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Setup: Statistical learning

= Dataset: S, = {Z;}1-; € Z™" = §,drawn i.i.d. ~u
= e.g., regression: Z; = (X;,Y;) withX; e R™andY; € R
* Hypothesis class: W
= e.g., neural network weights
= Loss function: : W X Z - R
= e.g., square loss: £(w, (x,¥)) = (f (w,x) — v)?
" Learning algorithm A:§ — W produces hypothesis W,, = A(S,,)
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Risk vs. empirical risk

= Risk: R(w) = E,[£(w, Z)]
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generalization error
gen(Wy, Spn)

Directly controlled

by algorithm The BIG question:

why/when is this small?



Analyzing the generalization error

= Uniform convergence: bound sup,, |[R(w) — R(w, S,,)|
= Distribution-agnostic: VC-dimension
= Distribution-dependent: Rademacher complexity, margin conditions



Analyzing the generalization error

= Uniform convergence: bound sup,, |[R(w) — R(w, S,,)|
= Distribution-agnostic: VC-dimension
= Distribution-dependent: Rademacher complexity, margin conditions

= Algorithm-dependent:
= Stability (Bousquet & Eliseeff, 2002)
- PAC-Bayes (Shawe-Taylor & Williamson, 1997, McAllester, 1998, Langford and Seeger, 2001)
= Information-theoretic (Russo & Zou, 2016, Xu & Raginsky, 2017)



Information-theoretic generalization

Theorem
(Russo & Zou, 2016, Xu & Raginsky, 2017)

Suppose that £(w, Z) is a-subgaussian forallw € W,
Then, for any learning algorithm A,

ZO'ZDKL(PWn,Sn‘PWn ® PSn)
V n

|E[gen(W,, Sp) ]| <
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PAC-Bayes

Theorem

(McAllester, Catoni, Langford, Seeger, etc.)
Suppose that #(w, Z) is a-subgaussian forallw € W.
Then, for any prior Py € Ay ,w.p.=21—6

ds for any learning algorithm A:

the following ho

202Dk (Pw,ys, | Po) .
n

\

g2 log(logn /9§)
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Online learning

The protocol of Online Linear Optimization (OLO)
Foreacht =1,2,...,T, repeat

* Online learner picks decision P; € P

* Environment /adversary picks cost function¢; € C
* Online learnerincurs cost (P;, c;)

* Online learner observes cost function c;

= P and C are convex sets in appropriate Banach spaces

* Environment can use all info from the past and even knowledge of
the online learner’s algorithm



Regret analysis

Performance of the online learner is measured by its regret:
Rr(P7) = Z::1<Pt; Ct) — {=1<P*; Ct)
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Regret analysis

Performance of the online learner is measured by its regret:
Rr(P7) = Z::1<Pt; Ct) — {=1<P*; Ct)

— ™~

total cost of online learner total cost of a fixed
comparator P* € P

How can we possibly
bound this?



gret analysi

(picture related)



A classic online learning resulit

= Let P = Ay, be a probability simplex and C € [—a, o]V

= Costisdefinedas (P,c) = Ey..plc(W)]

Theorem
(Vovk 1990, Littlestone & Warmuth 1994, Freund & Schapire 1997)

The Exponentially Weighted Averaging algorithm that predicts
P, (w) < P, (w)e "t satisfies the following regret bound:
Dy, (P*|Py) 4 no?T

n 2

Rr(P*) <
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Reduction to online learning

The generalization game

Foreacht = 1,2, ...,n, repeat

* Online learner picks P, = Law(W,) € Ay,

 Environment picks cost function c;(w) = #(w, Z;) — E/[£(w, Z")]
» Online learner incurs cost (P, ¢;) = Ey, p, [c: (W})]

* Online learner observes cost function c;



Reduction to online learning

The generalization game

Foreacht = 1,2, ...,n, repeat

e Online learner picks P, = Law(W,) € Ay,

 Environment picks cost function c;(w) = #(w, Z;) — E/[£(w, Z")]
» Online learner incurs cost (P, ¢;) = Ey, p, [c: (W)]

* Online learner observes cost function c;

Fits into online learning framework with T = n, P = Ay,.

The costs are i.i.d. and zero-mean for any fixed w.




