\frac{8 \beta^{2} d \mathbb{W}_{2}^{2}\left(P_{W_{n} \mid S_{n}}, P_{0}\right)}{n}}+\sqrt{\frac{\sigma^{2} \log (1 / \delta)}{2 n}}
$$

What did we learn \& what next?

- We can go beyond standard "information-theoretic" techniques!
- New since the COLT 2022 paper:
- we can go beyond FTRL!
- we can get high-probability bounds!
- we can get data-dependent and parameter-free bounds!

What did we learn \& what next?

- We can go beyond standard "information-theoretic" techniques!
- New since the COLT 2022 paper:
- we can go beyond FTRL!
- we can get high-probability bounds!
- we can get data-dependent and parameter-free bounds!
- Many new possibilities:
- data-dependent bounds? (non-trivial with current theory)
- comparator-dependent bounds?
- no need to worry about adaptivity!
- no need to worry about implementability!

Thanksud

Appendix

Strong convexity of \mathcal{D}_{σ}

Lemma

The function $h(Q)=\mathcal{D}_{\sigma}\left(Q \mid P_{W_{n}}\right)$ is 1-strongly convex with respect to the smoothed total variation distance.

Proof steps:

- The Bregman divergence of h is $\mathcal{B}_{h}\left(Q \mid Q^{\prime}\right)=\mathcal{D}_{\sigma}\left(Q \mid Q^{\prime}\right)$
- Pinsker's inequality:

$$
\mathcal{D}_{\sigma}\left(Q \mid Q^{\prime}\right)=\mathcal{D}_{\mathrm{KL}}\left(G_{\sigma} Q \mid G_{\sigma} Q^{\prime}\right) \geq \frac{1}{2}\left\|G_{\sigma} Q-G_{\sigma} Q^{\prime}\right\|_{\mathrm{TV}}^{2}=\frac{1}{2}\left\|Q-Q^{\prime}\right\|_{\sigma}^{2}
$$

Boundedness of \mathcal{D}_{σ}

Lemma

The smoothed relative entropy is upper-bounded by the squared Wasserstein-2 distance: $\mathcal{D}_{\sigma}\left(Q \mid Q^{\prime}\right) \leq \frac{1}{2 \sigma^{2}} \mathbb{W} \mathbb{Z}_{2}^{2}\left(Q, Q^{\prime}\right)$

Proof steps:

- Let π be the coupling of Q and Q^{\prime} that achieves the infimum in the def. of \mathbb{W}_{2}
- $\mathcal{D}_{\sigma}\left(Q \mid Q^{\prime}\right)=\mathcal{D}_{\mathrm{KL}}\left(\int_{\mathcal{W}} \mathcal{N}\left(w, \sigma^{2} I\right) \mathrm{d} \pi\left(w, w^{\prime}\right) \mid \int_{\mathcal{W}} \mathcal{N}\left(w^{\prime}, \sigma^{2} I\right) \mathrm{d} \pi\left(w, w^{\prime}\right)\right)$
$\leq \int_{\mathcal{W}} \mathcal{D}_{\mathrm{KL}}\left(\mathcal{N}\left(w, \sigma^{2} I\right) \mid \mathcal{N}\left(w^{\prime}, \sigma^{2} I\right)\right) \mathrm{d} \pi\left(w, w^{\prime}\right)=\int_{\mathcal{W}} \frac{1}{2 \sigma^{2}}\left\|w-w^{\prime}\right\|^{2} \mathrm{~d} \pi\left(w, w^{\prime}\right)$
Jensen's inequality + joint convexity of $\mathcal{D}_{\mathrm{KL}}$