Let's do some math

= Generalization error can benwritten as follows:

1
E[gen(Wy, Sn)1Sn] = ~ E[(E, [6(W, Z)] — ¢(Wy, Z1))|S]
t=1
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Let's do some math

= Generalization error can benwritten as follows:

1
Elgen(W, S)ISu] = - ) E[(Bpr[6(Wa, 2] = €(Wa, Z0)|S,]

1 1
— EZ(Pt o PWn|SnJ Ct) _ EZ(PD Ct)
t=1 t=1 \

regret of online learner total cost of
against comparator Py, |s_ online learner



Magic trick

Lemma

Suppose that the loss function is o-subgaussian for all w.
Then, with probability = 1 — 6,

1% o2log(1/6
EZWth) < 8(1/9)
t=1 N

2n

Inspired by
“On the Complexity of Linear Prediction: Risk Bounds, Margin Bounds,

and Regularization”
by Kakade, Sridharan, and Tewari (2008)



Proof of magic lemma

= Let’s think about the conditional expectation of the cost:
E[c.(W:)] = Eq [Et[ct(Wt)‘Wt]]
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Online-to-PAC conversion

Theorem

Fix an online learning algorit

comparator P*. Suppose that E
least 1 — §, the generalization

hm and let R, (P™) be its regret against

_({’(w, Z))2] < V. Then, with probability at
error of all statistical learning algorithms

W, = A(S,,) simultaneously satisfy the following bound :

|Elgen(W,, Sp) Sy ]
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Online-to-PAC conversion

Theorem

Fix an online learning algorit

comparator P*. Suppose that E
least 1 — §, the generalization

hm and let R, (P™) be its regret against

_(f(w, Z))2] < V. Then, with probability at
error of all statistical learning algorithms

W, = A(S,,) simultaneously satisfy the following bound :

|Elgen(W,, Sp) Sy ]

< Bn(Puis,) | |V10g(1/6)
n \ 2n

the existence of an online learning algorithm with bounded
regret certifies a bound on the generalization error!!
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Examples: p-norm regularizers, smoothed relative entropy



Examples

PAC-Bayes via Exponential Weighted Averaging
McAllester-style bounds
Data-dependent bounds
Parameter-free bounds

Generalized PAC-Bayes via Following the Regularized Leader
Strongly convex regularizers
Empirical bounds via optimistic FTRL
Examples: p-norm regularizers, smoothed relative entropy



PAC-Bayes via EWA

Regret bound of EWA

Dy, (P*|Py) 4 noT

) <

_I_

Online-to-PAC

Rn(Pw,is,) | |02 log(1/6)

_|_

n \ 2n




PAC-Bayes via EWA

Regret bound of EWA

* 2
DKL(P |P1)+770- T -I— 9%Tl(PWnLS'n)

Online-to-PAC

) <
Rr(P) <~ :

+
n

g%log(1/6)

V 2n

PAC-Bayes

[E[gen(W,,, S)ISR]l <

nm

Di1.(Pwpisa|P1) = no?

+— +

g%log(1/6)
2n

2N




EWA + steroids

Second-order optimistic EWA

Input: learning rate n > 0, prior P; € Ay,
Initialization: C;, = 0

Foreacht = 1,2, ...,n, repeat

* Calculate P,(w) o P,(w) exp(—ng,(w))

* Play action P, incur cost (P, c;), observe c;
e Calculate auxiliary update

P,.1(w) o« P,(w) exp (—nct(w) —n?(c(w) - gt(W))z)



A data-dependent bound

(A regret bound for second-
order optimistic EWA)

_I_

Online-to-PAC

iRn (PWn |Sn)

n

_|_

log(1/6)

\

2n




A data-dependent bound

(A regret bound for second-
order optimistic EWA)

_I_

Online-to-PAC

iRn (PWn |Sn)

n

_|_

log(1/6)

\

2n

Second-order PAC-Bayes

|E[gen(W,,, S;) 18,1l

nm

n
D1 (Pw,s, |P
< KL( Wn|5n‘ 1) +%2E[(£(Wn;zt))z‘5n] b
t=1

log(1/6)

2nn




A data-dependent bound

Online-to-PAC

(A regret bound for second-

order optimistic EWNA) |1 R (Pwls) N log(1/0)

2n

Fast rate if training error = 0!!

|Elgen(W,,, Sp)|Sy ]

< Dkt (Prisy | P1) + %Z E [({)(Wn, 7))’ \Sn] 4 og(1/9)
t=1

nn 2nn




A parameter-free PAC-Bayes bound

Online-to-PAC

Regret of “coin-betting”

R (P*) < +/3TDg, (P*|P) + 9T +| Rn(Pwpis,) N 02102g(1/5)
n n
N

Orabona and Pal (2016)
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Parameter-free PAC-Bayes
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A parameter-free PAC-Bayes bound

Online-to-PAC

g2 log(1/6)
2n

Regret of “coin-betting”
% * _I_ ERTL(PW |S )
Ry (P*) < +/3TDg, (P*|P,) + 9T nlSn)

Orabona a

3DKL(PWn|Sn‘P1) +9 0-2 log(1/5)

[E[gen(Wy, Sp)ISA]1 < \ ” N 2n




Examples

PAC-Bayes via Exponential Weighted Averaging
McAllester-style bounds
Data-dependent bounds
Parameter-free bounds

Generalized PAC-Bayes via Following the Regularized Leader
Strongly convex regularizers
Empirical bounds via optimistic FTRL
Examples: p-norm regularizers, smoothed relative entropy



Our favorite workhorse: FTRL

Follow the regularized leader

Input: regularization function h: Ay, = R,, learning raten > 0
Initialization: C, = 0

Foreacht =1,2,...,T, repeat

* Play action

1
P, = arg PHE%%; {(P, Ci_q) + ﬁh(P)}

* Observe cost function ¢; and update C; = C;_; + ¢;



The regret of FTRL

Theorem
Suppose that h is a-strongly convex w.r.t. ||-||.

Then, the regret of FTRL satisfies R,,(P*) < MP)—h(Py) | nYi_qllcll?.

an
= his said to be a-strongly convex w.r.t. ||-|| if it sat/ils(f{es
a —
h(AP + (1 —A)P") < Ah(P)+ (1 — A)h(P') — > |P — P'||?
= |||]. is the associated dual norm: ||c||l. = sup (P — P’,c)

|P—P'||<1
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Suppose that h is a-strongly convex w.r.t. ||-

Then, the regret of FTRL satisfies R,,(P*) <

= his said to be a-strongly convex w.r.t. ||-|| if it satisfies
a —
h(AP + (1 —A)P") < Ah(P)+ (1 —A)h(P") — > |IP — P'||?
= |||]. is the associated dual norm: ||c||l. = sup (P — P’,c)

|P—P'||<1




Generalized PAC-Bayes via FTRL

Regret bound of FTRL Online-to-PAC
R, (P*) < h(P*) — h(Py) N nB2T +| R Py 15.) X o2 log(1/6)
n 20 . \ o

Generalized PAC-Bayes

h(Pw,s.) —h(P) nB?> |o2log(1/6)
< ni“n _—
|E[gen(W,,, ;) 1SR ]| < nn * 20 +\J 2n




Basic examples

Relative entropy

4Dx1(Pw s, |Po) maxellcell3, . a2 log(logn /&)

Elgen(Wy, $p)|Sn] <

N n N 2n
p-norm with p € (1,2]
2
Elaon (. 5,915, < 4| Pwis, = Poll, maxellcelIg . |02 log(logn /5)
en(W,,, <
g n n n V (p _ 1)n V 27’1

p-norm with p > 2

p q
2p||Pus, s, — POHpmaXt”Ct”q X 52 log(logn /5)
(p — Dnt/p \ 2n

E[gen(W,, S,)|Sn] <
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Basic examples

Relative entropy

4Dx1(Pw s, |Po) maxellcell3, . a2 log(logn /&)
N n N 2n

Elgen(Wy, $p)|Sn] <

p-norm with p € (1,2]

® ® ® All of these are potentially
unbounded / meaningless ® ® ®

2
4P, = Poll maxellclly  |5210g(10gn /6)

)| < +
Elgen(Wp, $,)15,,] < J T —=
n-norm with p > 2
p q
2p||Pu,,s,, — POHpmaXt”Ct”q 52 log(logn /5)

E[gen(Wh, S,)15,] < "

(p — Dnt/p \ 2n




The smoothed relative entropy

= Let W = R? and define the Gaussian smoothing operator for o > 0
on distributions Q over W as
G,Q =Law(W +0dé) Ww~q ¢~n(0D)



The smoothed relative entropy

= Let W = R? and define the Gaussian smoothing operator for o > 0
on distributions Q over W as
G,0 =Law(W +cd&) WwW~0q ¢~n(0,D)

* Define the smoothed relative entropy as

Ds(Q1Q") = Dk(G;Q1G;Q")

and the smoothed total variation distance as

1Q — Q’“a — ”GO'Q — GO‘Q’”TV



Smoothing is cool

L0 = @' <D, (010") < — W2(0, Q')
2 o = ~0 ~ 202 4V



Smoothing is cool

1 / 1 !
110 = Q'lIz < D, (Q1Q) < 55 W3(Q, Q"

|E[gen(Wn1 Sn)]Snl S

Theorem

For any learning algorithm A,

\

1
a?

1
W% (PWn|Sn' PO) HZ?:]_”Ct”g',*

+
n

g%log(1/6)

2n




Smoothing is cool

1 / 1 /
2110 = Q'lI5 < D, (Q1Q) < 55 W3(Q. Q")

Theorem
For any learning algorithm A,

1 1
FW% (Pwn|sn: Po) §2?=1||Ct||?;,*
|E[gen(Wn; Sn)]Snl < \ - +

g%log(1/6)

2n




The dual norm || - || .

Lemma
Suppose that f is infinitely smooth in the sense that all for all k, all of
its partial derivatives of order k are bounded as [D*f(w)| < .

Then, Iflly. < 3o (ovd)" By




The dual norm || - ||,

Lemma
Suppose that f is infinitely smooth in the sense that all for all k, all of
its partial derivatives of order k are bounded as [D*f(w)| < .

Then, Iflly. < 3o (ovd)" By

Theorem
Suppose that #(;, z) is infinitely smooth with 8, < B (Vk). Then,

3 ZdWZ P ,P 21 1/8
|E[gen(W,,, S;,)|S,,]] S\[@+ %i/)



The dual norm || - ||,

Lemma
Supposet
Its partic

Theorem

Suppose that #(;, z) is infinitely smooth with 8, < B (Vk). Then,

862dW35(Py s, P 2 1oo(1/8
|E[gen(W,,, S;,)|S,,]] S\[@+ %i/)




What did we learn & what next?

= We can go beyond standard “information-theoretic” techniques!

= New since the COLT 2022 paper:
= we can go beyond FTRL!
= we can get high-probability bounds!
= we can get data-dependent and parameter-free bounds!



What did we learn & what next?

= We can go beyond standard “information-theoretic” techniques!

= New since the COLT 2022 paper:
= we can go beyond FTRL!
= we can get high-probability bounds!
= we can get data-dependent and parameter-free bounds!

= Many new possibilities:
* data-dependent bounds? (non-trivial with current theory)
= comparator-dependent bounds?
* no need to worry about adaptivity!
* no need to worry about implementability!



ihanksl!!




Appendix



Strong convexity of D

Lemma

The function h(Q) = D, (Q|Py,, ) is 1-strongly convex
with respect to the smoothed total variation distance.

Proof steps:
= The Bregman divergence of h is B, (Q|Q") = D,(Q|Q")
* Pinsker’s inequality:

1 1
D5 (Q1Q") = Dx(G,0Q1G,Q) = 711G Q — GoQ'llFy = S 1@ - Q'llZ



Boundedness of D,

Lemma
The smoothed relative entropy is upper-bounded by the

squared Wasserstein-2 distance: D, (Q|Q") < —W2(Q, Q")

202

Proof steps:
* Let w be the coupling of Q and Q' that achieves the infimum in the def. of W,

* D, (Q1Q") = Dki.([,, N (w, o2Ddr(w,w") | [, N (W', 62D dr(w,w"))
< j D, (N (w,a?D|N (W', a2])) dn(w,w’) = j
% %

N

Jensen’s inequality + joint convexity of Dy,

— llw = w12 dr(w, w")
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